1,249 research outputs found

    An Analytical Model for Wireless Mesh Networks with Collision-Free TDMA and Finite Queues

    Full text link
    Wireless mesh networks are a promising technology for connecting sensors and actuators with high flexibility and low investment costs. In industrial applications, however, reliability is essential. Therefore, two time-slotted medium access methods, DSME and TSCH, were added to the IEEE 802.15.4 standard. They allow collision-free communication in multi-hop networks and provide channel hopping for mitigating external interferences. The slot schedule used in these networks is of high importance for the network performance. This paper supports the development of efficient schedules by providing an analytical model for the assessment of such schedules, focused on TSCH. A Markov chain model for the finite queue on every node is introduced that takes the slot distribution into account. The models of all nodes are interconnected to calculate network metrics such as packet delivery ratio, end-to-end delay and throughput. An evaluation compares the model with a simulation of the Orchestra schedule. The model is applied to Orchestra as well as to two simple distributed scheduling algorithms to demonstrate the importance of traffic-awareness for achieving high throughput.Comment: 17 pages, 14 figure

    Statistical Delay Bound for WirelessHART Networks

    Full text link
    In this paper we provide a performance analysis framework for wireless industrial networks by deriving a service curve and a bound on the delay violation probability. For this purpose we use the (min,x) stochastic network calculus as well as a recently presented recursive formula for an end-to-end delay bound of wireless heterogeneous networks. The derived results are mapped to WirelessHART networks used in process automation and were validated via simulations. In addition to WirelessHART, our results can be applied to any wireless network whose physical layer conforms the IEEE 802.15.4 standard, while its MAC protocol incorporates TDMA and channel hopping, like e.g. ISA100.11a or TSCH-based networks. The provided delay analysis is especially useful during the network design phase, offering further research potential towards optimal routing and power management in QoS-constrained wireless industrial networks.Comment: Accepted at PE-WASUN 201

    An Approximate Inner Bound to the QoS Aware Throughput Region of a Tree Network under IEEE 802.15.4 CSMA/CA and Application to Wireless Sensor Network Design

    Full text link
    We consider a tree network spanning a set of source nodes that generate measurement packets, a set of additional relay nodes that only forward packets from the sources, and a data sink. We assume that the paths from the sources to the sink have bounded hop count. We assume that the nodes use the IEEE 802.15.4 CSMA/CA for medium access control, and that there are no hidden terminals. In this setting, starting with a set of simple fixed point equations, we derive sufficient conditions for the tree network to approximately satisfy certain given QoS targets such as end-to-end delivery probability and delay under a given rate of generation of measurement packets at the sources (arrival rates vector). The structures of our sufficient conditions provide insight on the dependence of the network performance on the arrival rate vector, and the topological properties of the network. Furthermore, for the special case of equal arrival rates, default backoff parameters, and for a range of values of target QoS, we show that among all path-length-bounded trees (spanning a given set of sources and BS) that meet the sufficient conditions, a shortest path tree achieves the maximum throughput

    Reliability and delay analysis of slotted anycast multi-hop wireless networks targeting dense traffic iot applications

    Get PDF
    Studies on IEEE 802.15.4 MAC in the current literature for anycast multi-hop networks do not capture a node's behaviour accurately. Due to the inaccurate modeling of state-wise behaviour of a node, the optimization of network parameters has not been efficient so far. In this work, we include the state-wise behaviour of a relay node into a 3D Markov model to more accurately investigate the protocol performance. Performance analysis of the proposed analytical model is evaluated for different variants of active state length, packet length and wake up rates considering reliability and delay as key performance metrics. Performance analysis shows that the model captures the behaviour of relay nodes most accurately
    corecore