20 research outputs found

    Modeling of integrated inductors for RF circuit design

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnic

    Modeling and characterization of on-chip interconnects, inductors and transformers

    Get PDF
    Ph.DNUS-SUPELEC JOINT PH.D. PROGRAMM

    On-chip Spiral Inductor/transformer Design And Modeling For Rf Applications

    Get PDF
    Passive components are indispensable in the design and development of microchips for high-frequency applications. Inductors in particular are used frequently in radio frequency (RF) IC\u27s such as low-noise amplifiers and oscillators. High performance inductor has become one of the critical components for voltage controlled oscillator (VCO) design, for its quality factor (Q) value directly affects the VCO phase noise. The optimization of inductor layout can improve its performance, but the improvement is limited by selected technology. Inductor performance is bounded by the thin routing metal and small distance from lossy substrate. On the other hand, the in-accurate inductor modeling further limits the optimization process. The on-chip inductor has been an important research topic since it was first proposed in early 1990\u27s. Significant amount of study has been accomplished and reported in literature; whereas some methods have been used in industry, but not released to public. It is of no doubt that a comprehensive solution is not exist yet. A comprehensive study of previous will be first address. Later author will point out the in-adequacy of skin effect and proximity effect as cause of current crowding in the inductor metal. A model method embedded with new explanation of current crowding is proposed and its applicability in differential inductor and balun is validated. This study leads to a robust optimization routine to improve inductor performance without any addition technology cost and development

    Copper / low-k technological platform for the fabrication of high quality factor above-IC passive devices

    Get PDF
    Modern communication devices demand challenging specifications in terms of miniaturization, performance, power consumption and cost. Every new generation of radio frequency integrated circuits (RF-ICs) offer better functionality at reduced size, power consumption and cost per device and per integrated function. Passive devices (resistors, inductors, capacitors, antennas and transmission lines) represent an important part of the cost and size of RF circuits. These components have not evolved at the same level of the transistor devices, especially because their performance is strongly degenerated when they scale down in size. The low resistivity silicon used to build the transistors also imposes prohibitive levels of RF losses to these passive devices. Radio frequency microelectromechanical systems (RF MEMS) are enabling technologies capable to bring significant improvement in the electrical performances and expressive size and cost reduction of these functions, with unparallel introduction of new functionalities, unimaginable to attain when using bulky, externally connected discrete components. High quality factor (Q) inductors are amongst ones of the most needed components in RF circuits and at the same time ones that are most affected by thin metallization and substrate related losses, demanding considerable research effort. This thesis presents a contribution toward the development of thick metal fabrication technologies, covering also the design, modeling and characterization of high quality factor and high self-resonant frequency (SRF) RF MEMS passive devices, with a special emphasis on spiral inductors. A new approach using damascene-like interconnect fabrication steps associated to low κ dielectrics (polyimide), highly-conductive thick copper electroplating, chemical mechanical polishing (CMP) and tailored substrate properties delivered quality factors in excess of 40 and self resonant frequencies in excess of 10 GHz, performances in the current state-of-the-art for integrated spiral inductors built on top of silicon wafers. Furthermore, the developed process steps are compatible with back-end processing used to fabricate modern IC interconnects and have a low thermal budget (< 250 °C), what makes it a good choice to build above-IC passives without degenerating the performance of passivated RF-CMOS circuits. Deep reactive ion etching (DRIE) of quartz substrates was also studied for the fabrication of spiral inductors, offering excellent RF performances (Q exceeding 40 and SRF exceeding 7 GHz). A new doubly-functional quartz packaging concept for RF MEMS devices was developed. This technique process both sides of the packaging wafer: the top is used to embed high quality factor copper inductors while the bottom is thermo-mechanically bonded to another RF MEMS wafer, offering a semi-hermetic SU-8 epoxy-based seal. The bonding process was optimized for high yield, to be compatible with SF6-plasma-released MEMS and to present low level of RF losses. Band pass filters for the GSM (1.8 GHz) and WLAN (5.2 GHz) standards were fabricated and characterized by RF measurements and full wave electromagnetic simulations. Although further development is need in order to predict the frequency response accurately, insertion losses as low as 1.2 dB were demonstrated, levels that cannot be usually attained using on-chip passives. Systematic analysis, RF measurements, electromagnetic simulations and equivalent circuit extraction were used to model the behavior of the fabricated devices and establish a methodology to deliver optimum performances for a given technological profile and specified performance targets (quality factor, inductance and frequency bandwidth). A simple yet accurate physics-based analytical model for spiral inductors was developed and proved to be accurate in terms of loss estimation for thick metal layers. This model is capable to accurately describe the frequency-dependent behavior of the device below its first resonant frequency over a large device design space. The model was validated by both measurements and full wave electromagnetic simulations and is well suited to perform numeric optimization of designs. The proposed models were also systematized in a Matlab® toolbox

