7 research outputs found

    Challenges associated with interpreting mechanisms of AF

    Get PDF
    Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF

    Anatomical Model of Rat Ventricles to Study Cardiac Arrhythmias under Infarction Injury

    Get PDF
    Species-specific computer models of the heart are a novel powerful tool in studies of life-threatening cardiac arrhythmias. Here, we develop such a model aimed at studying infarction injury in a rat heart, the most common experimental system to investigate the effects of myocardial damage. We updated the Gattoni2016 cellular ionic model by fitting its parameters to experimental data using a population modeling approach. Using four selected cellular models, we studied 2D spiral wave dynamics and found that they include meandering and break-up. Then, using an anatomically realistic ventricular geometry and fiber orientation in the rat heart, we built a model with a postinfarction scar to study the electrophysiological effects of myocardial damage. A post-infarction scar was simulated as an inexcitable obstacle surrounded by a border zone with modified cardiomyocyte properties. For cellular models, we studied the rotation of scroll waves and found that, depending on the model, we can observe different types of dynamics: anchoring, self-termination or stable rotation of the scroll wave. The observed arrhythmia characteristics coincide with those measured in the experiment. The developed model can be used to study arrhythmia in rat hearts with myocardial damage from ischemia reperfusion and to examine the possible arrhythmogenic effects of various experimental interventions. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This study has been supported by a grant from the Ministry of Science and Higher Education of the Russian Federation (agreement № 075-15-2020-800)

    Anatomical model of rat ventricles to study cardiac arrhythmias under infarction injury

    Get PDF
    Species-specific computer models of the heart are a novel powerful tool in studies of life-threatening cardiac arrhythmias. Here, we develop such a model aimed at studying infarction injury in a rat heart, the most common experimental system to investigate the effects of myocardial damage. We updated the Gattoni2016 cellular ionic model by fitting its parameters to experimental data using a population modeling approach. Using four selected cellular models, we studied 2D spiral wave dynamics and found that they include meandering and break-up. Then, using an anatomically realistic ventricular geometry and fiber orientation in the rat heart, we built a model with a post-infarction scar to study the electrophysiological effects of myocardial damage. A post-infarction scar was simulated as an inexcitable obstacle surrounded by a border zone with modified cardiomyocyte properties. For cellular models, we studied the rotation of scroll waves and found that, depending on the model, we can observe different types of dynamics: anchoring, self-termination or stable rotation of the scroll wave. The observed arrhythmia characteristics coincide with those measured in the experiment. The developed model can be used to study arrhythmia in rat hearts with myocardial damage from ischemia reperfusion and to examine the possible arrhythmogenic effects of various experimental interventions.Cardiolog

    Stories from different worlds in the universe of complex systems: A journey through microstructural dynamics and emergent behaviours in the human heart and financial markets

    Get PDF
    A physical system is said to be complex if it exhibits unpredictable structures, patterns or regularities emerging from microstructural dynamics involving a large number of components. The study of complex systems, known as complexity science, is maturing into an independent and multidisciplinary area of research seeking to understand microscopic interactions and macroscopic emergence across a broad spectrum systems, such as the human brain and the economy, by combining specific modelling techniques, data analytics, statistics and computer simulations. In this dissertation we examine two different complex systems, the human heart and financial markets, and present various research projects addressing specific problems in these areas. Cardiac fibrillation is a diffuse pathology in which the periodic planar electrical conduction across the cardiac tissue is disrupted and replaced by fast and disorganised electrical waves. In spite of a century-long history of research, numerous debates and disputes on the mechanisms of cardiac fibrillation are still unresolved while the outcomes of clinical treatments remain far from satisfactory. In this dissertation we use cellular automata and mean-field models to qualitatively replicate the onset and maintenance of cardiac fibrillation from the interactions among neighboring cells and the underlying topology of the cardiac tissue. We use these models to study the transition from paroxysmal to persistent atrial fibrillation, the mechanisms through which the gap-junction enhancer drug Rotigaptide terminates cardiac fibrillation and how focal and circuital drivers of fibrillation may co-exist as projections of transmural electrical activities. Financial markets are hubs in which heterogeneous participants, such as humans and algorithms, adopt different strategic behaviors to exchange financial assets. In recent decades the widespread adoption of algorithmic trading, the electronification of financial transactions, the increased competition among trading venues and the use of sophisticated financial instruments drove the transformation of financial markets into a global and interconnected complex system. In this thesis we introduce agent-based and state-space models to describe specific microstructural dynamics in the stock and foreign exchange markets. We use these models to replicate the emergence of cross-currency correlations from the interactions between heterogeneous participants in the currency market and to disentangle the relationships between price fluctuations, market liquidity and demand/supply imbalances in the stock market.Open Acces

    Analytical approaches for myocardial fibrillation signals

    No full text
    Atrial and ventricular fibrillation are complex arrhythmias, and their underlying mechanisms remain widely debated and incompletely understood. This is partly because the electrical signals recorded during myocardial fibrillation are themselves complex and difficult to interpret with simple analytical tools. There are currently a number of analytical approaches to handle fibrillation data. Some of these techniques focus on mapping putative drivers of myocardial fibrillation, such as dominant frequency, organizational index, Shannon entropy and phase mapping. Other techniques focus on mapping the underlying myocardial substrate sustaining fibrillation, such as voltage mapping and complex fractionated electrogram mapping. In this review, we discuss these techniques, their application and their limitations, with reference to our experimental and clinical data. We also describe novel tools including a new algorithm to map microreentrant circuits sustaining fibrillation
    corecore