1,124 research outputs found

    Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid

    Full text link
    In recent years, non-Newtonian fluids have received much attention due to their numerous applications, such as plastic manufacture and extrusion of polymer fluids. They are more complex than Newtonian fluids because the relationship between shear stress and shear rate is nonlinear. One particular subclass of non-Newtonian fluids is the generalized Oldroyd-B fluid, which is modelled using terms involving multi-term time fractional diffusion and reaction. In this paper, we consider the application of the finite difference method for this class of novel multi-term time fractional viscoelastic non-Newtonian fluid models. An important contribution of the work is that the new model not only has a multi-term time derivative, of which the fractional order indices range from 0 to 2, but also possesses a special time fractional operator on the spatial derivative that is challenging to approximate. There appears to be no literature reported on the numerical solution of this type of equation. We derive two new different finite difference schemes to approximate the model. Then we establish the stability and convergence analysis of these schemes based on the discrete H1H^1 norm and prove that their accuracy is of O(τ+h2)O(\tau+h^2) and O(τmin{3γs,2αq,2β}+h2)O(\tau^{\min\{3-\gamma_s,2-\alpha_q,2-\beta\}}+h^2), respectively. Finally, we verify our methods using two numerical examples and apply the schemes to simulate an unsteady magnetohydrodynamic (MHD) Couette flow of a generalized Oldroyd-B fluid model. Our methods are effective and can be extended to solve other non-Newtonian fluid models such as the generalized Maxwell fluid model, the generalized second grade fluid model and the generalized Burgers fluid model.Comment: 19 pages, 8 figures, 3 table

    Numerical approximation of statistical solutions of scalar conservation laws

    Full text link
    We propose efficient numerical algorithms for approximating statistical solutions of scalar conservation laws. The proposed algorithms combine finite volume spatio-temporal approximations with Monte Carlo and multi-level Monte Carlo discretizations of the probability space. Both sets of methods are proved to converge to the entropy statistical solution. We also prove that there is a considerable gain in efficiency resulting from the multi-level Monte Carlo method over the standard Monte Carlo method. Numerical experiments illustrating the ability of both methods to accurately compute multi-point statistical quantities of interest are also presented

    Numerical approximation of statistical solutions of scalar conservation laws

    Full text link
    We propose efficient numerical algorithms for approximating statistical solutions of scalar conservation laws. The proposed algorithms combine finite volume spatio-temporal approximations with Monte Carlo and multi-level Monte Carlo discretizations of the probability space. Both sets of methods are proved to converge to the entropy statistical solution. We also prove that there is a considerable gain in efficiency resulting from the multi-level Monte Carlo method over the standard Monte Carlo method. Numerical experiments illustrating the ability of both methods to accurately compute multi-point statistical quantities of interest are also presented

    Proper general decomposition (PGD) for the resolution of Navier–Stokes equations

    Get PDF
    In this work, the PGD method will be considered for solving some problems of fluid mechanics by looking for the solution as a sum of tensor product functions. In the first stage, the equations of Stokes and Burgers will be solved. Then, we will solve the Navier–Stokes problem in the case of the lid-driven cavity for different Reynolds numbers (Re = 100, 1000 and 10,000). Finally, the PGD method will be compared to the standard resolution technique, both in terms of CPU time and accuracy.Région Poitou-Charente

    The instanton method and its numerical implementation in fluid mechanics

    Full text link
    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional fluid dynamical problems. We illustrate these ideas using the two-dimensional Burgers equation and the three-dimensional Navier-Stokes equations

    A split finite element algorithm for the compressible Navier-Stokes equations

    Get PDF
    An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms
    corecore