    Micro electromechanical relays and their application in variable inductor networks

    Get PDF
    A family of microrelay devices together with integrated inductor networks has been designed, simulated, fabricated and experimental characterized. These switched networks utilize microelectromechanical systems (MEMS) as a fabrication technology and take advantage of the economies of semiconductor cleanroom batch-processing. A new type of microrelay has been developed using a suspended TaSi2/SiO2 bimorph cantilever beam, gold-to-gold electrical contact, aluminum as sacrificial layer, and a combined thermal and electrostatic means of actuation. For the first time a micro variable inductor network which is digitally controlled by microrelays has been demonstrated. A test structure for electrical micro contact characterization has been designed, built and characterized as a support task in this research. The microrelay design has utilized the Rayleigh-Ritz method to simulate the actuation and the electrical contact force. The cantilever structure of the microrelay contains a specially-shaped area which provides a symmetric force to the electrical contact region and thus reduces the electrical contact resistance. The required thermal power and electrostatic voltage for the combined actuation of microrelays were measured typically as II mW and 30 - 40 volts, respectively. The electrical contact resistance was typically 0.6 to 0.8 Ohms. The maximum operation frequency was 10 KHz and the microrelay closure and opening time were typically 12 µS. A limited number of lifetime tests were performed indicating the device lifetime to be about 106 cycles. A micro variable inductor network consisting of a 16-turn rectangular spiral coil and four controlling microrelays was designed and fabricated. A larger coil structure was divided into four segments. Each inductor segment had a microrelay connected with it in parallel. The network inductance values were determined by combinations of switching states of microrelays. Sixteen different inductance values ranging from 2.5 nH to 324.8 nH were obtained. The silicon substrate underneath the inductor region was etched out to reduce the substrate loss. The minimum self-resonant frequency was measured 1.9 GHz

    A parametric study on the effects of the variations in line width on the circuit model parameters of a planar spiral inductor on GaAs

    Get PDF
    The increasing demands for low cost radio frequency integrated circuits (RFIC’s) has generated great attention in on-chip passive components. A spiral inductor is an important passive component for many radio frequency circuits such as low noise amplifiers, mixers, switches, and voltage controlled oscillators. Considerable effort has gone into the design and modeling of the spiral inductor, however, very little research has investigated the effects due to the errors introduced into the spiral inductor modeling. This research investigates the effects of variations in conductor line width on equivalent circuit model of planar rectangular spiral inductors. A parametric study is performed where a full wave electromagnetic simulator, Sonnet TM, is used to simulate several sets of inductors on Gallium Arsenide (GaAs) substrate having different dimensions. The scattering parameters of a particular inductor were simulated over the desired frequency range. These simulated scattering parameters are used to extract the equivalent circuit model parameters using optimization process. The extracted inductor model parameters are validated through the existing physics based formulae. the simulation results reveals that variations in the conductor line width affect every parameters in the equivalent circuit model of the inductor i.e. the series inductance, the series resistance, the capacitance between the inductor turns. Change in series inductance due to the variations in the conductor line width is nearly a linear function of the nominal inductance. Variation in series resistance is an exponential function of nominal conductor width. Change in line to line capacitance due to variations in conductor line width is an exponential function of nominal spacing between conductors. Finally, variations in conductor line width have no or little effects on substrate capacitance. Curve fitting techniques are utilized to extract simple equations useful for estimating the changes in the circuit model parameters with respect to the variation in conductor line width. These equations advantageous to the RFIC’s designer since the inductor equivalent circuit model parameters can easily be modified to account for variations in conductor line width and also they can be used during circuit design optimization to explore inductor space

    Una aproximación multinivel para el diseño sistemático de circuitos integrados de radiofrecuencia.

    Get PDF
    Tesis reducida por acuerdo de confidencialidad.En un mercado bien establecido como el de las telecomunicaciones, donde se está evolucionando hacia el 5G, se estima que hoy en día haya más de 2 Mil Millones de usuarios de Smartphones. Solo de por sí, este número es asombroso. Pero nada se compara a lo que va a pasar en un futuro muy próximo. El próximo boom tecnológico está directamente conectado con el mercado emergente del internet of things (IoT). Se estima que, en 2020, habrá 20 Mil Millones de dispositivos físicos conectados y comunicando entre sí, lo que equivale a 4 dispositivos físicos por cada persona del planeta. Debido a este boom tecnológico, van a surgir nuevas e interesantes oportunidades de inversión e investigación. De hecho, se estima que en 2020 se van a invertir cerca de 3 Mil Millones de dólares solo en este mercado, un 50% más que en 2017. Todos estos dispositivos IoT tienen que comunicarse inalámbricamente entre sí, algo en lo que los circuitos de radiofrecuencia (RF) son imprescindibles. El problema es que el diseño de circuitos RF en tecnologías nanométricas se está haciendo extraordinariamente difícil debido a su creciente complejidad. Este hecho, combinado con los críticos compromisos entre las prestaciones de estos circuitos, tales como el consumo de energía, el área de chip, la fiabilidad de los chips, etc., provocan una reducción en la productividad en su diseño, algo que supone un problema debido a las estrictas restricciones time-to-market de las empresas. Es posible concluir, por tanto, que uno de los ámbitos en los que es tremendamente importante centrarse hoy en día, es el desarrollo de nuevas metodologías de diseño de circuitos RF que permitan al diseñador obtener circuitos que cumplan con especificaciones muy exigentes en un tiempo razonable. Debido a las complejas relaciones entre prestaciones de los circuitos RF (por ejemplo, ruido de fase frente a consumo de potencia en un oscilador controlado por tensión), es fácil comprender que el diseño de circuitos RF es una tarea extremadamente complicada y debe ser soportada por herramientas de diseño asistido por ordenador (EDA). En un escenario ideal, los diseñadores tendrían una herramienta EDA que podría generar automáticamente un circuito integrado (IC), algo definido en la literatura como un compilador de silicio. Con esta herramienta ideal, el usuario sólo estipularía las especificaciones deseadas para su sistema y la herramienta generaría automáticamente el diseño del IC listo para fabricar (lo que se denomina diseño físico o layout). Sin embargo, para sistemas complejos tales como circuitos RF, dicha herramienta no existe. La tesis que se presenta, se centra exactamente en el desarrollo de nuevas metodologías de diseño capaces de mejorar el estado del arte y acortar la brecha de productividad existente en el diseño de circuitos RF. Por lo tanto, con el fin de establecer una nueva metodología de diseño para sistemas RF, se han de abordar distintos cuellos de botella del diseño RF con el fin de diseñar con éxito dichos circuitos. El diseño de circuitos RF ha seguido tradicionalmente una estrategia basada en ecuaciones analíticas derivadas específicamente para cada circuito y que exige una gran experiencia del diseñador. Esto significa que el diseñador plantea una estrategia para diseñar el circuito manualmente y, tras varias iteraciones, normalmente logra que el circuito cumpla con las especificaciones deseadas. No obstante, conseguir diseños con prestaciones óptimas puede ser muy difícil utilizando esta metodología, ya que el espacio de diseño (o búsqueda) es enorme (decenas de variables de diseño con cientos de combinaciones diferentes). Aunque el diseñador llegue a una solución que cumpla todas las especificaciones, nunca estará seguro de que el diseño al que ha llegado es el mejor (por ejemplo, el que consuma menos energía). Hoy en día, las técnicas basadas en optimización se están utilizando con el objetivo de ayudar al diseñador a encontrar automáticamente zonas óptimas de diseño. El uso de metodologías basadas en optimización intenta superar las limitaciones de metodologías previas mediante el uso de algoritmos que son capaces de realizar una amplia exploración del espacio de diseño para encontrar diseños de prestaciones óptimas. La filosofía de estas metodologías es que el diseñador elige las especificaciones del circuito, selecciona la topología y ejecuta una optimización que devuelve el valor de cada componente del circuito óptimo (por ejemplo, anchos y longitudes de los transistores) de forma automática. Además, mediante el uso de estos algoritmos, la exploración del espacio de diseño permite estudiar los distintos y complejos compromisos entre prestaciones de los circuitos de RF. Sin embargo, la problemática del diseño de RF es mucho más amplia que la selección del tamaño de cada componente. Con el objetivo de conseguir algo similar a un compilador de silicio para circuitos RF, la metodología desarrollada en la tesis, tiene que ser capaz de asegurar un diseño robusto que permita al diseñador tener éxito frente a medidas experimentales, y, además, las optimizaciones tienen que ser elaboradas en tiempos razonables para que se puedan cumplir las estrictas restricciones time-to-market de las empresas. Para conseguir esto, en esta tesis, hay cuatro aspectos clave que son abordados en la metodología: 1. Los inductores integrados todavía son un cuello de botella en circuitos RF. Los parásitos que aparecen a altas frecuencias hacen que las prestaciones de los inductores sean muy difíciles de modelar. Existe, por tanto, la necesidad de desarrollar nuevos modelos más precisos, pero también muy eficientes computacionalmente que puedan ser incluidos en metodologías que usen algoritmos de optimización. 2. Las variaciones de proceso son fenómenos que afectan mucho las tecnologías nanométricas, así que para obtener un diseño robusto es necesario tener en cuenta estas variaciones durante la optimización. 3. En las metodologías de diseño manual, los parásitos de layout normalmente no se tienen en cuenta en una primera fase de diseño. En ese sentido, cuando el diseñador pasa del diseño topológico al diseño físico, puede que su circuito deje de cumplir con las especificaciones. Estas consideraciones físicas del circuito deben ser tenidas en cuenta en las primeras etapas de diseño. Por lo tanto, con el fin de abordar este problema, la metodología desarrollada tiene que tener en cuenta los parásitos de la realización física desde una primera fase de optimización. 4. Una vez se ha desarrollado la capacidad de generar distintos circuitos RF de forma automática utilizando esta metodología (amplificadores de bajo ruido, osciladores controlados por tensión y mezcladores), en la tesis se aborda también la composición de un sistema RF con una aproximación multinivel, donde el proceso empieza por el diseño de los componentes pasivos y termina componiendo distintos circuitos, construyendo un sistema (por ejemplo, un receptor de radiofrecuencia). La tesis aborda los cuatro problemas descritos anteriormente con éxito, y ha avanzado considerablemente en el estado del arte de metodologías de diseño automáticas/sistemáticas para circuitos RF.Premio Extraordinario de Doctorado U

    Time- and frequency-domain modeling of passive interconnection structures in field and circuit analysis

    Get PDF
    Die vorliegende Arbeit widmet sich den theoretischen Grundlagen und numerischen Verfahren zur Analyse passiver Verbindungsstrukturen auf der Basis der elektromagnetischen Feld- und Netzwerktheorie. Die Simulation elektromagnetischer Phänomene gewinnt eine immer stärkere Bedeutung sowohl im Entwicklungsprozess elektronischer Komponenten und Systeme als auch bei der EMV-Analyse. Ständig steigende Operationsfrequenzen erfordern die Einbeziehung der passiven Verbindungsstrukturen in die Analyse sowohl im Frequenz- als auch im Zeitbereich. Dabei wächst insbesondere die Bedeutung von Zeitbereichsmethoden bei der Behandlung elektrodynamischer Probleme infolge zunehmender Schaltfrequenzen und immer steilerer Anstiegsflanken. Frequenzbereichsmethoden in Kombination mit der Fourierrücktransformation erfordern bei extrem breiten Frequenzspektren einen hohen Rechenaufwand, um Zeitbereichslösungen mit hinreichender Genauigkeit zu erhalten. Im Falle von Nichtlinearitäten sind Zeitbereichsmethoden sogar die einzige Möglichkeit. Aus diesem Grunde wird in der vorliegenden Arbeit ein besonderer Schwerpunkt auf die Zeitbereichsmodellierung der Verbindungsstrukturen einschließlich der Schaltungsumgebung sowie die Behandlung mittels Netzwerksimulatoren gelegt. &nbsp;Throughout the first period of electrical-engineering history, passive interconnections, i.e., conductors serving as the connection of electronic devices or system components, were typically not considered in the system modeling, except for some special cases and "electrically long" structures, which were successfully described via the transmission-line theory. This changed dramatically after the wide-spread introduction of digital, radio-frequency, and microwave technologies, which required transmission via the passive interconnection structures of high-frequency (HF) signals. The parasitic effects introduced by passive interconnections at high frequencies have motivated modern digital-system designers to consider such interconnections more precisely. &nbsp

    Characterization and modeling of microwave spiral inductors and transformers

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore