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ABSTRACT 

 

Radio frequency (RF) circuits fabricated by monolithic microwave integrated circuit 

technologies (such as GaAs/silicon MMIC) make extensive use of on-chip transmission 

lines to realize an inductance, the inductor being a key component in many high-

performance circuit designs. In this thesis, several kinds of on-chip microwave spiral 

inductors are analyzed and modeled. 

 

Some novel predictions of the series resistance and inductance of general spiral 

inductors are presented for in this thesis. The resistance of the inductor is observed to 

have an increasing function of frequency, whereas the inductance is a decreasing function 

of frequency. The non-uniform current in the spiral metallic trace, which is due to skin 

effect and eddy current, and the effect of ground plane, results in the frequency-

dependent behavior for the resistance and inductance of the whole spiral inductor. In this 

thesis, some closed-form analytical formulae for the resistance and inductance 

calculations with detailed consideration of skin effect and eddy current are obtained. 

 

In the approaches above, two different methods for the inductance calculation with 

non-uniform current distribution are also investigated and derived. These two methods, 

which are mainly based on the magnetic flux and magnetic energy respectively, are 

presented for the first time. Then, in the modeling of spiral inductor with partial element 



 vii

equivalent circuit (PEEC) technique, two improved models with eddy current effects are 

proposed. 

 

In this thesis, a new insight for the criteria of obtaining high Q-factor in 

symmetrical spiral inductors is discussed. These criteria are based on the overlap 

capacitance effects, and the electric and magnetic center (EMC). Compared with the non-

symmetrical spiral inductors, the symmetrical structure can provide a relatively higher 

quality factor owing to reduced coupling capacitance. This characteristic is explained 

clearly with the concept of EMC of the spiral inductor. 

 

With the new insight gain, a new equivalent circuit for the two-layer spiral 

inductors is thus proposed. This circuit incorporates the effect of eddy current of the two-

layer spiral inductors in circuit modeling. Some improved expressions for the eddy 

current in the silicon substrate are also derived. 

 

Finally, the research work is extended to cover the analysis of antenna, microwave 

transformers, and power dividers. As applications for the spiral inductor, a slot antenna 

with spiral EBG-fed, a modified EBG Wilkinson power divider, and a new type of 

transformer based on the balun network, are designed and presented in this thesis. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

During the past few years, more and more microwave design efforts have been focused 

on integrating voltage-controlled oscillator (VCO) cells, including the passive LC tank, 

into a single chip while achieving low phase-noise performance [1]. To ensure a very low 

phase-noise signal, the existence of a high-quality LC resonator for the VCO is demanded. 

The quality of the resonator circuit is dominated by the quality factor of the on-chip 

inductor. Hence, successful design of such a passive device in most of the available 

technologies remains a major issue. 

 

On-chip microwave spiral inductors generally enhance the reliability and efficiency 

of silicon-integrated RF cells. They can offer circuit solutions with superior performance 

and contribute to a higher level of integration [2]-[3]. In low-noise amplifiers (LNA’s), 

microwave integrated inductors can be used to achieve input-impedance matching 

without deteriorating the noise performance of the cell [4]. They can also be used as loads 

intending either to improve the gain capability of the amplifier or to reduce its power 

consumption [5]. 
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The industry has already appreciated the benefits of high-quality integrated 

inductors and is willing to adapt the existing processes in order to achieve improved 

inductive elements. The inclusion of Au or Cu metallic layers, the increase of the 

thickness of metal alloys and dielectric materials, and the increase of the substrate 

resistivity [6] are among the changes that will help to accomplish quality-factor values of 

above 15 in silicon technologies. High-Q-factor on-chip spiral inductors can give the 

opportunity to implement reliable on-chip passive RF filters on silicon substrates. 

 

Significant efforts have already been reported [6]-[25] in literature that aim to 

provide high-Q-factor inductors for critical RF applications. During this period, new 

structures such as 3-dimensional, multi-layer, vertical, and symmetrical inductors, were 

created. Multi-layer spiral inductor offers an increase in the total inductance, when 

compared with planar inductor occupying the same area. Through experiments, the 

symmetrical structure of a spiral inductor shows a relatively higher Q-factor than the 

asymmetrical one. 

 

A first-time success in silicon technology is the ultimate target in every Radio 

Frequency Integrated Circuit (RF IC) design. This goal becomes more difficult to achieve 

as the frequency of operation increases. The inclusion of a poorly characterized element 

such as the integrated inductor in a design turns the whole process to an extremely risky 

matter. The aim of this work is to minimize the risk, the time, and the cost of the 

inclusion of integrated inductor structures in silicon RF IC design. This is achieved 
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through the systematic presentation of the properties and nature of the integrated spiral 

inductors, as well as the numerous design cases, parametric evaluation, and nomographs 

that will allow the engineer to gain insight in Si inductors. 

 

1.2 Literature Review, Research Motivation, and Goals 

1.2.1 Circuit Modeling for Microwave Spiral Inductors 

 

In conventional IC technologies, inductors are not considered as standard components 

like transistors, resistors, or capacitors, whose equivalent circuit models are usually 

included in the process description. However, this situation is rapidly changing as the 

demand for RF IC’s continues to grow [17], [20], and [26]-[28]. So, an accurate model 

for on-chip inductors is of great importance for silicon-based radio-frequency integrated 

circuits designers. Various approaches for modeling inductors on silicon have been 

reported in the past several years [29]-[46]. Most of these models are based on numerical 

techniques, curve fitting, or empirical formulae, and are therefore relatively inaccurate or 

not scalable over a wide range of layout dimensions and process parameters. 

 

To gain a greater insight into the design of the spiral inductor, a compact, physical 

model is required. The partial element equivalent circuit (PEEC) technique has been 

applied successfully for many years to model the electrical properties of high-speed 

interconnect [36]-[38] and found suitable for the spiral inductor modeling [39]. The 

circuit model introduced firstly in references [40]-[41] presents the good physical 

inductor model, which maintains the relevant parasitic and their detailed effects. Then in 
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[42], another modified circuit model, in which some additional components were added, 

was introduced. The added components in the modified circuit model represent the loss 

mechanism of the substrate of spiral inductors. 

 

A frequency-dependent circuit model is required by incorporating the eddy current 

effect for the spiral inductors. This is one of the most important goals for our research. 

 

1.2.2 Series Resistance of Spiral Inductor with Current Redistribution 

 

Spiral inductors implemented in silicon processes suffer from several power dissipation 

mechanisms, leading to poor inductor quality factor. The mechanisms include (a) RI 2  

losses from eddy current circulating below the spiral inductor in the semiconducting 

substrate, (b) from displacement current conducted through the turn-to-substrate 

capacitances and (c) the underlying substrate material, and (d) from the primary inductor 

current flowing through the thin metallic traces of the inductor itself [32], and [47]-[49]. 

Spiral inductors built by bipolar processes (or bipolar-derived BiCMOS) often exhibit 

higher Q-factor values (typically five to ten). This is mainly due to the relatively high 

substrate resistivities (e.g., cm−Ω− 3010 ), which reduce the eddy current but may still 

suffer from significant losses from the displacement current conducted through turn-to-

substrate capacitances [27] and [32]. These losses can be mitigated by the introduction of 

a patterned ground shield [6] and [50] or by an umpatterned shield of the proper sheet 

resistance placed below the inductor [51], of course both at the expense of reduced self-

resonance frequency. 
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The best approach to produce high-quality inductors in silicon involves (a) etching 

away the offending semiconducting material below the spiral inductor [7], (b) using a 

thick oxide layer to separate the spiral inductor from the substrate [23] and [52], (c) using 

a very high resistivity bulk [30], or (d) using an insulating substrate such as sapphire [53]. 

In some of these cases, inductor Q-factors of 20 or above were reported, with the highest 

values found in single turn spiral inductors with the inductance values of less than 5nH. 

 

Unfortunately, for spiral inductors with higher inductances, multiple turns are 

required and the Q-factor often falls and is lower than the value that would be predicted 

from a simple calculation of inductor reactance divided by dc series resistance. The 

limitation on Q-factor can be traced to an increase in effective resistance of the metallic 

trace at high frequencies due to the phenomenon of current redistribution [22] and [45]. 

 

The concept of current redistribution in the metallic trace of spiral inductor can 

mainly be traced from two aspects: skin effect and eddy current. Skin effect is the 

universal phenomenon in RF IC, and eddy current, which leads to the current crowding, 

is also well-known and the general mechanisms involved were cited and elucidated in 

several papers, such as references [22], and [45]-[46]. But little information is available 

in the literature to quantitatively predict the eddy current without resorting to numerical 

simulations [46]. The authors of [2] developed a first-order analytical model for the major 

current crowding mechanisms and derived some useful approximate formulae for 

calculating the eddy current. 
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In [41], a physical expression of the series resistance of a spiral inductor with skin 

effect was proposed and given as 

                                                              ,effWTlR ρ=                                                     (1.1) 

where ρ , W, and l represent the resistivity, metallic width, and total length of the spiral 

inductor, respectively. effT  is defined as an effective thickness: 

                                                           ),1( δδ T
eff eT −−=                                                  (1.2) 

where T and δ  represent respectively the metal thickness and the skin depth. For 

frequencies below 2GHz, the skin depth effects are relatively small in most processes 

since the trace metal thickness is typically less than or equal to the skin depth. Above 

2GHz, the alternating current (ac) resistance increases and approaches an asymptote 

proportional to the square root of frequency. In contrast to the skin effect in high 

frequency range, current crowding (eddy current in the metallic trace of the spiral 

inductor) is a strong function of frequency, resulting in an increasing resistance function 

and a concaving downward Q-factor function. 

 

Kuhn’s formulae in [2] provided a series of improved expressions, incorporating 

the eddy current, for the prediction of series resistance of a spiral inductor. But the skin 

effect on the resistance was neglected in the estimation. In our approach, we will provide 

some more accurate expressions of resistance with both the skin effect and the eddy 

current in spiral inductors. 

 

1.2.3 Series Inductance of Spiral Inductor with Current Redistribution 
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Since an inductor is intended for storing magnetic energy only, an ideal expression of its 

inductance in terms of width, gap spacing and length is essential in terms of equivalent 

circuit modeling. A very accurate numerical solution can be obtained by using a three-

dimensional (3-D) finite-element simulator such as MagNet [54], but 3-D simulators are 

computationally intensive and time-consuming. Other techniques for analysis include the 

Greenhouse method [40] and [55], Wheeler formula [56], and “Data Fitted Monomial 

Expression” [57]. Data fitted expressions usually lack the precise theoretical 

interpretation, while physical foundation for computing inductance is built on the concept 

of the self-inductance of a wire and the mutual inductance between a pair of wires. 

 

The total inductance of a spiral inductor can be separated into two aspects, the self- 

and mutual inductances. A comprehensive collection of formulae and tables for 

inductance calculation was summarized by Grover in [58]. 

 

The partial inductance method has been widely applied to the calculation of 

inductance of spiral inductors [40]. The concept and computation of partial inductances 

were described in [59], and the working formulae were given elsewhere. Partial 

inductances conceptually involve magnetic flux between a conductor and infinity. This 

aspect presents obvious problems in structures of infinite length such as the conventional 

transmission line. Perhaps the most important quality of the partial inductance concept is 

the ability to break a complicated three dimensional problem into its constituent 

interactions. A very simple example of a loop and its partial inductances is given in Fig. 
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1.1. The equivalent circuit of the loop in Fig. 1.1 is specified in terms of partial 

inductances iiL  of the i-th segment and ijL  between the i-th and the j-th segments. If the 

loop is closed so that 4321 IIII === , then the total loop inductance can be obtained 

with conventional circuit theory as 

                                                              .
4

1

4

1
∑∑
= =

=
m n

mnLL                                                    (1.3) 

11L

44L

33L

22L

13

2

4

 
Fig. 1.1: Loop and partial inductance. 

 
The mutual partial inductance can often be approximated for realistically spaced 

conductors by resolving the conductor cross sections into filaments and summing the 

results as 

                                                          ,1
1 1
∑∑
= =

=
i jn

i

n

j
fij

ji
ij L

nn
L                                              (1.4) 

where fijL  is the mutual inductance between the filaments. 

 

The typical formula for the calculation of inductance of spiral inductor is [41] 

                               ,2)
3

5.02(ln2 lX
l

TW
TW

llMLL selftotal +
+

++
+

=+=                     (1.5) 

where l, W, and T represent the total length, metal width, and metal thickness of the spiral 

inductor. X is the mutual inductance parameter, which can be computed using 
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In equation (1.6), GMD denotes the geometric mean distance between the wires, which is 

approximately equal to the pitch of the wires. A more precise expression for the GMD is 

given as 

                       ,
6603601686012

lnln 10

10

8

8

6

6

4

4

2

2

L−−−−−−=
P

W
P

W
P

W
P

W
P

WPGMD           (1.7) 

where P is the inductor pitch. A commonly adopted assumption in the previous reported 

works on calculating inductance is that they usually neglected the frequency dependence 

of the inductance. 

 

But, as eddy current and skin effect result in non-uniform current distribution in the 

metallic trace, the inductance of the trace may no longer be frequency-independent. Thus, 

we need to add to the redistributed magnetic flux the individual current element’s 

contribution in order to achieve better inductance expressions for the spiral inductors. 

 

Furthermore, when a current is established in a circuit or element of a circuit, the 

rise of current will induce an electromotive force that opposes the rise of current. Thus, 

energy has to be expended by the source, in order to keep the current flowing against the 

induced electromotive force. Similar phenomena will also occur for multi-circuit/element 

conditions with uniform current assumption in the circuits. The relationship between the 

total stored magnetic energy and the circuit inductance was proposed in [58]. As a result, 

we can introduce and expand the energy method into the non-uniform current distribution 
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conditions (as discussed previously) and establish a new type of inductance calculation 

method for the microwave spiral inductors. 

 

1.2.4 High Q-factor Symmetrical Spiral Inductors 

 

Fig. 1.2: Photograph of circular symmetrical spiral inductors. 
 

At radio frequency (RF), the usage of on-chip silicon spiral inductors in LC tank circuits 

is limited by the achievable quality factor (Q). The quality factor is seriously affected by 

three major components. They are the crossover capacitance, the capacitance between the 

spiral trace and the substrate, and lastly, the substrate capacitance. In the physical 

modeling of an inductor [60]-[66], the series feed-forward capacitance results from the 

capacitance due to the overlaps between the spiral trace and the underpass [6] and [67]. 

 

To increase the overall Q-factor of the silicon spiral inductors, symmetrical spiral 

inductors (as shown in Fig. 1.2) are usually used, instead of the conventional, non-

symmetrical spiral inductors. Although there were some detailed Q-factor expressions for 
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the conventional spiral inductors presented in [6], the detailed mechanism of how the 

symmetrical, arbitrarily-shaped spiral inductors can achieve high Q-factors about 6-7 is 

still a mystery. In our research, we attempt to provide a comprehensive explanation for 

why the symmetrical, arbitrarily-shaped spiral inductors help to improve the Q-factor 

characteristics over that of the corresponding conventional, non-symmetrical spiral 

inductors. 

 

1.2.5 Multi-layer Spiral Inductors 

 

Multi-layer inductors, especially in the form of spirals, have gained great importance in 

the design of integrated silicon RF transmitters and receivers [3], [17], [64], and [68]-[74]. 

The application of multi-layer inductors can provide a relatively higher Q-factor than 

single-layer inductors with the same inductance values [64]. And on the other hand, 

multi-layer spiral inductors were shown to offer an increase in the total inductance and 

maintain the same Q-factor, when compared to planar ones occupying the same areas 

[64], and [75]-[78]. 

 

The substrate effects on the performance of metal-insulator-metal (MIM) spiral 

inductors are critical to silicon RF IC’s [51], and [80]-[82]. Their effects of substrate RF 

losses from the eddy current (displacement current) on the characteristics of silicon-based 

integrated inductors and transformers were studied experimentally in [80] and [83]. The 

purpose of my research is to numerically display the effects of the eddy current in the 
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substrate and incorporate them into the equivalent circuit model in the case of multilevel-

spiral (MLS) inductors. 

 

The most commonly used spiral inductor compact model is the standard “9-

element” model [41]. In the research, a more accurate equivalent circuit for two-layer 

spiral inductors, particularly suited to be used in the design of RFIC’s, is presented. The 

contributions of the metallic traces and the eddy current in the substrate to the overall 

effects of the spiral inductors are modeled respectively in the circuit model. 

 

1.2.6 EBG, Power Dividers, and Transformers 

 

The theory of photonic band-gap (PBG) or electromagnetic band-gap (EBG) was 

developed initially for optical frequencies and can easily be applied to millimeters waves, 

microwaves, and antennas. Generally, EBG can diminish the propagation constant 

causing the wave to move slowly. Thus, they can be integrated into antenna and power 

divider designs. 

 

Transformers have been widely used in RF circuits since the early days of 

telegraphy [84]. The operation of a passive transformer is based on the mutual inductance 

between two or more conductors, or windings (spiral metallic turns). Multifilament 

transformers can also be constructed on-chip and used to implement baluns and power 

dividers [84]. 
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Coupled lines are useful and widely applied structures that provide the basis for 

many types of balun. The most commonly used balun is called Marchand balun [85] 

which is important in realizing balanced mixers [86]-[87], amplifiers, and phase shifters 

[88]-[92] by providing differential signals. The principle of operation of the Marchand 

balun was explained in literature in [85]. 

 

The well-known Wilkinson power divider and combiner are being used for the 

design of microwave power amplifiers [93]. Both the divider and the combiner have the 

same structure, which consists of two 4/λ  branches and a termination resistor, where the 

λ  is the wavelength of the transmission line. However, if the divider branches are made 

of normal transmission lines, the 4/λ  length usually limits the minimum size of the 

power divider at low operating frequencies. 

 

These motivate us to use the broadside coupling method (between top and bottom 

layers) of baluns to design a new type of LTCC transformer or power divider with 

coupling spiral inductors in different metallic layers. In this application design, the 

transmission lines in the conventional Wilkinson power divider are replaced by coupled 

spiral metallic lines and they can help to reduce the total area needed for the device. 

 

1.3 Organization of the Thesis 

 

This thesis is divided into seven chapters. Chapter 1 provides an introduction to the 

general microwave spiral inductors, symmetrical spiral inductors, and multi-layer spiral 
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inductors. Some original contributions and publications are also highlighted in this 

chapter. 

 

In Chapter 2, an improved expression incorporating both skin effect and eddy 

current for the prediction of series resistance in the spiral inductor model is derived. 

Furthermore, two more accurate circuit models for the monolithic spiral inductors are 

also proposed with the PEEC technique. Better simulation results are confirmed by 

experimental data with our improved models. 

 

In Chapter 3, with the partial inductance method, some improved expressions for 

the prediction of inductance for spiral inductor with non-uniform current distribution are 

derived. An alternate energy method that takes into account the non-uniform current 

distribution is also presented. These two methods for calculating the inductance are thus 

compared. In addition, the internal inductances of the metallic trace and the ground plane 

of the spiral inductor are analyzed in Chapter 3. 

 

In Chapter 4, we provide a comprehensive explanation on how the symmetrical, 

arbitrarily-shaped spiral inductor helps to improve the Q-factor characteristics over that 

of the corresponding conventional, non-symmetrical spiral inductor. Our predictions on 

the high Q-factor symmetrical inductors are also confirmed by extensive simulation 

results. 
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In Chapter 5, we present a more accurate equivalent circuit for two-layer spiral 

inductors, particularly suited to be used in the design of RFIC’s. The contributions of the 

metallic trace and the eddy current in the substrate to the overall effects of the inductor 

are modeled respectively by different parts in the circuit model. Our proposed equivalent 

circuit is validated by experimental data of a series of two-layer spiral inductors on 

silicon substrate, and the results are reported in this chapter. 

 

In Chapter 6, we present a series of applications, including a modified triple-band 

slot antenna with EBG-fed, a modified EBG-fed CPW Wilkinson power divider, and a 

new type of transformer with spiral inductor traces which can provide well-balanced 

output signals. The slot antenna with EBG-fed can provide wider bandwidths than the 

conventional reference antenna. The new type of low-loss transformer can be used in the 

design of microwave power dividers or combiners. The return losses, insertion losses, and 

imbalance characters of it are in turn presented and analyzed. 

 

Finally, in Chapter 7, some important conclusions and future works are drawn. 

 

1.4 Original Contributions 

 

In this thesis, we present a series of more accurate expressions for calculating the series 

resistances of spiral inductors by incorporating skin effect and eddy current effects. Two 

novel circuit models for spiral inductors are proposed with eddy current effects. 

Furthermore, the energy method is also improved to calculate the inductance with non-
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uniform current distributions for spiral inductors. In our investigation, the internal 

inductances of the metallic trace and the ground plane are also included. 

 

We also provide a comprehensive explanation on how the symmetrical, arbitrarily-

shaped spiral inductor is able to improve the Q-factor characteristics over that of the 

corresponding conventional, non-symmetrical spiral inductor. 

 

An improved equivalent circuit for the two-layer spiral inductors on silicon 

substrate, which incorporates the effects of eddy current in the substrate, is presented. 

 

EBG, which can improve the device performances, is utilized in the designs of a 

triple-band slot antenna and a CPW Wilkinson power divider. Another type of modified 

transformer with spiral metallic traces, which can provide excellent balanced signals, is 

analyzed and their effects are demonstrated in this thesis. 

 

The contributions made in my research are reported in the following publications: 

 

1.4.1 Book Chapter 

 

Ban-Leong Ooi and Dao-Xian Xu, Encyclopedia of RF and Microwave Engineering, 

John Wiley & Sons, Inc, 2004. 

 

1.4.2 Journals 
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(1) Ban-Leong Ooi, Dao-Xian Xu, Pang-Shyan Kooi, and Fu-Jiang Lin, “An improved 

prediction of series resistances in spiral inductor modeling with eddy-current effect,” 

IEEE Trans. Microwave Theory Tech., vol. 50, no. 9, pp. 2202-2206, Sep. 2002. 

(2) B.-L. Ooi and D.-X. Xu, “Modified inductance calculation with current redistribution 

in spiral inductors,” IEE Proceedings-Microwaves, Antennas and Propagation, vol. 150, 

no. 6, pp. 445-450, Dec. 2003. 

(3) Ban-Leong Ooi and Dao-Xian Xu, “A novel equivalent circuit model for two-layered 

spiral inductor with eddy-current effect in the substrate,” Microwave and Optical 

Technology Letters, vol. 40, no. 5, pp. 484-487, Mar. 20, 2004. 

(4) Ban-Leong Ooi, Dao-Xian Xu, and Li-Hui Guo, “Efficient methods for inductance 

calculation with special emphasis on non-uniform current distributions,” Microwave and 

Optical Technology Letters, vol. 40, no. 5, pp. 432-436, Mar. 5, 2004. 

(5) Ban-Leong Ooi, Dao-Xian Xu, Bin Wu, and Bo Chen, “A novel LTCC power 

combiner,” Microwave and Optical Technology Letters, vol. 42, no. 3, pp. 255-257, Aug. 

5, 2004. 

(6) Ban-Leong Ooi, Dao-Xian Xu, and Pang-Shyan Kooi, “Detailed analysis of high 

quality characteristics symmetrical octagonal spiral inductor on Si substrate,” 

International Journal of RF and Microwave Computer-Aided Engineering, vol. 15, no. 2, 

pp. 181-186, Mar. 2005. 
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CHAPTER 2 

 

IMPROVED MODELING AND PREDICTIONS 

OF RESISTANCE FOR SPIRAL INDUCTORS 

WITH EDDY CURRENT EFFECTS 

 

2.1 Calculation of Eddy Current 

 

Current crowding comes from the current redistribution due to the B-field of adjacent turn 

which induces eddy current. Non-uniform current distribution has been identified for 

those segments close to the center of the microwave spiral inductors [45]. 

 

The overall shape of the B-field value is a linear increase from a negative value on 

the outside turn to a positive peak on the inside turn. Simplified expression for the 

average normal B-field in terms of n (numbering from n = 1 at the outside turn) is given 

as [2] 
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Herein, N is the total number of turns, 0B  is the field at the innermost turn (N), 0N  is the 

turn number where the B-field falls to zero and reverses direction, 0µ  is the permeability 

of free space, P is the turn pitch as illustrated in Fig. 2.1, and exI  refers to the excitation 

current. 

 

Although the numerically computed data shows that the B-field is approximately 

linear across each lateral metallic trace, the assumption of B as a function of n only will 

simplify the subsequent analysis as we only pay attention to the integration value across 

each whole trace [2]. 
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Fig. 2.1: Simplified illustration of eddy current effects. 
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For on-chip spiral inductors, the line segments can be treated as microstrip 

transmission lines, as shown in Fig. 2.1. In this case, the high frequency current recedes 

to the surface of the wire, which is above the ground plane [32] and [34]. The attenuation 

of the current density (J in 2/ mA ) as a function of distance (z) away from the surface can 

be expressed by the function [41]: 
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Fig. 2.2: Calculated B-field on a square spiral inductor with a totally 1A dc current (N=6, W=18 mµ , 

P=21 mµ , and D=350 mµ ) (after [2]). 
 

Using Maxwell law, namely BjE ω−=×∇ , and EJ σ= , we obtain 
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where T is the metal thickness, W is the metal width, δ  refers to the skin depth 

( ωσµ/2 ), and σ  and µ  are the conductivity and permeability of the metallic trace 

respectively. D is the outer dimension of the inductor. Numerically computed data of the 

B-field is used to describe the initial field domain on the upper surface of the inductor 

trace (z=T/2). Here, we assume that current is concentrating mainly in the domain near to 
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the surface of the metallic trace, while the current distribution along the x direction is 

roughly approximated by a linear expression  as in equation (2.3) (see in Fig. 2.1). 

 

Assuming that the frequency is high enough, the skin depth δ  will be small 

compared with the thickness T, so that the term )1( 2/ δTe−−  in equation (2.3) can be 

neglected. As the expression reaches its maximum at the innermost turn (n = N), it is easy 

to find the frequency ω′  at which the current crowding begins to become significant 

( exeddy II = ): 
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For example, for a gold-traced inductor ( mS /10098.4 7×=σ ) with metal width 

and pitch values being mµ10  and mµ15  respectively, equation (2.3) reveals that the 

current crowding occurs significantly at about 8-9GHz. At lower frequencies, we obtain 

                                        ).1()1(
222/ TT

eddy eeI ωσµδ ωωδ −− −∝−∝                           (2.5) 

This means that the effect of the frequency on the phenomenon of eddy current is 

monotonic. 

 

2.2 Calculation of the Total Resistance 

 

So long as the eddy current exists, it will cause the electrical transmission loss through 

the metallic trace to increase the whole device’s equivalent resistance. To match the 
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result of current crowding, we assume the direction of eddy loop on the inner edge of the 

metallic trace coincides with the initial excitation current, and then consider the phase 

difference between them in the next step. 

 

The power dissipated in the n-th turn due to the eddy current is 
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where nl  is the length of the n-th turn. Here, the small difference between the lengths of 

the eddy loop’s outer and inner edges near each trace corner is neglected. 

 

To describe approximately the eddy current, reference [2] estimated each closed 

current loop as a circuit constituted with eddyL , which develops back electromotive force, 

and eddyR , which represents the net resistance through which this current flows. Taking 

the ratio of eddyLω  to eddyR  gives an estimation for the phase relationship θ  between eddyI  

and exI . Details of the ideal circuit for this analysis are illustrated in Fig. 2.1 and the 

section below. 

 

The total power dissipated in the inner half of the n-th turn is 

                          ,2/2/cos22/2/ neddynexneddynexinnern PPPPP ⋅⋅⋅⋅⋅ ++= θ                     (2.7) 

and in the outer half, it is given as 

                          ,2/2/cos22/2/ neddynexneddynexoutern PPPPP ⋅⋅⋅⋅⋅ −+= θ                     (2.8) 

where θ  is the phase difference between eddyI  and exI . 
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Approximately, the turn number n has no significant influence on the phase 

difference between eddyI  and exI . So, the total power dissipated in the n-th turn is 

                                           .neddynexouterninnernn PPPPP ⋅⋅⋅⋅ +=+=                                       (2.9) 

 

Combining equations (2.1), (2.6), and 

                                                   ,22

WT
l

IRIP n
nexnexnex σ⋅⋅ ==                                           (2.10) 

where nR  is the initially considered resistance of the n-th turn at dc, we obtain 
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By summing over n for equation (2.9) and comparing with  

                                                             ,2
totalextotal RIP =                                                  (2.12) 

the total spiral resistance totalR  is obtained: 
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In order to have a rough review of the ω  dependence of totalR  at high frequencies, 

we again neglect the term )1( 2/2µσωTe−−  in equation (2.13) and obtain 
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At relatively lower frequencies when the skin depth δ  cannot be neglected compared 

with the metal thickness T, by using the Taylor’s formula for the term )1( 2/2µσωTe−− , we 

have 
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Herein, WTlR
n

n σ∑=0  is the theoretical resistance of the whole spiral trace at dc, 

∑
n

nl  is the total length of the metallic trace, and a and b are constant for fixed inductors. 

 

2.3 Circuit Modeling of Spiral inductors 

2.3.1 The Partial Element Equivalent Circuit (PEEC) 

 

1a 5a3a

2a 4a

V
+ −

d

w

 

Fig. 2.3: The basic PEEC example. The example shows a part of a flat wire subdivided into three 
capacitive and two inductive PEEC lumps. The three solid rectangles are the capacitive cells and the two 

dashed ones are the inductive cells. The black dots are the circuit nodes after [36]. 
 

The key to accurate physical modeling is the ability to identify the relevant parasitics and 

their effects. The PEEC technique is found suitable for the spiral inductor modeling. It is 
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a circuit based on formulation which is numerically equivalent to a full-wave method of 

moments solution with the Galerkin matching procedure [59] and [94]. 

 

For a simple PEEC example in [36] as shown in Fig. 2.3, it consists only of 

infinitely thin conductors. Despite its simplicity, it contains all the couplings and 

therefore easily generalizes. Fig. 2.3 depicts a small fraction of an infinitely thin straight 

trace (flat wire) which is subdivided into two inductive and three capacitive cells. As 

usual in a PEEC model, we assume that the three capacitive cells 1a , 3a , and 5a  each has 

a potential )(1 tΦ , )(3 tΦ , and )(5 tΦ  and a charge )(1 tq , )(3 tq , and )(5 tq , respectively. 

The two inductive cells 2a  and 4a  on the other hand have uniform currents, )(2 ti  and 

)(4 ti . A voltage is impressed on the wire at the ends of the two inductive cells that 

coincide with the centers of the outer capacitive cells [94]-[97]. 

 

The corresponding PEEC model is shown in Fig. 2.4 where the circuit elements are 

calculated from two independent quasi-static solutions of Maxwell’s equation, one 

involving the capacitive cells and one involving the inductive cells. Conductors are 

assumed to have zero resistivity, otherwise resistances would be connected in series with 

the inductances. The proof in [36] showed that the circuit in Fig. 2.4 is equivalent to the 

unretarded Maxwell’s equations except for the approximations introduced by the grid size. 
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Fig. 2.4: The PEEC model for the basic example as shown in Fig. 2.3. The partial mutual coupling between 

22pL  and 44pL  is not shown after [36]. 
 

With detailed calculations of equations (1) to (19) in [36], Fig. 2.4 provides a good 

circuit approximation for the example conductor in Fig. 2.3 for all frequencies including 

very low ones and dc current. Furthermore, with those discussions about the PEEC 

method [36]-[39], it can be widely used and expanded in the circuit modeling with proper 

simplifications for the spiral inductors in the section below and the following chapters. 

 

2.3.2 Circuit Model Improvement with the Eddy Current Effects 

 

Since an inductor is intended for storing magnetic energy only, the inevitable resistance 

and capacitance in a real spiral inductor are counter-productive and thus are considered 

parasitics. The parasitic resistances dissipate energy through ohmic loss while the 

parasitic capacitances store electric energy. With the PEEC technique above, the 

simplified physical models of spiral inductors on GaAs or silicon substrate are shown in 

Fig. 2.5. The inductance and resistance of the spiral inductor and underpass are 

represented by the series inductance sL  and the series resistance sR , respectively. sC  
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refers to the series capacitance. Other components in the circuits are modeled to represent 

the effects of substrate [41]. Further details of the circuit components will be explained in 

Chapter 4. 

 

Our approach is to present the eddy current as electrical component by modifying 

the conventional circuit model as described in section 2.1. In [2], the method for a two-

wire transmission line is used and this technique involves a useful first-order estimation 

for the relatively complex eddy loop situation within the excitation current as illustrated 

in Fig. 2.1. The expressions are 

                                  nneddynneddy l
TW

Rl
W

WL
4/

2   ,)4/ln(0

σπ
µ

≈≈ ⋅⋅ ,                              (2.18) 

where the subscript n refers to the number of turn. 
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2subR 2subC1subC 1subR

2oxC

1Port 2Port

 
(b) 

Fig. 2.5: Conventional circuit models for spiral inductors. 
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The field changing in each turn n is certainly more sensitive due to the current in 

that turn itself than in those adjacent turns or more distant ones. If we assume that the 

source of the eddy loop is induced by the excitation current, the ratio of eddyR  to eddyL  

represents a constant degree of phase delay from the eddy current to the excitation current. 

Thus, regardless of the turn number n, an overall review of the eddy current effects on the 

two-port transmission network of inductor can provide us an idea to implement the 

conventional circuit model, as shown in Fig. 2.6. 

sR sL

2Port1Port
sR ′ sL′

 
Fig. 2.6: Illustration of modified part after de-embedding. 

 

The branch, constituted by series sL′  and sR′  and in parallel with sR , is initially 

assumed as circuit elements contributing to the overall eddy current effects. The voltage 

over sR  represents the total voltage effect of each eddy current segment induced. 

Compared with the conventional spiral inductor models as shown in Fig. 2.5, the new 

model has some significant advantages. 

 

By circuit theory, the input impedance of the network in Fig. 2.6 can be computed 

as 

                                          ,
)(
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)Re( 222

2
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sss
sin LRR

RRR
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ω
                               (2.19) 
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where inZ  is the input impedance of the spiral inductor. 

 

Equations (2.19) and (2.20) describe the resistance and inductance variations due to 

the existence of eddy current with an increase of frequency. It overcomes the limit of the 

conventional circuit models which offer constant input impedances after de-embedding. 

Detailed steps and further discussions will be shown in the following section. 

2Port
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2subR

2oxC

1subC 2subC

 

(b) 
Fig. 2.7: Modified circuit models for spiral inductor. 
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With the idea of adding an additional branch to model the effects of eddy current in 

the circuit model as shown in Fig. 2.6, we can thus modify the conventional circuit 

models (as shown in Fig. 2.5) for spiral inductor on GaAs substrate or silicon substrate. 

Fig. 2.7 illustrates our modified circuit models for spiral inductors. 

 

2.4 Experimental Results and Discussions 

W

P

d

D

S
 

Fig. 2.8: Geometry of spiral inductor. 

 
To confirm that our improved models and resistance expressions can indeed predict 

the overall inductor’s behavior, the two-port S-parameters for three sets of square spiral 

inductors (Inductors 1, 2, and 3) and one set of circular spiral inductor (Inductors 4) are 

measured. With reference to Fig. 2.8 and Table 2.1, the detailed geometric parameters of 

the sample inductors are listed. The two-port S parameters of the spiral inductors are 

measured by using the vector network analyzer and coplanar probes. The calibration is up 

to the probe tip with SLOT and the parasitics are taken out after de-embedding. 
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                   Shape     N      W ( mµ )    P( mµ )    D( mµ )    Substrate   Metal/Thickness( mµ ) 
Inductor 1   square  1.75       10             15           100         GaAs        Gold         1.5 
Inductor 2   square   1.5        26             30           105         GaAs        Gold         1.8 
Inductor 3   square   3.5        10            11.5        152.5       silicon     Alumni       0.7 
Inductor 4   circular   2           6               8           103         silicon      Copper       1.0 

Table 2.1: Geometric parameters of spiral inductors. 

 
Fig. 2.9: Magnitude difference of S-parameter simulation results on the conventional model in Fig. 2.5 (a) 

and the modified model in Fig. 2.7 (a). 
 

 
Fig. 2.10: Phase difference of S-parameter simulation results on the conventional model in Fig. 2.5 (a) and 

the modified model in Fig. 2.7 (a). 
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Fig. 2.11: S-parameter simulation results on modified circuit model in Fig. 2.7 (a) of Inductor 1 (blue line: 
measured data; red line: simulated data). 

 

 

Fig. 2.12: S-parameter simulation results on conventional circuit model in Fig. 2.5 (a) of Inductor 1 (blue 
line: measured data; red line: simulated data). 
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Fig. 2.13: S-parameter simulation results on modified circuit model in Fig. 2.7 (b) of Inductor 1 (blue line: 
measured data; red line: simulated data). 

 

 

Fig. 2.14: S-parameter simulation results on conventional circuit model in Fig. 2.5 (b) of Inductor 1 (blue 
line: measured data; red line: simulated data). 
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Fig. 2.15: Difference of S-parameter simulation results on the conventional model in Fig. 2.5 (b) and the 
modified model in Fig. 2.7 (b) for Inductor 1. 

 
Figs. 2.9 and 2.10 provide the circuit simulation results of Inductors 1 and 2 with 

different circuit models. In these figures, the relative errors of magnitude between the 

simulated 11S  with respect to the measured 11S , calculated from 

%100
11

1111 ×
−

measured

simulatedmeasured

S

SS
, for both inductors are plotted; and the relative errors of 

phase are calculated from %100
)(

)()(

11

1111 ×
−

measured

simulatedmeasured

SPhase
SPhaseSPhase . As the relative 

errors of the magnitude from the modified model in Fig. 2.7 (a) are always smaller than 

those from the conventional model in Fig. 2.5 (a), the new model provides more accurate 

fitting with the measured results. For example for Inductor 1, the worst case fitting error 

of the magnitude of S-parameters with modified model is about 2.8% from 0.5GHz to 

25GHz, and the worst case fitting error with conventional model is about 5.2%. The 

worst case fitting error of the phase of S-parameters with modified model is about 8.0%, 

and the worst case fitting error with conventional model is about 12.1%. The 

improvement of our modified model can also be observed from the Smith-Charts in Figs. 
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2.11 and 2.12. By comparing Fig. 2.13 with Fig. 2.14, we find that the model in Fig. 2.7 

(b) is also more satisfactory for the S-parameter simulation than the conventional model 

in Fig. 2.5 (b), especially from 0.5GHz to 5GHz. Then, Fig. 2.15 confirms this result. 

Similar advantages of the new models can also be achieved with other inductors with 

different N, S, and W, which are fabricated using several external foundries. 

   Circuit Components   Conventional      Conventional     Modified            Modified 
                                          Model (a)            Model (b)       Model (a)           Model (b) 
             )(ΩsR                       4.7                       4.3                  6.6                      5.8 

             )(Ω′sR                                                                          4.6                      4.2 

             )(nHLs                     2.4                        2.4                 2.4                      2.4 

             )(nHLs′                                                                        0.6                      0.6 
             )( fFCs                    19.7                      20.1                20.1                    21.0 
             )(1 ΩsubR                  11.6                       51.7               11.6                    52.3 
             )(2 ΩsubR                  15.9                       54.2               15.9                    55.5 
             )(1 fFCox                                                43.8                                          42.6 

             )(2 fFCox                                               31.7                                          30.5 

             )(1 fFCsub                 37.8                      277.3               37.7                  277.1 

             )(2 fFCsub                 28.1                      250.8               28.1                  267.6 
Table 2.2: Extracted values of circuit components from circuit optimization for Inductor 1. 

 
Table 2.2 tabulates the circuit components’ values in Figs. 2.5 and 2.7 for Inductor 

1 after circuit optimization with IC-CAP. The objective error function is given as 
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Here, F refers to the total number of frequency points. 

 

As noted from Table 2.2, the values of sR  and sR′  change significantly from the 

conventional models to the modified models. However, the changes of the respective 



 37

extracted inductances sL  and sL′ , capacitance sC , and other circuit components which 

contribute to the substrate effects, are relatively much smaller. Furthermore, the aim of 

our circuit optimization is usually to achieve the best fitting results for the whole 

measured frequency range, and in our measurement, the starting frequency is 0.5GHz, at 

which the eddy current will begin to affect the series resistance significantly. Thus, the 

circuit-extracted values of sR  will be a bit larger than the theoretical values of dc 

resistance 0R . 

 

Figs. 2.16 and 2.17 give a general review of 2Y  and 3Y  parts in the π -mode circuit 

model of Inductor 1 as shown in Fig. 2.18, which can generally indicate the characters of 

the inductor substrate. From Figs. 2.16 and 2.17, it is noted that the resistance losses of 

the substrate are decreasing functions of frequencies. The series capacitances also change 

greatly in low frequency range (below 5GHz) and tend to be constant in higher frequency 

range. As the aim of circuit optimization is usually to achieve the best fitting results for 

the whole measured frequency range, the values of 1subR , 1subC , 2subR , and 2subC  in Fig. 

2.7 (a) are thus extracted from high frequencies automatically. However, using the circuit 

model in Fig. 2.7 (b), the resistances 1subR  and 2subR , and the series capacitances 1oxC  and 

2oxC , can be extracted from relatively lower frequencies. Thus, from Figs. 2.16 and 2.17, 

if the simulation results for the substrate are considered for individually, the substrate 

structure in the modified model in Fig. 2.7 (b) is better and more reasonable than that in 

Fig. 2.7 (a). 
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(a) 

 

 
(b) 

Fig. 2.16: Measured and simulated results of the real part of 1
2
−Y  (a) and 

ω)(
1

1
2
−−

Yimag
 (b) on Inductor 

1 with improved models. 
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(a) 

 

 
(b) 

Fig. 2.17: Measured and simulated results of the real part of 1
3
−Y  (a) and 

ω)(
1

1
3
−−

Yimag
 (b) on Inductor 

1 with improved models. 
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Fig. 2.18: General π -mode reciprocal network form of inductor. 

 
Fig. 2.18 shows a general π -model of the equivalent circuit for the spiral inductor. 

IC-CAP is used for components extraction and optimization. With Fig. 2.7 (a), the de-

embedded Y-parameters in terms of the measured Y-parameters data are expressed as 

                                         ,))(( 11
111111

−−+−−=′ subsubs CjRCjYY ωω                            (2.22) 

                                                         ,1212 sCjYY ω+=′                                                   (2.23) 

                                                         ,2121 sCjYY ω+=′                                                   (2.24) 

                                         ,))(( 11
222222

−−+−−=′ subsubs CjRCjYY ωω                           (2.25) 

where mnY ′ s denote the modified Y-parameters after de-embedding. If the model in Fig. 

2.7 (b) is utilized, equations (2.23) and (2.24) remain the same, and equations (2.22) and 

(2.25) are modified as 

                           ,))/1()(( 11
11

1
11111
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(a) 

 
(b) 

Fig. 2.19: Real part of input impedance of Inductor 3 and Inductor 4 after de-embedding. 
 

By plotting the real and imaginary parts of 1
12 )( −′− Y , we can observe the 

characteristics of the input impedance of the physical spiral inductor respectively. As 

shown in Fig. 2.19, the measured resistances with increasing frequencies agree with our 

predictions in Section 2.2. In Fig. 2.19, the predicted curve refers to the equation (2.13). 

The deviations between the simulated and measured curves are mainly due to the 
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neglected substrate effects as their magnetic field induces an opposing current which will 

affect the existing current on the strips and the total resistance loss as well. In equation 

(2.13), the theoretically calculated values of the dc resistance 0R  of the whole spiral 

metallic trace are 6.5Ω  and 1.6Ω  for Inductor 3 and Inductor 4, respectively. The values 

of 0N  in equation (2.13) are both equivalent to 1 for Inductors 3 and 4. 

 

In our further investigation, we also found that equation (2.13) is more accurate for 

the resistance simulation in the whole frequency range than equations (2.14) and (2.16). 

Equations (2.14) and (2.16) are valid when the frequency f is very low and the skin depth 

δ  is much larger than the metal thickness T, respectively. By comparing the prediction of 

equation (2.14) of Inductor 4 with that of Inductor 3, we can also conclude that equations 

(2.14) are valid only when f is high enough so that δ  is much smaller than T. 

                                  Shape                      N         W ( mµ )    P( mµ )     D( mµ )    Substrate 
 Inductor 5    symmetrical, octagon          3               8             12           187           silicon 
 Inductor 6    symmetrical, octagon          5               8             12           142           silicon 
 Inductor 7    symmetrical, octagon          3               8             12           280           silicon 
 Inductor 8    non-symmetrical, square     4.25         16            20           235           GaAs 
 Inductor 9    non-symmetrical, square     3.75         26            30           290           GaAs 
 Inductor 10  non-symmetrical, square     3.75         16            20           220           GaAs 
 Inductor 11  non-symmetrical, square     2.75         16            20           175           GaAs 
 Inductor 12  non-symmetrical, square     3              16            20           175           GaAs 
 Inductor 13  non-symmetrical, square     3.25         16            20           193           GaAs 
 Inductor 14  non-symmetrical, square     3.5           16            20           193           GaAs 
 Inductor 15  non-symmetrical, square     3.75         22            26           280           GaAs 
 Inductor 16  non-symmetrical, square     4              22            26           280           GaAs 

Table 2.3: Detailed parameters of other sample inductors. 

 

Table 2.3 lists the detailed parameters for more sample spiral inductors, Inductor 5 

to Inductor 16. Figs. 2.20 to 2.22 show the simulation results with our modified circuit 



 43

model (as shown in Fig. 2.7 (b)) and the conventional model for Inductor 5 to Inductor 7. 

All the other results display the same trend as Figs. 2.20 to 2.22 and for brevity, Figs. 

2.23 to 2.31 plot only the simulation results with the modified model in Fig. 2.7 (a) for 

Inductor 8 to Inductor 16. The fitting results are all quite satisfactory with minor fitting 

errors, which are mostly less than 10%. 

 

The drawback of our circuit modification is that: due to skin effect, the increase of 

frequency will have other dramatic influences on a spiral inductor’s resistance and 

inductance [98]-[99]. But these effects cannot simply be included in the circuit modeling 

by modifying circuit components or structure only. All our modifications with the circuit 

model mainly contribute to the existence of eddy current in the metallic trace of the 

inductor, but they do not contain much consideration of the skin effect. 

 

2.5 Conclusion 

 

The non-uniform B-field around a spiral inductor will cause eddy current in the metallic 

trace, resulting in the phenomenon of “current crowding”. Appearance of current 

redistribution will dramatically increase the transmission loss at high frequencies, i.e., the 

series resistance of the metallic trace of the inductor, if we regard each spiral inductor as 

a two-port network. Expressions (2.4), (2.5), and (2.13) to (2.17), derived in this chapter, 

provide an approximate analysis model for the current crowding effects. 
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Here, an improved expression incorporating the skin effect for the prediction of 

series resistance in the spiral inductor model is also derived. Two novel modified 

equivalent circuit models for spiral inductors based on the analysis of eddy current are 

thus proposed. A good agreement between the simulated and the measured S-parameters 

is obtained. 

 

 

 

 
Fig. 2.20: S-parameter simulation results on modified (Fig. 2.7 (b)) and conventional (Fig. 2.5 (b)) circuit 

models of Inductor 5. 
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Fig. 2.21: S-parameter simulation results on modified (Fig. 2.7 (b)) and conventional (Fig. 2.5 (b)) circuit 

models of Inductor 6. 
 

 
Fig. 2.22: S-parameter simulation results on modified (Fig. 2.7 (b)) and conventional (Fig. 2.5 (b)) circuit 

models of Inductor 7. 
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Fig. 2.23: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 8. 

 

 
Fig. 2.24: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 9. 
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Fig. 2.25: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 10. 

 

 
Fig. 2.26: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 11. 
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Fig. 2.27: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 12. 

 

 
Fig. 2.28: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 13. 
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Fig. 2.29: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 14. 

 

 
Fig. 2.30: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 15. 
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Fig. 2.31: S-parameter simulation results on modified circuit model (Fig. 2.7 (a)) of Inductor 16. 
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CHAPTER 3 

 

INVESTIGATION OF INDUCTANCE OF 

SPIRAL INDUCTOR WITH NON-UNIFORM 

CURRENT DISTRIBUTION 

 

3.1 Fundamental Concepts 

 

Various approaches for modeling inductors on semiconductor have been reported in the 

past years [29]-[30], [32]-[33], and [41]. Since an inductor is intended for storing 

magnetic energy only, an ideal expression of its inductance in terms of metal width, gap 

spacing, and metal length is essential for the equivalent circuit modeling. An accurate 

numerical solution can be obtained by using a three-dimensional (3-D) finite-element 

simulator such as MagNet [54], but 3-D simulators are computationally intensive and 

time-consuming. Other techniques for analysis include the Greenhouse method [41] and 

[55], Wheeler formula [56], and “Data Fitted Monomial Expression” [57]. Data fitted 

expressions usually lack the precise theoretical interpretation, while the physical 

foundation for computing inductance is built on the concepts of the self-inductance of a 

wire and the mutual inductance between a pair of wires. A comprehensive collection of 
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formulae for inductance calculation was summarized by Grover in [58]. A commonly 

adopted assumption in the previously reported works on calculating inductance is that 

they usually neglected the frequency dependence of the spiral inductor’s inductance. 

 

The concept of inductance L can be interpreted as 

                                                     ,
)(

di

dsBd

di
dL ∫ ⋅

−=−=
φ                                            (3.1) 

where φ  refers to the magnetic flux surrounded by one closed loop and i refers to the 

current. When the current in the materials is uniform, as the change of magnetic flux φd  

is usually proportional to the change of the current di , the inductance depends only on 

the geometry of the system. But when the current distribution is non-uniform, things are 

no longer the same. Both the self- and the mutual inductance should be derived from 

more fundamental electromotive definition, i.e., 

                                                           ,
dt
diL

dt
de −=−=
φ                                                 (3.2) 

where e is the electromotive force induced by the change of magnetic flux φd  in one 

closed loop. This requires us to integrate each individual current element’s contribution to 

the magnetic flux φd  together, due to the non-uniform current. 

 

To state, both eddy current and skin effect will result in non-uniform current 

distribution in the metallic trace of a spiral inductor as discussed in the previous Chapter 

2. Fortunately, we can approximate the relationship between the current redistribution 

and frequency by proper expressions such as in [2]. Then in this chapter, the development 

of inductance calculation will be improved further with the current redistribution. 
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3.2. Fundamental Analysis 

3.2.1 Partial Inductance Calculations with Magnetic Flux Method 

 

In this section, we use the concept of “partial inductance” [100]-[101] as the fundamental 

method to derive the inductance calculation. Partial inductances involve the magnetic 

flux between a conductor and infinity. To simplify the electromagnetic mechanism in a 

spiral inductor, we consider firstly two conductors with rectangular cross sections as in 

Fig. 3.1. Both the width and the thickness of the two cross sections are divided into 

several infinitely thin segments, so that each current in one filament can now be assumed 

to be uniformly distributed. 

S

l

W

2m1m

2n1n

T1_conductor

2_conductor

 
Fig. 3.1: Illustration of two straight conductors. 

 

Conventionally, the mutual inductance between two parallel conductors is usually 

approximated by resolving the conductor cross sections into smaller filaments [102] and 

using the magnetic flux method. Then, the overall partial mutual inductance can be 

obtained through 
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where ijM  is the mutual partial inductance between two filaments in different conductors 

in Fig. 3.1. This expression is valid with uniform current distributions. The term 11/1 nm  

represents the uniformly distributed current in each source filament, and the term 22/1 nm  

describes the approximate uniformly distributed magnetic flux on each field filament. 

 

For the case of non-uniformly current distribution, the usage of equation (3.3) is 

generally limited. By extending the magnetic flux method to include the non-uniform 

current distribution, equation (3.3) should be modified to 
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where ik ′  represents the current weighting function in each filament iI ′  in conductor_1 as 
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and jk ′′  represents the current weighting function in each filament jI ′′  in conductor_2 as 

                                                           .
22
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Here, the current in each filament is approximated to be constant because the 

dimension of the filament is small enough compared with the interested wavelength. Both 



 55

totalI ′  and totalI ′′  are respectively the root mean squared (rms) total current in conductor_1 

and conductor_2. From equation (3.4), it can be found that the use of magnetic flux 

method will give rise to some ambiguities in the value of mutual inductance. For example, 

when totaltotal II ′′≠′ , the formula (3.4) will usually yield two different values of mutual 

inductance. In addition, two different values of mutual inductance may also be obtained, 

even if totaltotal II ′′=′ . That is because the current density in some filament in one of those 

two conductors can still be different from that of the corresponding filament in the other 

conductor, or the two conductors are with different numbers of filaments. However, for 

the latter case, if the numbers of filaments are sufficiently large, the two different values 

of mutual inductance will in the limit be the same. 

 

3.2.2 Energy Method in Calculating the Effective Inductance 

 

In [58], Grover proposed the general and fundamental principles for the inductance 

calculations with the magnetic energy method. 

 

When a current I ′  is established in a circuit or element of a circuit, the rise of 

current induces an electromotive force that will oppose the rise of current. Thus, energy 

has to be expended by the source, in order to keep the current flowing against the induced 

electromotive force e. If we denote by I the current at any moment, the power expended 

in forcing the current against the induced electromotive force in equation (3.2) can be 

expressed as 
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                                                                .
dt
dILIp =                                                        (3.7) 

Here, L is the total inductance of the circuit. 

 

Thus, the total energy supplied in raising the current to the final value I ′  is 
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                                     (3.8) 

in which 0T  is the time interval for the establishment of the current. This energy is stored 

in the magnetic field and becomes available in the circuit when the current is broken [58]. 

It may also be shown that energy is stored in each volume element dV  of the field to the 

amount of dVH
π8

2

, where H is the magnetic field intensity at the point in question. 

 

If the current I ′  is being established in circuit 1, a current I ′′  is maintained in 

circuit 2 that has a mutual inductance M with circuit 1, then during the rise of I, an 

electromotive force 
dt
dIM−  is induced in circuit 2. To force the current I ′′  against this 

force, some extra energy is required. This energy can be expressed as 

                                           .
0

0
2 IIMdtI

dt
dIMW

T

′′′=′′= ∫                                           (3.9) 

If the induced electromotive force is in such a direction that it aids the flow of the current 

I ′′ , then the energy is returned to the source of I ′′  and M is to be considered as negative; 

otherwise, M is to be considered as positive. 
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The energy of a system consisting of two circuits 1 and 2, in which currents I ′  and 

I ′′  respectively are established, can be calculated by supposing that the current I ′  in one 

circuit to be made first. Then the other current is supposed to rise from zero to I ′′ , while 

I ′  is held constant. First, with circuit 2 open, the rise of the current in circuit 1 from zero 

to I ′  involves the storing of energy 2
12

1 IL ′  in the magnetic field as calculated in 

equation (3.8). As the current in circuit 2 then rises from zero to I ′′ , energy 2
22

1 IL ′′  is 

supplied by the source 2 and, at the same time, source 1 has to supply IIM ′′′  to maintain 

current I ′  unchanged. The total magnetic energy stored in the system of two circuits is, 

therefore, 

                                     ,
2
1

2
1

2
1

2
1 2

2
2

1 IIMIIMILILW ′′′+′′′+′′+′=                              (3.10) 

where 1L  and 2L  represent the total inductance of the two circuits respectively, and the 

last two terms in this equation describe the stored magnetic energy due to the mutual 

inductance M between these two circuits. 

 

If there are n circuits carrying currents nIII L,, 21 , having mutual inductances 

12M , 13M , etc., the energy of the whole system is the sum of terms of the form 2

2
1

ii IL  

for each circuit, and a term jiij IIM  for each pair of coupled circuits. The magnetic field 

intensity at each point is, of course, the resultant of the components due to the individual 

circuits. 
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When the current is non-uniformly distributed in the conductors in Fig. 3.1, we can 

express the overall mutual inductance between them as 

                                                           .
totaltotal

total

II
W

M
′′′

=                                                     (3.11) 

 

By defining the concept of effective mutual inductance effM , we achieve 
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Equation (3.12) is more convenient to be used than equation (3.4) especially for the 

different current distribution cases of the two conductors, as the above-stated ambiguity is 

thus resolved. When the currents are uniform and their distributions are the same over the 

cross sections of the two parallel conductors, these two methods, namely through 

equation (3.4) and through equation (3.12), are identical. 

 

3.3 Derived Inductance Formulae for Spiral Inductor with Non-uniform 

Current Distribution 

3.3.1 Self- and Mutual Inductances with Magnetic Flux Method 

 

When the current in a wire is uniform, the self-inductance is primarily determined by the 

magnetic flux external to the wire, while the mutual inductance is determined by the 

mutual effects between two wires. In our case, the current in each filament in Fig. 3.1 can 

be assumed to be uniform. Thus, the overall self-inductance of the metallic trace of an 
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inductor can be considered to be the total effect of the self- and mutual inductances of all 

the filaments in its cross section. The overall mutual inductance between two metallic 

traces should be recalculated due to the non-uniform current distribution. 
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1i

M

2L

1L

 
(a) 

2i

1i

M

2L

1L

i

 
(b) 

Fig. 3.2: Mutual inductance M in relation to the self-inductance 1L  and 2L . 

 

Fig. 3.2 (a) shows how the overall inductance with two parallel filaments is 

computed. In each equipotential metallic body of the structure, both filaments are excited 

approximately by the same voltage as shown in Fig. 3.2 (b). The overall inductance of 

two-filament system can thus be approximated by 

                               ,)]()[()( 2221121121
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where ijφ  refers to the magnetic flux effect in the jth filament induced by the ith current 

filament. By assuming 2121 kkii = , 
totaltotal di

d
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k
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the magnetic flux is uniformly distributed within the filament, the overall inductance of 

Fig. 3.2 (b) is given by 
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where Lj (j=1 or 2), and M are the frequency-independent self-inductance of filament and 

mutual inductance between filaments respectively, and kj (j=1 or2), is the current 

weighting function. Using the same analogy as the two-filament case above, the overall 

inductance for the N-filament system can be computed by 
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where ⋅⋅⋅=== 2211 nmnmN  is the total number of filaments in each metallic trace, and 

mnM  is the mutual inductance value between the mth and the nth current filaments, and 
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Here, we assume NLLL === L21  in equation (3.15). Thus, quite similar to 

equation (3.15), the mutual inductance between any pair of traces with N filaments each 

(as shown in Fig. 3.1) is expressed as 
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where mnM ′  refers to the mutual inductance between the mth and the nth current filaments 

in different metallic traces (as shown in Fig. 3.1). The sum of each M ′  due to all of the 

other metallic traces will provide an overall inter-trace mutual inductance of a spiral 

inductor. 

 

3.3.2 Geometric Mean Distance 

 

The simplified formula for the mutual inductance (expressed in Hµ ) between two 

parallel filaments with length l and distance g (both expressed in centimeters) is 
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when 
l
g  is not very big [58]. 

 

In the case of two equal straight conductors of rectangular cross sections, we can 

use the geometric mean distance R to replace g in equation (3.18). Then, the conductor 

can be considered as infinitely thin filament on the cross section, and the geometric mean 
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distance represents the total effect of the distance between each pair of points mnR  (as 

shown in Fig. 3.3). Similar to [58], we have to find 
N
1  of the sum of the N values of the 

logarithm of the distance between the N pairs of points )( ∞→N . 
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NNr
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Fig. 3.3: Illustration of the rectangular cross section of two equal conductors. 

 

If ba << , the difference between R and c is mainly caused by the geometric size of the 

conductor cross section on the x direction, and it is not on the y direction. Thus, we obtain 
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where 22 ])[(
N
bnmcrmn −+=′ . 

 

In the same case, with the idea of geometric mean distance of an area from itself 

R′  in [58], we can also introduce equation (3.18) to calculate the term 1L  in equation 

(3.15) with 
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where 
N
bnmrmn −= . 

 

3.3.3 Modified Inductance Calculation under Skin Effect 

x
yz
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Fig. 3.4: Dividing method on the cross section of metallic trace under skin effect. 

 
The current is uniformly distributed in the rectangular cross section of a spiral inductor at 

dc. As the frequency is increased, the current will crowd to the surface and is eventually 

concentrated in an annulus of thickness from the surface [41], and [103]-[105]. This 

phenomenon is called skin effect. The most critical parameter pertaining to skin effect is 

the skin depth, which is defined as 
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δ =                                                       (3.21) 

where σ , µ  and f respectively represent the conductivity, the permeability, and 

frequency. The attenuation of the current density, Js, as a function of distance z away 

from the surface can be represented by the function 
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where 0J  and T  refer to the current density at the surface ( 0=z  and -T) and the 

thickness of the metallic trace respectively (see in Fig. 3.4). The current, I, can be 

obtained by integrating Js over the whole cross-sectional area, yielding 
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where W is the width of the metallic trace. As the variations of the current density mainly 

occur along the z direction under skin effect, we can divide the cross section into 

infinitely thin filaments on the z direction. Such will also satisfy the conditions for 

equations (3.18) to (3.20). By combining equations (3.15) to (3.17), and setting the 

current weighting function as 
N
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N
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⎛ −== , the proposed inductance 

calculation due to the current redistribution under skin depth effect becomes 
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and 
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where the superscripts α , β , and β ′  represent, respectively, the conditions when the 

current is uniformly distributed, when it is under skin depth effect with the magnetic flux 

method calculation, and when it is under skin depth effect with the energy method 

calculation. mnM  refers to the mutual inductance between the mth and the nth filaments in 

the same straight metallic trace and mnM ′  refers to the mutual inductance between the mth 

and the nth filaments in different straight metallic traces. They can all be calculated from 

equations (3.18) to (3.20). 

 

As the distance between two filaments in different straight metallic traces of the 

spiral inductor is much larger than the filaments’ thickness, we can approximate that 

                                                .1 ∑∑∑ ′⋅⋅⋅=′=′
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Therefore, when the skin effect is considered alone, we have 

                                                      .ββα ′≈≈ mutualmutualmutual LLL                                           (3.29) 

 

3.3.4 Modified Inductance Calculation with Eddy Current 

 

The phenomenon of current crowding due to the appearance of eddy current was studied 

in [2]. An approximate expression to describe the eddy current is given as 
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                                                     ( ) .)(2 0 xBfIxJ eddy τσπ=                                              (3.30) 

Here, τ is the number of turn of the spiral inductor, )(τB  is a function which changes 

with τ  only for each fixed inductor, and 0I  is the excitation current (shown in Fig. 3.5). 

If we divide the cross section into infinitely thin filaments along the x direction, we can 

achieve 
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and quite similarly, 

,0≈′γ
selfL                                                   (3.32) 

where the superscript γ  and γ ′  represent the conditions with eddy current effect, for the 

magnetic flux method and for the energy method, respectively. The effect of eddy current 

on the overall self-inductance is neutralized as the eddy current on both sides of a 

metallic trace is in opposite direction. This phenomenon also exists under the presence of 

skin depth effect and thus equations (3.31) and (3.32) are still valid under the 

incorporation of skin depth and eddy current effects. 
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Fig. 3.5: Dividing method on the cross section of metallic trace with eddy current. 
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While considering for the mutual inductance between two different metallic traces, 

the total excitation current should also be assumed to be 0I  because the eddy current is 

inducted by it. By using equations (3.17) and (3.30), and setting 
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Here, the superscript γ  and γ ′  represent the condition of eddy current with the two 

different methods, respectively. 

 

3.4 Results for Typical Geometries 
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In the previous section, we divide the inductance calculation of a spiral inductor into 

three aspects 

                                .γβαγβα ′′ ++=++= mutualselfmutualmutualselfmutualtotal LLLLLLL                    (3.37) 

The term α
mutualL  is constant for fixed inductors and it contributes to at least 20-30% of 

the total inductance of the metallic trace in normal conditions. 

 

3.4.1 Skin Effect 

 

As β
selfL  and β ′

selfL  are caused by the skin effect, they may indicate the different 

importance that each filament (divided as the method in Fig. 3.4) plays within the total 

self-inductance calculation. Fig. 3.6 plots the filament weight factors (in percents) in the 

calculation of 1K  and 1K ′  versus k for one typical inductor ( 2
0 /1 mAJ = , 

mS /10098.4 7×=σ , mµδ 11.1= , f=5GHz, mT µ2.1= , mW µ8= , and mltotal µ2000= ), 

where k=1,2..N is the filament number as shown in Fig. 3.4. This figure illustrates the 

self-inductance weights of the current in each filament with two different methods, and 

the status of current distribution under skin effect as well. Here, the values of 1K  and 1K ′  

in equations (3.24) and (3.25) respectively indicate the relationship between the self-

inductance and frequency. The term α
selfL  in equations (3.24) and (3.25) should be 

calculated with the definition of geometric mean distance from itself in [58] as 
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where totall  is the total length of the spiral inductor and Tltotal >> . 
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Fig. 3.6: Illustration of the filament self-inductance weights and the current density under skin effect. 

 
In Fig. 3.6, although the theoretical results seem to show that the outer filaments 

may contribute to relatively less effects on the self-inductance than the inner ones, the 

weight differences between the filaments are quite insignificant. The alternating 

percentage between the maximum and the minimum values of the weights is less than 

0.1%. One of the reasons for this fact is that the total length totall  of the spiral inductor far 

outweighs the metal thickness T and g in equation (3.18) consequently. Therefore, even if 

the current is non-uniformly distributed under skin effect, the partial inductance of each 

single filament, divided as shown in Fig. 3.4, will still remain constant when frequency 

changes. Thus, the different horizontal filaments are contributing to the same importance 

for the total inductance of spiral inductor. 

 

3.4.2 Eddy Current 
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Fig. 3.7: Description of eddy current in inductor. 

 

The variation of mutual inductance caused by eddy current is represented by 2K  or 2K ′  in 

equations (3.33) to (3.36). With the same inductor’s parameters as above, each 

theoretically calculated value of 2K  between two parallel straight traces of the inductor is 

listed in Table 3.1, and the traces are numbered as shown in Fig. 3.7. In calculating the 

mutual inductance between two unequal parallel filaments (see in Fig. 3.8), we use the 

formula [58] 

                                 ,2/)( ,,)(),()(),(, ddccdbdbcbcbba MMMMM −−+= ++++                      (3.39) 

where the terms on the right refer to the mutual inductances between pairs of filaments 

with equivalent lengths. 
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Fig. 3.8: Two unequal parallel filaments. 
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nmK ,
2  n=1 n=5 n=9 n=13 n=3 n=7 n=11 n=15 

m=1 - 0.0475 0.0301 0.0245 0.0057 0.0061 0.0066 0.0073
m=5 0.0475 - 0.0501 0.0323 0.0061 0.0066 0.0072 0.0079
m=9 0.0301 0.0501 - 0.0536 0.0066 0.0072 0.0078 0.0086

m=13 0.0245 0.0323 0.0536 - 0.0073 0.0079 0.0086 0.0095
13,9,5,1(,

2
,

2 =≈ ++ mKK knkmnm  and )3,2,1=k  
mnnm KK ,

2
,

2 =  
Table 3.1: Values of 2K  between straight traces of the inductor. 

 

Table 3.1 indicates that except for the outermost and the innermost turns of a spiral 

inductor, the eddy current in the other turns causes approximately equal effects in its two 

adjacent parts that will counteract with each other. While for the traces on different sides 

of the inductor’s center, 2K  is much smaller than for those on the same side. Thus, in our 

case, as 25.0/)( ≈+× DSWN , over %95  of γ
mutualL  is caused by the eddy current on the 

same side. When the inductor has more than 4 turns, the B-field and the resulting eddy 

current in the inner and outer turns of the spiral inductor will probably have different 

directions [2] (see in Fig. 3.7). 

 

But one more aspect, which one must pay attention to, is that the B-fields, which 

induce the eddy current, can be assumed to be generated by the initial current from the 

metallic trace mostly. Then, with the Maxwell’s equations 
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the E-field and the resulting eddy current are actually in quadrature with the excitation 

current J
v

 [2]. 

 

The basic concept of the overall inductance of a microwave component should 

represent the phase difference between the excitation voltage and the excitation current 

directly. Thus, if the eddy current in the metallic trace always has 
2
π  phase difference 

from the excitation current, there will be no significant contributions to the overall 

inductance of the metallic trace of the spiral inductor from the eddy current in a long time 

domain as the positive effects will be counteracted by the negative ones in the continuous 

half periods. Thus, for our first-order estimation, one can neglect the effect of eddy 

current on the overall inductance calculation (self- and mutual inductance calculations) as 

the absolute values of either 2K  or 2K ′  in our two methods for the inductance calculation 

cannot change effectively the real inductance of the spiral inductor. 

 

3.5 Analysis of Internal Inductance 

3.5.1 Internal Inductance of Ground Plane 

 

If the internal inductance of the ground plane, groundL , below the spiral inductor is 

considered, the total inductance totalL  associated with the spiral inductor can be expressed 

as 

,int groundexttotal LLLL ++=                                          (3.42) 

where intL  refers to the internal inductance of the metallic trace only. 



 73

 

The internal inductance of the ground plane is also governed by the skin effect (i.e., 

the skin depth associated with the ground plane). In [106], the authors proposed a series 

of closed-form expressions for the internal inductance of the ground plane as 
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           (3.43) 

Here, groundσ  and groundδ  are the conductivity and the skin depth of the ground plane, 

respectively. H is the substrate height between the metallic trace and the ground and W is 

the width of metallic trace. 

 
Fig. 3.9: Self- and internal ground inductances for the spiral inductors. 

 
As shown in equations (3.42) and (3.43), the relative importance of groundL  as 

compared to totalL  is a function of frequency and geometry. Thus, in this section, a series 

of different geometries are analyzed: the spiral inductors are all on silicon substrate with 
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mltotal µ1000= , mSground /108.5 7×=σ , mT µ1= , and .5.4=rε  The W are mµ4 , mµ6 , 

and mµ8 ; and the H are mµ50 , mµ70 , and mµ90 , respectively. 

 

Fig. 3.9 shows the calculated self-inductance from equation (3.38), and the internal 

ground plane inductance groundL  from equation (3.43). From the simulation results, we 

can also find that the internal inductance of the ground is much more sensitive to H than 

to W. With the increasing of H, the internal inductance of the ground will then contribute 

less effect to the overall inductance of the spiral inductor at any frequency. 

 

With equation (3.38), the theoretical self-inductance for the spiral inductors 

(T= mµ1  and mltotal µ1000= ) with mµ8 , mµ6 , and mµ4  metal width will be 1024nH/m, 

1074nH/m, and 1141nH/m, respectively. Thus, although the internal ground inductance at 

low frequencies is comparable to the self-inductance of the whole metallic trace [106], it 

will be a bit small compared to the self-inductance at high frequencies. When the 

frequency is above 0.1GHz, groundL  is about 1% of the self-inductance only. Furthermore, 

if the overall mutual inductance of the spiral inductor is considered, groundL  will be less 

than 0.7-0.8% of the exact totalL  at frequencies above 0.1GHz. 

 

3.5.2 Internal Inductance of Metallic Trace of Spiral Inductors 

 

The external inductance of conductor coincides with the asymptotic value of inductance 

at high frequencies, and corresponds to the limit where all current flows on the wire 
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surface only and no fields exist inside the conductor [107]. The internal inductance of 

conductor is the difference between the low- and high-frequency limits and is due to the 

field penetration inside the conductor. Typically, the internal inductance accounts for less 

than 10% of the total low-frequency (partial) inductance of a single wire, or open loop. 

For closely spaced loop, due to the cancellation of self- and mutual inductances, the 

internal inductance can be a significant portion of the loop inductance [107]. 

extL

2L

3L

nL

nR

1R

3R

2R

extL

nL nR

1R

3R

2R

3L

2L

1L

)(a )(b  
Fig. 3.10: Equivalent circuit models for skin effect. 

 
In the previous sections, we find that the partial external inductance of each single 

filament in Fig. 3.4 can be assumed to be constant with the change of frequency, even 

when the current is non-uniformly distributed in the conductor. Thus, the total external 

inductance of the whole inductor is nearly a constant (see pp. 69, Fig. 3.6) and affected 

marginally by skin effect. However, for the overall internal inductance, things are quite 

different. For example, in the circuit model of Fig. 3.10 (a) for skin effect [107]-[109], 

extL  refers to the external inductance, and the internal inductance intL  can be calculated 

from the right hand side in the model. Thus, we can find that due to the series resistance 
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nR  of each filament under skin effect, the theoretical internal inductance of the conductor 

will usually be frequency-dependent even if the partial internal inductance nL  of each 

filament is constant and equivalent at different frequencies. But the generation of the 

model in Fig. 3.10 (a) requires extensive calculations, and no compact expressions are 

given [107]. 

 

Fig. 3.10 (b) shows another ladder equivalent circuit for skin effect utilized in [107], 

and [110]-[112]. The ladder topology of Fig. 3.10 (b) was introduced firstly by Wheeler 

[111] and developed by Yen et al. [112] and Kim and Neikirk [110]. Kim and Neikirk 

provided a technique based on the ad-hoc assumption of a geometric progression of the 

resistance and inductance values [110] as 

,/1 RRRR nn =+                                                       (3.44) 

and 

./1 LLLL nn =+                                                         (3.45) 

Here, the values of nL  may not be equivalent because they represent the inductances 

which isolate progressively the resistors nR  and the filaments are not required to be 

divided uniformly. Once 1R  and 2L  are empirically set, the ratios RR and LL are 

calculated to satisfy constrains on the low frequency resistance dcR  and internal 

inductance intL . The free parameters in the model are 

,/1 dcR RR=α                                                       (3.46) 

and 

,/ 2int LLL =α                                                       (3.47) 
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which are empirically fitted to exact analytical results or measurements. 

 

Although the original model as above was fitted on nonrectangular cross sections, 

the authors of [107] recalibrated it from numerical simulations and re-determined the 

parameters Rα  and Lα  for a wide range of rectangular cross sections with different 

TW /  ratios. The simulation results of the total inductance shown in [107] with Fig. 3.10 

are quite satisfactory and in accordance with the data obtained from FastHenry results 

[113]. 

 

The formula for the total internal inductance intL  of a conductor with width W, 

thickness T, and length totall  at low frequencies is given by the expression [107] 

),28.03.0(10 /14.09
int

TW
total elL −− +=                                    (3.48) 

where the wire length totall  is in centimeters and W>T (the ratio T/W should be substituted 

for W/T in the opposite case). This equation is used to separate the internal inductance 

from the external inductance at low frequencies. 

 

Then, by choosing n=4, 10=Rα , 2.3=Lα , and combining the circuit model in Fig. 

3.10 (b) with equations (3.44) to (3.48), Fig. 3.13 shows the behavior of the 

computational internal inductance of a series of rectangular cross-section, copper-traced 

spiral inductors with mµ6  width and mµ1  metal thickness below 10GHz. The totall s of 

them are mµ914 , mµ1320 , mµ1775 , mµ2281 , mµ2837 , and mµ3443 , respectively. 
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Fig. 3.11: Computational skin-effect internal inductance of solid rectangular conductors of pure copper. 

 
Fig. 3.11 shows that the internal inductance of longer wires will decrease more at 

any frequency than shorter ones. For fixed metal width and thickness as our examples, 

the internal inductance values of the wires will usually be 20%-30% smaller at 10GHz 

than the values around dc. Furthermore, by comparing the results from equation (3.48) 

with those of equation (3.38), it is easy to find that the internal inductance accounts for 

3%-4% in the total self-inductance and 2%-3% in the total inductance of the spiral 

inductor at low frequencies. Thus, the effect of internal inductance on the reduction of the 

total inductance from 0.1GHz to 10 GHz will be from 0.4% to 0.9%. 

 

3.6 Experimental Results and Discussions 

 

In this section, we compare the predicted inductance behavior from all the proposed 

approximate expressions with measured data from some sample inductors. We fabricated 

a series of circular copper-traced spiral inductors on silicon substrate. The layout 
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parameters of the inductors include 6 mµ  width, 2 mµ  spacing, 1 mµ  metal thickness, and 

75 mµ  inner dimension. The heights between the metallic traces and the underpass of the 

spiral inductors and the ground plane are mµ46.0  and mµ70 , respectively. The numbers 

of turns of Inductor 23 to Inductor 28 are 3, 4, 5, 6, 7, and 8, respectively. Thus, the total 

lengths of the inductors are mµ914 , mµ1320 , mµ1775 , mµ2281 , mµ2837 , and 

mµ3443 , respectively. The measured data are taken with the HP8510C vector network 

analyzer and the HP nonlinear network measurement system. 

 

The measured data for the inductance is extracted from the following expression 

( )
1

12(( 2 ) )
2

s
s

imag Y j fCL f
f
π

π

−− −
= . Here, sC  refers to the total parasitic capacitance value of 

the inductor as shown in the circuit model in Fig. 3.12 and can be calculated through 

ox

ox

t
Wn

ε
⋅⋅ 2  [41]. The simulated inductance, which is derived from the previous Sections 

3.2 to 3.5, is given as 

  ).()()()( intint fLfLLLfLLfL ground
ext
self

ext
mutualexttotal +++=+=         (3.49) 

Here, the theoretical self-inductance ext
selfL  of a conductor with rectangular cross section 

can be calculated from equation (3.38), and equations (3.43) and (3.48) are utilized to 

separate the internal inductances of the metallic trace and the ground plane from the 

external inductance at low frequencies. The internal inductances of the metallic traces of 

spiral inductors are predicted with the method of ladder circuit model as illustrated in Fig. 

3.10 (b) in Section 3.5.2. 
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Fig. 3.12: Equivalent circuit of an inductor. 

 

 
Fig. 3.13: Comparison between the measured and simulated inductance of spiral inductors. 

 
As illustrated in Fig. 3.13, both the measured and the simulated inductances of 

spiral inductors can be found to decrease slightly with the increasing of frequency. Fig. 

3.13 also provides a good agreement for the prediction of inductances of Inductors 23-28. 

The plots show that the typical simulation errors of inductances are within the range of 

0.5%-1% for Inductors 23-25 and are within the range of 1%-2% for Inductors 26-28. 
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Once we neglect the parasitic capacitance effect in the inductance extraction, both 

the measured and the circuit-simulated inductances will be increasing functions of 

frequency for all these spiral inductors. But in reality, the total physical inductance should 

decrease as a function of frequency due to the skin effect, as illustrated in Fig. 3.13. 

 

But all of the previous analysis can only be part of the comprehensive investigation 

as they cannot explain the phenomenon why the inductance value of some spiral 

inductors may decrease 5%, or even 10% (as reported in [114]), from 0.1GHz to 10GHz. 

As for a highly conductive substrate, the eddy current generated in the bulk substrate will 

lead to a significant decrease in inductance as a function of frequency, as the current 

partially cancels the magnetic field generated by the device. The inductance reduction 

with frequency may also be induced by the substrate skin effect which increases negative 

mutual inductance [34], and [114]-[115]. When frequency increases, under skin effect 

mode, the longitudinal current near silicon-silicon oxide interface will usually reduce the 

inductor inductance [114]. 

 

3.7 Conclusion 

 

The total inductance of a spiral inductor can be separated into two aspects, self- and 

mutual inductances; and generally, it consists of both external and internal inductances. 

The non-uniform current distribution in the metallic trace of the inductor is caused by 

skin effect and eddy current mainly. 
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The skin effect will always cause current to concentrate to the surface of the 

metallic trace. In this chapter, two different methods are derived and utilized to predict 

both the self- and the mutual inductances of spiral inductor under skin effect. By 

combining with some former predictions with equivalent circuit diagrams for the skin 

effect, the internal inductance of spiral inductor is also investigated and analyzed. 

 

According to the law of Faraday-Lenz, eddy current is generated in the metallic 

trace, due to the non-uniform B-field around the spiral inductor. An electrical field is then 

magnetically induced that will generate the eddy current in the metallic traces of the 

spiral inductor. The direction of eddy current is such that they oppose the original change 

in magnetic field. But they are always in quadrature with the excitation current. Therefore 

for our first-order estimation, the eddy current will have no effective contributions to both 

the self- and mutual inductances between the traces of the inductor. 

 

Compared with the external inductance, the more essential parts for the frequency-

dependent inductance of spiral inductor are found to be caused by the internal 

inductances of the metallic trace and the ground plane. Their effects are analyzed in this 

chapter. 

 

A further analysis of how the inductance of the spiral inductor changes due to skin 

effect and eddy current in the dielectric substrate below is more involved and shall be 

referred to the future work. 
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CHAPTER 4 

 

DETAILED EXPLANATION OF THE HIGH 

QUALITY CHARACTERISTICS OF 

SYMMETRICAL OCTAGONAL SPIRAL 

INDUCTORS 

 

4.1 Introduction 

 

At radio frequencies (RF), the usage of on-chip silicon spiral inductors in LC tank circuits 

is limited by the achievable quality factor (Q). The quality factor of a spiral inductor is 

seriously affected by three capacitance components. They are the series feed-forward 

capacitance, the capacitance between the spiral metallic trace and substrate, and lastly, 

the substrate capacitance. In the physical modeling of an inductor [32], [41], [55], and 

[58], the series feed-forward capacitance accounts for the capacitance due to the overlaps 

between the spiral metallic trace and the underpass [6] and [67]. 

 

In Chapters 2 and 3, we show our improved calculations for the resistance and 

inductance of planar, non-symmetrical spiral inductors. To increase the overall Q-factor 
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of silicon spiral inductor, one usually has to resort to the use of symmetrical spiral 

inductor, instead of the conventional non-symmetrical spiral inductor, which can decrease 

the feed-forward capacitance of the inductor. In this chapter, an attempt to provide a new 

and comprehensive explanation on how the symmetrical, arbitrarily-shaped spiral 

inductor helps to improve the Q-factor characteristics over that of the corresponding 

conventional non-symmetrical spiral inductor is made. It is hope with this new 

understanding, alternate forms of symmetrical spiral inductor can be derived. 

 

4.2 Theoretical Analysis 

 

In this section, the differences on the feed-forward capacitance value, series resistance 

and inductance values, and the electric and magnetic center (EMC) between symmetrical 

and non-symmetrical spiral inductors are discussed. The effects of these differences on 

the Q-factor are analyzed and presented. 

 

4.2.1 Change of Cs 

 

Fig. 4.1 shows the difference between a symmetrical and a non-symmetrical spiral 

inductor on silicon substrate. For the ease of explanation, the circuit dimensions 

corresponding to both types of inductors are assumed to be equal. A simplified equivalent 

circuit model for the spiral inductor is presented in Fig. 4.2. In this model, the series 

branch consists of the spiral inductor’s inductance sL , the metal resistance sR , and the 
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series feed-forward capacitance sC . For most practical inductors, it is sufficient to model 

sC  as the sum of all overlap capacitances, which is equal to [41] 

                                                           ,2

ox

ox
s t

WnC
ε
⋅⋅=                                                   (4.1) 

where n is the number of overlaps, W is line-width of the metallic trace, oxε  and oxt  

denote the dielectric constant and thickness of the oxide layer between the metallic trace 

and underpass, respectively. 

overlaps

overlaps

 

(a)                                                                                  (b) 
Fig. 4.1: (a) A non-symmetrical spiral inductor. (b) A symmetrical spiral inductor. 

 

sC

sL

sR

pCpR

 

Fig. 4.2: A typical circuit model for a spiral inductor. 
 

Fig. 4.1 illustrates that for the same inner dimension, width, spacing, and number of 

turns of a spiral inductor, the symmetrical spiral inductor needs one less overlap than the 
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conventional, non-symmetrical spiral inductor. As such, intuitively, the capacitance sC , 

caused by the overlaps of the symmetrical spiral inductor, will be 1/n times smaller than 

that of the non-symmetrical spiral inductor. Furthermore, in the symmetrical case, each 

overlapping area between the metallic traces and the underpass is no longer 2W  as in the 

non-symmetrical case, and it usually becomes a bit smaller. Thus, from equation (4.1), 

we find that the sC  will decrease more. 

 

In [6], Yue expressed the Q-factor of a typical spiral inductor as 
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In this equation, the values of pR  and pC  are irrelevant with respect to sC  as 
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Here, siR , siC , and oxC  describe the substrate parasitics as shown in Fig. 3.12. In general, 

a MOS microstrip structure can be modeled by a three-element network comprised of siR , 

siC , and oxC . oxC  represents the oxide capacitance whereas siR  and siC  represent the 

silicon substrate resistance and capacitance, respectively. The physical origin of siR  is the 

silicon conductivity which is predominately determined by the majority carrier 

concentration. siC  models the high-frequency capacitive effects occurring in the 

semiconductor. For spiral inductors on silicon, the lateral dimensions are typically a few 
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hundred microns which are much larger than the oxide thickness and are comparable to 

the silicon thickness. As a result, the substrate capacitance and resistance are 

approximately proportional to the area occupied by the inductor and can be expressed by 
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where subC  and subG  are the capacitance and conductance per unit area for the silicon 

substrate. oxε  and oxt  denote the dielectric constant and thickness of the oxide layer 

between the inductor and the substrate. The area of the spiral inductor is equal to the 

product of the total inductor length (l) and width (W). The factor of two in equations (4.5) 

to (4.7) accounts for the fact that the substrate parasitics are assumed to be distributed 

equally at the two ends of the inductor. subC  and subG  are functions of the substrate 

doping and are extracted from the measured results. For inductors fabricated with the 

same technology, subC  and subG  do not vary significantly. As a result, siR  and siC  scale 

with l and W only. 

 

So, it is obvious that if sC  decreases, the last term 
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ω  in equation (4.2) will increase. This will eventually 

result in an enhancement on the overall quality factor of the spiral inductor. Such 
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conclusion is also valid for an arbitrarily-shaped, symmetrical spiral inductor and as an 

example, the octagonal symmetrical spiral inductor is referred in the next section. 

 

4.2.2 Changes of Rs and Ls 

 

The results in [116] showed that the series resistance sR  of an octagonal or circular 

shaped inductors is smaller by 10% than that of a square-shaped spiral inductor with the 

same inductance value. In comparison with the square-shaped spiral inductor, from 

equation (4.2), one can conclude that the quality factor of both the circular and octagonal 

spiral inductors will become larger with a decrease of sR . 
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(a)                                                           (b) 
Fig. 4.3: (a) A non-symmetrical, octagonal spiral inductor. (b) A symmetrical, octagonal spiral inductor. 

 

But another thing which should be mentioned here is that once the number of 

inductor turns is more than 2, the symmetrical structure of an inductor will usually 

require more vias than the non-symmetrical one. This will sometimes influences the Q-
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factor of the inductor since each new turn involves level interchanges, which accrue the 

resistance [117]. 

 

As shown in Fig. 4.3, W, S, d, and D refer respectively to the width, spacing of the 

metallic traces, inner dimension, and outer dimension of the spiral inductor. For the same 

W, S, d, and number of turns N, the difference in the total length of the spiral inductor 

between the non-symmetrical and symmetrical spiral inductor is about ))(1(2.0 SWN +− . 

This factor usually amounts to less than 1% of the total length of the spiral inductor. As a 

result, with equations (3), (8), and (9) in [118], the self-inductances for both the octagonal, 

non-symmetrical spiral inductor and the octagonal, symmetrical spiral inductor are found 

to be approximately the same. Thus, the difference between the measured inductance 

values of the two types of spiral inductor is solely due to the magnetic coupling effect 

between different arms. 

 

4.2.3 Change of the Electric and Magnetic Centers 

 

Fig. 4.4 shows the simplified lumped element model of a typical spiral inductor. Here, we 

let n,il  and n,ir  represent respectively the individual inductance and series resistance 

observed from the ith side in the nth loop of the spiral inductor. n,il  is the sum of the nth 

loop’s self-inductance at the ith side and the mutual inductance observed from the ith side 

of the spiral inductor. In the case of an octagonal, symmetrical spiral inductor, the EMC 

is also the geometric center of the inductor. Then, as all the sides of the spiral inductor are 

equidistant from the EMC, the inter-magnetic coupling observed can be taken to be the 
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same throughout. In this connection, it is natural to assume that all the n,il s observed from 

the sides of the spiral inductor will have the same inductance value. 
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Fig.4.4: A simplified lumped element model of a spiral inductor. 
 

Comparing to the symmetrical, octagonal spiral inductor, we observe that the non-

symmetrical spiral inductor does not have an ideal geometric center. The respective EMC 

of the non-symmetrical spiral inductor is off-set to one side. As such, the magnetic 

coupling will not be distributed equally throughout the whole spiral inductor. The half 

loop that is closer to the EMC will result in larger magnetic coupling and hence, larger 

values of n,il s in this respective half-loop of the spiral inductor. When the inductor 

structure is octagonal, one would obtain 
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where n=1,2,…,N, nl  refers to the total inductance value of the nth loop of the 

symmetrical octagonal spiral inductor, N is the total number of inductor turns, and nα  is a 

positive proportionality factor which relates the effect of the off-set EMC to the nth loop 

symmetrical octagonal spiral inductor. nl2′  refers to the mutual inductance value observed 

from the half nth loop that is closer to the EMC in the non-symmetrical octagonal spiral 

inductor whereas 12 −′nl  refers to the mutual inductance value observed from another half 

nth loop that is further away from the EMC. 
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By representing the spiral inductor as a cascade of series networks (see Fig. 4.4) 

and neglecting initially the fringing capacitance between opposite sides, the whole input 

impedance of the nth loop of the non-symmetrical spiral inductor in terms of the 

theoretical ABCD-parameters is then described as 

   [ ]
[ ],/2)(2

/2/)(2

))()(/1()()(

223222

2222222
21221212

nnnsubnnnnsubn

subnnsubnnsubnnn

nnnnsubsubnnnnin

lcrrllrclj

rlcrlrlrr

ljrljrrcjljrljrAZ

αωωωωω

αωωω

ωωωωω

++−++

+−−+=

′+′+++′++′+=′=′ −−

 (4.9) 

whereas for the symmetrical spiral inductor, we obtain 
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The effective quality factor, Qeff of a spiral inductor can be calculated from [119]-

[120] as 
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where ]Re[ inZ  and ]Im[ inZ  are respectively the real and imaginary parts of the input 

impedance of a spiral inductor. Then, with equations (4.9) and (4.10), we have 
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when 

                                       ./)/( 222
subnsubnnsubnnsubn rlcrlrrlcr ++< ω                               (4.13) 

 

In equations (4.11) to (4.12), effQ  and effQ′  denote respectively the effective Q-

factors of a symmetrical and a non-symmetrical spiral inductor. In practice, subc  is always 
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smaller than )/( nsubn rrl  or 2)/( subn rl . Therefore, it is easy to make equation (4.13) 

satisfied. In this connection, the symmetrical spiral inductor will provide a larger quality 

factor as compared to the non-symmetrical spiral inductor. 

 

4.3 Experimental Results 

 
(a) 

 
(b) 

Fig. 4.5: Comparisons of the simulated quality factors between symmetrical and non-symmetrical spiral 
inductors. 
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Fig. 4.5 (a) describes the simulation results of the Q-factor of four square inductors, one 

symmetrical and three non-symmetrical, with all 4 turns, 366 mµ  outer dimension, 24 mµ  

line-width, and 6 mµ  spacing on a upper 2SiO  layer (0.5 mµ ) and a lower silicon layer 

(20 mµ ) substrate. The only difference between these three non-symmetrical inductors is 

that the widths of the underpass are 12 mµ , 18 mµ , and 24 mµ , respectively. Fig. 4.5 (b) 

describes the simulation results of the Q-factor of four square inductors, one symmetrical 

and three non-symmetrical, with all 5 turns, 366 mµ  outer dimension, 24 mµ  line-width, 

and 6 mµ  spacing on a upper 2SiO  layer (20 mµ ) and a lower silicon layer (50 mµ ) 

substrate. The only difference between these three non-symmetrical inductors is that the 

widths of the underpass are 12 mµ , 18 mµ , and 24 mµ , respectively. The heights between 

the metallic traces and the underpass for all of these inductors are 0.5 mµ . From Fig. 4.5, 

we can find that the symmetrical spiral inductor provides a higher Q-factor and a higher 

resonance frequency than the non-symmetrical ones. While within the non-symmetrical 

inductor cases, the inductor with narrower underpass can provide relatively higher Q-

factor than the one with wider underpass. These simulation results agree with our 

predictions of the effect of the feed-forward capacitance sC  on Q-factor in Section 4.2.1, 

as sC  in equations (4.1) and (4.2) is smaller of the symmetrical structure than of the non-

symmetrical structure, and then sC  is also smaller with narrower underpass than with 

wider underpass in the non-symmetrical inductors. With the increasing of the peak value 

of Q-factor, MAXQ , the inductor will usually provide higher resonance frequency resf , and 

higher frequency when the MAXQ  appears. 
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As it is relatively difficult to test out separately the effects of EMC’s shift from the 

symmetrical inductor to the non-symmetrical one, we may modify the 4-turn symmetrical, 

square inductor above to be with irregular spacing between turns to verify our analysis. 

Compared with the general symmetrical inductor with all 6 mµ -spacing, our modified 

‘symmetrical’ inductor with irregular spacing has 3 mµ -spacing between each pair of 

adjacent traces around one corner and 9 mµ -spacing between each pair of adjacent traces 

around the opposite corner. This makes the inner turns of the inductor ‘crowd’ to one 

corner together. The advantage of such attempt is that this will not change the total spiral 

length l, the metal area Wl , and the overlapping areas between the metallic traces and the 

underpass of the symmetrical inductor, except the inductor’s EMC. Thus, the theoretical 

values of the circuit components in Fig. 4.2 can still be approximated to be constant. 

 

From Fig. 4.6, we can conclude that the shift of the inductor EMC from the 

geometric center of the spiral inductors to anywhere else will usually cause the MAXQ  to 

become a bit lower. However, the resf , and the frequency where the MAXQ  appears, do 

not exhibit any significant changes. Similar results can also be achieved from one pair of 

3-turn octagonal symmetrical inductors with respectively regular spacing (6 mµ ) and 

irregular spacing (again 3 mµ  and 9 mµ , respectively), as shown in Fig 4.6. Thus in 

general, the effect of the EMC shift on the Q-factor is not as significant as that of the 

overlaps and sC . 
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Fig. 4.6: Comparisons of the simulated quality factors between the symmetrical spiral inductors with 

regular spacing and irregular spacing (24 mµ  metal width, and 366 mµ  outer dimension). 
 

We designed several symmetrical, aluminum-traced, octagonal spiral inductors 

having different numbers of turns or outer dimensions. Except for Inductor 29 to Inductor 

31 which have totally 3 turns, all of the other inductors have 5 turns. The outer 

dimensions of these inductors, numbered from Inductor 29 to Inductor 35, are 187 mµ , 

233 mµ , 280 mµ , 142 mµ , 187 mµ , 233 mµ , and 280 mµ , respectively. All these 

inductors have 8 mµ  line-width and 4 mµ  spacing between the metallic turns. These 

inductors are fabricated with a 5 mµ  oxide dielectric separation between the inductor and 

the silicon substrate with the thickness of 200 mµ . The two-port S-parameters for all of 

the inductors are measured up to 15GHz with IC-CAP and de-embedding technique. 
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Fig. 4.7: Measured quality factors for various spiral inductors. 
 

Fig. 4.7 shows the measured Q-factors of our inductors. Within each group of 

inductors with the same number of turns, the maximum Q-factor observed belongs to the 

smallest inductor, which has the shortest length of metallic trace. With sC  remaining 

relatively unchanged within each group, this high quality factor is mainly due to the 

lower sR  value observed from the smallest spiral inductor. 

 

At low frequencies (particularly lower than 1GHz), the Q-factor can be well 

described by ss RL /ω  as the last two terms in equation (4.2) have values close to unity 

[6]. From Fig. 4.7, it is noted that with the increase of the number of turns within each 

group of inductors with equal outer dimension, the inductance value increases more than 

the series resistance value. Thus, the inductor with more turns can provide higher Q-

factor values than the inductor with less turns at low frequencies. However, with the 

increase of frequency, eddy current [2] will become more significant and hence, the 
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resistance value sR  will then increase dramatically, especially for the inductors with 

more turns. In this connection, the overall Q-factor of the inductor with more turns 

becomes progressively lower than the inductor with less turns, at relatively higher 

frequencies. 

 

From Fig. 4.7, we note that in the case of the same number of turns, the measured 

resonant frequencies decrease with an increase of the outer dimension of inductors (from 

Inductor 29 to Inductor 31, and from Inductor 32 to Inductor 35). While with the increase 

of the number of spiral turns, more overlaps are resulted and thus, the effect due to the 

capacitance sC  becomes predominant. The theoretical resonant frequency resf , derived 

from the last term of expression (4.2), is 
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This expression shows that with an increase of sC , the resonant frequency will decrease. 

Within each group of inductors with the same outer dimension, the capacitance, sC , will 

become larger when the number of turns increases. As a result, this usually constitutes a 

decrease in both the maximum quality factor and the resonance frequency (see in Fig. 

4.7). 

 

Due to the unavailability of the corresponding non-symmetrical octagonal inductors, 

which have the same parameters with our designed symmetrical ones, we are unable to 

provide the physical comparison results of the measured Q-factors. These comparisons 

will be referred to the future work. 
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4.4 Conclusion 

 

Compared with the non-symmetrical structure, the symmetrical octagonal spiral inductor 

can reduce the coupling capacitance of the overlaps of the metallic traces. Furthermore, 

as the EMC of the symmetrical case is the accurate geometric center of the spiral inductor, 

it can balance effectively the effect of inductance coupling between different sides of the 

inductor. All these aspects will provide higher quality factor and resonance frequency for 

the symmetrical inductor. 

 

The number of overlaps between the underpass and the metallic trace of the 

inductor can reduce the Q-factor significantly in high frequency range. However, in lower 

frequency range, when the total number of inductor turns is fixed, one predominant factor 

which influences the Q-factor is the outer dimension of the inductor. 
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CHAPTER 5 

 

AN IMPROVED MODEL OF TWO-LAYER 

SPIRAL INDUCTOR WITH EDDY CURRENT 

EFFECTS IN SUBSTRATE 

 

5.1 Introduction 

 

In addition to the various single-layer spiral inductors as discussed in the previous 

chapters, multi-layer inductors have also gained great importance in the design of 

integrated silicon RF transmitters and receivers. For this reason, the analysis and 

optimization of such structures are of great importance [32] and [81]. 

 

The substrate effects on the performance of metal-insulator-metal (MIM) spiral 

inductors are critical to silicon RF IC’s design [81]. The effects of substrate RF losses 

from eddy current on the characteristics of silicon-based integrated inductors and 

transformers have, up to now only, been experimentally studied in [80] and [83]. It is thus 

our intention in this chapter to incorporate the eddy current effects in equivalent circuit 

method for the case of multi-layer spiral inductors. 
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Due to the more significant inductance coupling compared with the single-layer 

inductors, multi-layer structure can provide relatively larger inductance values and higher 

quality factors [64] and [69]. For a two-layer case, the total inductance of the whole 

inductor is MLL 221 ++ , where 1L  and 2L  are the self-inductances of the two spiral 

metallic traces and M is the mutual inductance between the two layers. In a two-layer 

inductor, the two spiral metallic traces are identical ( LLL == 21 ) and the mutual 

coupling between the two layers is usually quite strong ( LLLM =≈ 21 ). The total 

inductance is therefore increased by nearly a factor of 4. Similarly, for an n-layer inductor, 

the total inductance is nominally equal to 2n  times that of one metallic trace. With the 

availability of more than five metallic layers in modern CMOS technologies, stacked 

inductors can provide larger inductance values in smaller areas [69] and [81]. 

 

The most commonly used compact model of spiral inductor is the standard “9-

element” model [32] and [121], as shown in Fig. 3.12. In this chapter, we present a more 

accurate equivalent circuit for two-layer spiral inductors, particularly suited to be used in 

the design of RFIC’s. The contributions of the metallic traces and eddy current in the 

substrate to the total performance of the two-layer spiral inductor are modeled 

respectively by different parts in the circuit model. The proposed equivalent circuit is 

validated considering experimental data of a series of two-layer spiral inductors on 

silicon substrate, and the results are reported in Section 5.4. 

 

5.2 Analysis of Eddy Current in the Substrate 



 101

 

Eddy current in the substrate arises from the magnetic B-field generated by the impressed 

current in the metallic trace of inductor that penetrates the silicon substrate. The 

schematic representation of the eddy current is shown in Fig. 5.1. The authors of [83] 

derived the 2-D equations of the eddy current at both low and high frequencies for the 

cases of single- and two-layer substrate. The directions of the eddy current depend on the 

B-field throughout the whole domain [2]. 
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Fig. 5.1: Illustration of eddy current in the substrate of two-layer spiral inductors. 

 

By considering the eddy current as the sum of all displacement current in the 

substrate, we can regard the substrate resistance loss and inductance as the results of the 

eddy current. In [42] and [49], some innovative circuit models of spiral inductor which 

incorporate the substrate losses were provided. The authors of [42] introduced a substrate 

resistor and a transformer in the model to describe the effect of eddy current, but the turn 

ratio of the transformer in their circuit is fixed to be 1:1 . Similarly, a new wide-band 

compact model for single-layer spiral (SLS) inductors on lossy silicon substrate was 
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presented in [66] and the innovation of their research was also based on the eddy current 

effects in the circuit modeling of spiral inductors. 

 

For the case of a one-layer substrate, the self- and mutual impedance terms were 

derived in [83] as 
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Here, x represents the distance between the two sets of N parallel current filaments and b 

represents the height of the oxide insulation above the conductive substrate. 

 

In the calculations of the eddy current in the substrate, the induction-heat effects are 

temporarily neglected. When an EM field is incident upon the metallic trace of the 

inductor, it will induce eddy current (see in Fig. 5.1). A common way of treating the 

problem is to use the current vector potential (ψ
r

) in the finite-element (FE) formulation 

of quasisteady Maxwell’s equations in [122] as 

                                                               .ψ
rr

×∇=J                                                          (5.3) 

Here, the eddy current density J
r

, induced in the metallic trace with a conductivity σ  by 

the electrical field E
r

, is represented as EJ
rr

σ= . The E
r

, caused by the change of 

magnetic field B
r

 with time, is given by equation (3.41). 
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By combining equations (5.3) and (3.41) and considering the effect of the induced 

current, we can obtain the governing equation for the metallic trace with permeability µ  

as 
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Since the metallic trace is very thin, it is reasonable to assume that the eddy current 

is induced by the z component of the magnetic field and the current vector potential, 

respectively. Thus, equation (5.4) becomes 
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The first term is zero for static field (U=0), while the second term is zero for a direct 

current case. 

 

Then, the magnetic field in the substrate generated by the one turn of current has 

rB  and zB  components that are given by [123] as 

           ,
)(2

]

)(
sin4

1
)(
sin4

1
)(

[

22
0

2/

0
22

0

2
0

2/

0
22

0

2
0

22
0

222
0

zrRr

zrR
rR

dd
zrR

rR
zrR

zrR
Iz

Br
++

++
−

−
++

−
+−
++

=

∫∫

π

θ

θθ
θ

µ
ππ

  (5.7) 

and 
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where I is the current that flows in the spiral inductor and 0R  is the radius of the inductor. 

 

The induced E-field responsible for the eddy current production, which follows 

Faraday’s law, can be expressed as 
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So, the eddy current in the substrate below the inductor can be computed through 
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where n is the number of turn. 1N  and 2N  represent the total numbers of turns of the 

inductors on the upper and the lower layers, respectively. 

 

Furthermore, in the case of two-layer spiral inductors, zB  and θE  will become 

much larger as the lower metallic trace is usually fabricated in the semi-conductor 

substrate entirely. So, it is reasonable that the eddy current within the silicon substrate of 

two-layer spiral inductor, induced by the current from the metallic traces, is more 

significant than that of the single layer case. Thus, one of the main purposes of our study 

is to improve the circuit model for two-layer spiral inductor and incorporate the effects of 

eddy current into our circuit modeling simultaneously. 
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Based on equations (5.7) to (5.10), we can conclude that both the magnetic field 

intensity and the induced eddy current in the substrate are usually proportional to the 

exciting current of the spiral inductor in both layers. As such, there exists a mutual 

coupling factor, which is denoted as M in Fig. 5.3, between the current flowing in the 

two-sandwiched metallic layers and the eddy current in the semi-conductor substrate. 

 

5.3 The Equivalent Circuits for Two-layer Spiral Inductors 

 

The layout of a typical two-layer spiral inductor is also shown in Fig. 5.1. This section 

describes the modifications in the circuit modeling of two-layer inductor and the circuit 

element representation in the equivalent circuit. 

 

5.3.1 Conventional Modeling for Multi-layer Spiral Inductors 

 

Based on the conventional hybrid π -mode circuit for normal single-layer spiral (SLS) 

inductors, one theoretical method to model the effects of the metallic traces on different 

layers in the circuit is shown in Fig. 5.2. sC  and sC ′  represent respectively the total 

fringing-field capacitance between the two metallic traces in different layers, and 

between the sides of the trace in the lower layer only. Another fringing-field capacitance 

sC ′′  in the upper layer is temporarily neglected in the circuit model for simplification. 

Each of the sR  and sL  represents the corresponding series resistance and inductance of 

one single metallic trace, respectively. M represents the coupling factor of mutual 

inductance between the two metallic traces in different layers. oxC  contributes to the 
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capacitance of the substrate of silicon oxide, and siR  and siC  model the effects of the 

silicon substrate below. 

1sL 2sL

1oxC 2oxC 3oxC

1siC 2siC 3siC1siR 2siR 3siR

sC ′

1sR 2sR

M

sC

 
Fig. 5.2: One kind of conventional equivalent circuit for two-layer spiral inductors. 

 

5.3.2 Modified Modeling with Eddy Current Effects 

 

In the case of SLS, the equivalent circuit in Fig. 5.2 can usually be simplified as a T–

mode model by concentrating the substrate effects into a single part at the center. While 

in the case of multi-layer spiral (MLS) inductor, each of those three parts for the substrate 

can no longer be easily neglected in the network, due to the model limitations. Such will 

enlarge the complexity in the evaluations of circuit components and characterizations. 
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2siR
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eddyL
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eddyR M

1oxC 2oxC

sC ′ sC ′′

 
Fig. 5.3: Modified equivalent circuit for two-layer spiral inductors. 
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Then, by incorporating the effects of eddy current in the substrate, we can improve 

the model of two-layer spiral inductors as shown in Fig. 5.3. Here, eddyR  and eddyL  

contribute to the substrate loss and the inductance effect caused by the eddy current, 

respectively. M represents the coupling factor of the eddy current from the impressed 

current. In contrast to the conventional model in Fig. 5.2, both of the metallic traces in the 

two layers are respectively modeled as a simple R-L series network in our proposed 

model. 

 

5.3.3 Quality Factor Evaluation 

 

Since our proposed model is a hybrid π  network (similar as Fig. 2.18), the input 

impedance of the network can easily be derived from 

                                              ),()(
)(

1

12

ωωω
ω

LjR
Y

Zin +≈−=                                    (5.11) 

in which R and L are the components for the series branch of the whole inductor. The 

validation and advantage of the modified model will be reported in Section 5.4. 

 

The quality factor Q of a spiral inductor is given by the ratio of the inductive 

reactance to the total dissipation of a inductor. So, it can be directly achieved from [42] 

and [66] as 
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5.4 Experimental Results 
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In this section, we compare the simulated results generated from the two equivalent 

circuit models as mentioned previously with the measured data on several samples of 

two-layer spiral inductors. All the sample inductors are measured by the HP8510C vector 

network analyzer and the HP nonlinear network measurement system. 

 

We designed several circular two-layer spiral inductors with different number of 

turns and different outer dimensions on silicon. For the silicon substrate, the thickness of 

the upper 2SiO  layer is 20 mµ  and that of the lower silicon layer is 45 mµ . Detailed 

geometric parameters of these inductors are listed in Table 5.1. 

 
                                     W( mµ )   S( mµ )     N     h( mµ )      Metal Thickness( mµ )      Inner Radius( mµ ) 

Inductor 36           10         1.5       2.25      10                     1.57                                    30 
Inductor 37           10         1.5       3.25      10                     1.57                                    30 
Inductor 38           10         1.5       4.25      10                     1.57                                    30 
Inductor 39           10         1.5       5.25      10                     1.57                                    30 
Inductor 40           10         1.5       6.25      10                     1.57                                    30 

Table 5.1: Geometric parameters for two-layer spiral inductors. 
 
5.4.1 Comparisons of the Simulation Results on Two Different Models 

 

Fig. 5.4 illustrates the simulation results of 11S  and 12S  with the conventional model in 

Fig. 5.2 and the improved model in Fig. 5.3, for Inductor 36. A good agreement can be 

achieved between the simulated and the measured data. However, by plotting the 

difference between the simulated results and the measured data of 11S  and 12S  directly, 

the advantages of the improved model can be displayed more obvious (see in Fig. 5.5). 

And the two sets of simulated results are compared with the same set of measured data. 
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Fig. 5.4: Illustrations of comparisons of the S-parameters between the measured data (solid line) and the 

simulated data on the conventional model (point line) and the modified model (dashed line). 
 

                     sR     eddyR    sL     eddyL     sC     sC ′     sC ′′     1oxC   2oxC   1siC  2siC   1siR    2siR      M 

                     (Ω )    (Ω )    (nH)   (nH)     (fF)    (fF)    (fF)     (fF)     (fF)    (fF)    (fF)   (Ω )    (Ω ) 
Inductor 36    10        13      3.6      0.6     0.04  399.4   820.2 17157   822.8  51.5   2.83    407.3  178.1  0.6 
Inductor 38      9          7        6         1        28    734.5  2167   3993    87.63    7.5    20.3    176.4    0.3    0.8 
Inductor 39   17.9       8.4     11       0.9      0.6   702.7  1367    93.9    34380   0.7   112.2   139.3  169.4  0.8 

Table 5.2: Extracted lumped-elements in the improved circuit model. 
 

By comparing with the same set of experimental conditions and with measurement 

errors of about 2%, it is apparent from Fig. 5.5 that our modified equivalent circuit can 

provide better S-parameter fitting results, especially in the high frequency range, i.e., 

higher than the inductor self-resonance frequency. In Fig. 5.5, the magnitude differences 

of 11S  and 12S  simulations are calculation from simulatedmeasured SS 1111 −  and 

simulatedmeasured SS 1212 − , respectively. Similar advantages of the improved circuit can also be 

achieved by comparing the simulation results of phases for the S-parameters. 
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(a) 

 
(b) 

Fig. 5.5: Comparisons of the simulations results for the S-parameters with different models. 
 

5.4.2 Further Discussion on the Validation of the Improved Circuit 

Model 

 

A de-embedding procedure is performed firstly to extract all the lumped-elements of the 

proposed equivalent circuit model for the sample two-layer inductors through circuit 

optimization. The results of circuit components are reported in Table 5.2. 



 111

 
(a) 

 
(b) 

Fig. 5.6: Comparisons of the real and imaginary parts of 12Y−  between the measured data (point line) and 
simulated data (dashed line) with the improved model on different inductors. 

 
Fig. 5.6 describes the real and imaginary parts of 12Y−  of some two-layer spiral 

inductors in equation (5.11). An excellent agreement between the simulated and the 

measured results is obtained. 



 112

 
Improved Model 

            sR     eddyR     sL     eddyL     sC     sC ′     sC ′′     1oxC     2oxC     1siC     2siC     1siR     2siR    M 

            (Ω )    (Ω )    (nH)    (nH)     (fF)    (fF)    (fF)     (fF)       (fF)       (fF)      (fF)     (Ω )    (Ω ) 
              10        13       3.6      0.6     0.04   399.4   820.2 17157   822.8     51.5      2.8     407.3  178.1    0.6 

 
Conventional Model 

1sR   2sR   1sL   2sL     sC     sC ′     1oxC     2oxC     3oxC     1siC    2siC   3siC     1siR     2siR    3siR    M 

(Ω )  (Ω )  (nH)  (nH)   (fF)    (fF)    (fF)     (fF)       (fF)       (fF)      (fF)    (fF)     (Ω )    (Ω )    (Ω ) 
  1        9      1.0    1.3    52.6   509.0    10     755.0    199.8      3.1      21.3    403.0    98.8    240.9   813    0.7 
Table 5.3: Illustrations of the comparison results of the extracted lumped-elements in both the conventional 

and improved models for Inductor 36. 
 

Table 5.2 presents the extracted value of circuit components in the improved 

lumped-element circuit model (as shown in Fig. 5.3) for the samples inductors. Table 5.3 

illustrates the comparison results of the circuit components’ values of both the 

conventional and the improved circuit models for Inductor 36. 

 
Fig. 5.7: Illustration of the measured (solid line) and simulated (circular mark) quality factors of different 

two-layer spiral inductors. 
 

A good agreement between the extracted and the simulated values of quality factor 

with our improved circuit model is achieved on different sample inductors, as shown in 
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Fig. 5.7. These plots show that the improved model, which takes into account the 

physical phenomenon underlying the eddy current in the silicon substrate, is very 

satisfactory especially in the range below resonance frequency. 

 

5.5 Conclusion 

 

The effects of eddy current in the substrate of multi-layer spiral inductor are assumed to 

be more significant than those of single-layer case. Both the magnetic fields and the 

induced eddy current in the substrate are proportional to the excitation current in the 

metallic traces of a multi-layer spiral inductor. 

 

An improved equivalent circuit model for two-layer spiral inductor on silicon 

substrate is presented. This model, which is characterized by detailed analysis of the 

effects of eddy current in the CMOS substrate, can describe accurately the scattering 

parameters, series resistance, inductance, and quality factor of two-layer spiral inductor. 

Compared with the conventional model, our proposed model provides a better agreement 

between the simulated and the measured responses of two-layer spiral inductor. 
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CHAPTER 6 

 

DESIGNS AND APPLICATIONS 

 

6.1 Introduction 

 

In this chapter, we present some designs and applications, including a type of triple-band 

slot antenna with spiral EBG feedline, a modified CPW Wilkinson power divider 

fabricated with EBG-fed, and another power divider based on the transformer design. 

 

6.2 Triple-Band Slot Antenna with Spiral EBG 

 

The use of photonics materials has been driving the relative theory to the propagation of 

optical waves [124]. The theory of photonic band-gap (PBG) or electromagnetic band-

gap (EBG) was developed initially for optical frequencies and can easily be applied to 

millimeters waves, microwaves, and antennas [124]. Generally, EBG can diminish the 

propagation constant causing the wave to move slowly [125]. Then in this section, we 

utilize the spiral EBG into the antenna design and attempt to achieve better antenna 

performances. 
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To implement our analysis, a triple-band rectangular-ring slot antenna with spiral 

EBG feed was designed, fabricated and tested. For comparison purpose, a reference 

antenna was also fabricated and tested [126]. The slot antenna consists of three concentric 

rectangular-ring slots and is printed on a substrate of thickness H=1.6mm and relative 

permittivity 4.4=rε . 

 

The geometric parameters of the EBG feedline are given in Fig. 6.1 and Table 6.1 

gives the geometric parameters of two antennas. For the convenience of comparison, all 

the geometric parameters, except feedline, are the same for EBG-fed antenna and 

reference antenna. The fabricated reference antenna and EBG antenna are shown in Fig. 

6.2 and Fig. 6.3, respectively. 
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Fig. 6.1: Geometric dimensions of multi-band slot antenna with EBG feed. 

 

0L   1L    2L    3L      0W    1W    2W    3W   4W    1S     2S    3S     4S     5S      6S    7S    8S   9S  
65   35   30   24.5    53    20    15    10    6.4    2    0.3    0.5    1.2    1.5    1.4   0.6   5.6  2.5 

Table 6.1: Geometric parameters (in mm) for reference antenna and EBG-fed antenna. 
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Fig. 6.2: Fabricated slot line antenna with conventional CPW feed. 

 

  

Fig. 6.3: Fabricated slot line antenna with spiral EBG feed. 

 
            1f (GHz) 1BW  1Gain (dBi) 2f (GHz) 2BW  2Gain (dBi) 3f (GHz) 3BW  3Gain (dBi) 
CPW-fed 1.93     7.3%       3.53         2.34      4.4%       4.59          3.2       22.7%    4.42 
EBG-fed  1.92    11.5%      3.68         2.4       13.9%      4.51         3.22      24.1%    5.02 

Table 6.2: Comparison of measured performance between reference antenna and EBG antenna. 
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Figs. 6.4 to 6.7 show the measured and simulated return losses of the reference 

antenna and EBG-fed slot antenna. As noted from these figures and Table 6.2, the EBG 

feedline effectively increases the impedance bandwidth for all the resonance frequencies 

of the antenna. 

 
Fig. 6.4: Simulated return loss of EBG-fed slot antenna and reference antenna. 

 

 
Fig. 6.5: Simulated and measured return loss of reference antenna. 
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Fig. 6.6: Simulated and measured return loss of EBG-fed slot antenna. 

 

 
Fig. 6.7: Measured return loss of EBG-fed slot antenna and reference antenna. 

 

Figs. 6.8 to 6.13 present the measured E-plane and H-plane radiation patterns of the 

EBG-fed slot antenna. From these figures, the three operation frequencies of the EBG-fed 

antenna have the same polarization. Compared with the results of the reference antenna 
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shown in [126], the radiation patterns of the modified antenna are not changed 

significantly. The gains of the EBG-fed and CPW-fed antennas in the broadside direction 

are also measured. The measurement results are tabulated in Table 6.2. 

 
Fig. 6.8: E-plane of EBG-fed antenna at 1.92GHz. 

 

 
Fig. 6.9: H-plane of EBG-fed antenna at 1.92GHz. 



 120

 

 
Fig. 6.10: E-plane of EBG-fed antenna at 2.4GHz. 

 

 
Fig. 6.11: H-plane of EBG-fed antenna at 2.4GHz. 
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Fig. 6.12: E-plane of EBG-fed antenna at 3.22GHz. 

 

 
Fig. 6.13: H-plane of EBG-fed antenna at 3.22GHz. 

 

6.3 Modified Wilkinson Power Divider with EBG 

6.3.1 Introduction 
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The Wilkinson power divider and combiner have been widely used for microwave power 

amplifiers [93], and [127]-[128]. They have same structure, which consists of two 4/λ  

branches of transmission line and a termination resistor, where λ  is the wavelength of 

the transmission line. 

 

Fig. 6.14 shows the basic structure of a Wilkinson power divider [93], and [129]-

[130]. The two transmission lines and the termination resistor R match all input and 

output ports simultaneously and provide a good isolation between the input ports of the 

power combiner and between the output ports of the power divider. Also, they can handle 

arbitrary power levels from input to output ports. If the harmonics are suppressed in the 

power divider or combiner structure, we can eliminate separate harmonic rejection filters 

from the circuit and design an area-effective power amplifier (as reported in [128]). 

2Port

3Port

1Port
)4/(λlineonTransmissi

R

)4/(λlineonTransmissi
 

Fig. 6.14: Equivalent circuit of the Wilkinson power divider. 
 

6.3.2 Experimental Results 

 

In this section, we will present a type of modified EBG CPW Wilkinson power divider. 

The device is fabricated on a substrate of thickness H=62mil and relative permittivity 

10=rε . The width of each EBG is 0.1mm. The circuit configuration of the proposed 

power divider is shown in Figs. 6.15 to 6.16 and Table 6.3. Due to the existence of the 



 123

spiral EBG, the termination resistor R between two outputs is re-optimized to be Ω82  

with ADS. Two air bridges are added at the circuit discontinuities to prevent the coupled 

slotline mode from propagating on the CPW lines. Fig. 6.17 plots the computed return 

loss of two different power dividers of the same geometric parameters and termination 

resistance, but with and without EBG respectively. The simulated results show that the 

modified power divider with EBG near port 1 can provide relatively larger bandwidth 

(124.5%) of the input than the one without EBG (115%). 
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Fig. 6.15: Structure of power divider with EBG. 

 

 
 Fig. 6.16: Fabricated modified Wilkinson power divider with EBG. 
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1L    2L    3L    1W    2W    3W    1G    2G    3G    4G    1S    2S    3S    4S    5S    6S  
13.5  7.8   3.5   4.2   3.6    0.9   0.5   0.7   2.8   0.3   0.3   0.1   1.0   1.0   0.8   0.2 

Table 6.3: Geometric parameters (in mm) for the modified Wilkinson power divider with EBG. 
 

 
Fig. 6.17: Simulated return loss of the input port of power dividers with EBG and without EBG. 

 

 
Fig. 6.18: Insertion loss of the power divider with EBG. 
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Fig. 6.19: Return loss of the power divider with EBG. 

 
Then, our modified power divider is fabricated and tested from 0.1-3GHz with 

VNA. Figs. 6.18 and 6.19 provide the measured and simulated insertion and return losses 

of our divider. Here, the results include two 2-mm-long CPW lines for the outputs. The 

measured insertion loss is better than -3.5dB from 1.2GHz to 2.2GHz and the bandwidth 

is 58.8% centered at 1.7GHz. The measured return losses are less than -10dB from 

0.4GHz to 2.6GHz for the input port and from 0.2GHz to 2.15GHz for the two output 

ports. 

 

6.4 Two-Layered LTCC Transformer Design Based on the Balun 

Network 

 

Transformers have been used in radio frequency (RF) circuits since the early days of 

telegraph. The operation of a passive transformer is based on the mutual inductance 
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between two or more conductors, or windings (spiral inductors). The transformer is 

designed to couple alternating current from one winding to the other without a significant 

loss of power, and impedance levels between the windings are also transformed in the 

process (i.e., the ratio of terminal voltage to current flow changes between windings). In 

addition, direct current flow is blocked by the transformer, allowing the windings to be 

biased at different potentials [84]. 

 

The balun is a special type of transformer, which couples a balanced circuit to an 

unbalance one. The well-known Marchand balun [85] is a microwave balun and is 

important in realizing balanced mixers [86]-[87], amplifiers, and phase shifters [88]-[90] 

by providing differential signals. Coupled lines are useful and widely applied structures 

that provide the basis for many types of balun [91]. 

 

In this study, several spiral metallic traces with different number of turns as spiral 

inductors were introduced in our transformer fabrications. We propose a very simple 

method for achieving a new type of transformer, which is based on the balun network 

design and able to provide one pair of non-differential signals. This makes it easy to use 

our new type of transformer as microwave power divider/combiner. In the design of this 

application, we utilized coupled spiral metallic lines instead of the conventional 

transmission lines in the Wilkinson power divider to reduce the total area needed for the 

device. 

 

6.4.1 General Review of Monolithic Transformer 
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Fig. 6.20: Monolithic transformer. (a) Physical layout. (b) Circuit model.  
 

A microstrip line is the simplest on-chip element for monolithic implementation of a 

transmission line inductor, and the strip is normally wound into a spiral to reduce the chip 

area. Interwinding microstrip spiral inductors to magnetically couple independent 

conductors is a logical extension of this concept, and results in the monolithic transformer, 

as shown in Fig. 6.20. 

 

An early example of this type of structure is the compact spiral directional coupler 

reported by Shibata in 1981 [131]. This was followed by a circuit demonstration of 

monolithic transformer in a push-pull amplifier, and later, transmitter and image-reject 

mixer circuits fabricated in GaAs IC technology by Podell [132]-[133]. The first analysis 

of monolithic transformers was published by Frlan [134], who compared the simulation 

data and the experimental measurements for a monolithic spiral transformer. Boulouard 

and Le Rouzic [135] proposed an alternate topology and analysis technique for MMIC 
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spiral transformer, which was also verified experimentally. Frlan and Rabjohn [136] 

demonstrated square spiral transformers on alumina and GaAs substrate, and developed 

circuit simulation tools based upon extraction of a lumped element model for the 

transformer from physical and geometric parameters. This modeling technique was later 

extended to the analysis of planar structures on conductive substrates, such as silicon [32] 

and [61]. In the recent literature, there are many examples of transformers fabricated in 

silicon IC technology for use in RF circuits, such as preamplifiers [137]-[138], oscillators 

[139]-[140], mixer [64], and [141]-[142], and power amplifiers [143]. 

 

A planar monolithic transformer constructed from interwound metal conductors is 

shown in Fig. 6.20. Magnetic flux produced by current Pi  flowing into the primary 

winding at terminal P induces a current in the secondary winding that flows out of 

terminal S. This produces a positive voltage Sv  across a load connected between 

terminals S and S . The main electrical parameters of interest to a circuit designer are the 

transformer turns ratio n and the coefficient of magnetic coupling mk . The current and 

voltage transformations between windings in an ideal transformer are related to the turns 

ratio by the following equation 
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v
v

n ===                                                 (6.1) 

where the primary and secondary voltages ( Pv , Sv ) and currents ( Pi , Si ) are defined in 

Fig. 6.20 (b), and PL , SL  are the self-inductances of the primary and secondary windings, 

respectively. The strength of the magnetic coupling between windings is indicated by the 

k-factor, as 
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SP

m LL
Mk =                                                      (6.2) 

where M is the mutual inductance between the primary and secondary windings. The self-

inductance of a given winding is the inductance measured at the transformer terminals 

with all other windings open-circuited. If the magnetic coupling between winding is 

perfect (i.e., no leakage of the magnetic flux), mk  is unity, while uncoupled coils have a 

k-factor of zero. A practical transformer will have a k-factor somewhere between these 

two extremes. Since the materials used in the fabrication of an IC chip have magnetic 

properties similar to air, there is poor confinement of the magnetic flux in a monolithic 

transformer and SP LLM < . Thus, the k-factor is always substantially less than one for 

a monolithic transformer, however, coupling coefficients as high as 0.9 are realizable on-

chip [84]. 

 

The phase of the voltage induced at the secondary of the transformer depends on 

the choice of the reference terminal. For an ac signal source with the output and ground 

applied between terminals P and P , there is a minimal phase shift of the signal at the 

secondary if the load is connected to terminal S (with S  grounded). This is the non-

inverting connection. In the inverting connection, terminal S is grounded and S  is 

connected to the load so that the secondary output is antiphase to the signal applied to the 

primary. Aside from the phase shift between input and output ports, other aspects of the 

transformer’s electrical behavior depend on the choice of terminal configuration. 

 

6.4.2 Multifilament Transformer and Baluns 
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The n:1  transformers described in the previous section consist of two independent 

windings (or conducting filaments) and are classified as bifilar transformers. 

Multifilament transformers can also be constructed on-chip. These devices can be used to 

implement power dividers, combiners, and baluns [84]. 

 

A balun is a device which couples a balanced circuit to an unbalanced one. There 

are many structures used to implement baluns at RF and microwave frequencies, although 

a differential amplifier is the most commonly used method for unbalanced-to-balanced 

signal conversion on-chip. Microwave balun structures such as the Lange, rat-race and 

branch line coupler require physical dimensions on the order of the signal wavelength and 

so these devices consume too much chip area when operating below approximately 

15GHz [144]. The transformers shown in Fig. 6.20 (a) can also implement a balun by 

grounding one of the windings at the electrical center, or canter tap. 
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Fig. 6.21: (a) Square bifilar balun layout. Schematic symbols of bifilar (b) and trifilar (c) balun. 
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The electric and magnetic center (EMC) and physical center of a winding differ for 

all of the spiral designs shown in Fig. 6.21 (a), which is a disadvantage of asymmetrical 

layouts. While a square symmetrical layout, first proposed by Rabjohn [136] and 

illustrated in Fig. 6.21 (a), solves this problem. This transformer consists of two groups 

of interwound microstrip lines that are divided along a line of symmetry running 

horizontally, as shown in Fig. 6.21 (a). The groups of lines are interconnected in a way 

which brings all four terminals to the outside edge of the transformer layout, which is an 

advantage when connecting the transformer terminals to other circuitry. Also, the 

midpoint between the terminals on each winding, or the center tap, can be located 

precisely in the symmetrical layout as indicated in Fig. 6.21 (a). The turns’ ratio for the 

example shown is 5:4  between the primary and secondary windings. The schematic 

symbols of bifilar and trifilar baluns are also maintained in Figs. 6.2 (b) and 6.2 (c), 

respectively. For the case of a trifilar balun, the device consists of one primary and two 

secondary windings as shown in Fig. 6.21 (c). 

4/λ 4/λ
Input Open

1Output 2Output
 

Fig. 6.22: Transmission line model for the Marchand balun. 
 

The well-known Marchand balun [85] is most commonly used to provide balanced 

outputs from an unbalanced input. In the conventional Marchand balun, two conductors 

having equal potential with o180  phase difference constitute the balanced line. So the 

power going into the unbalanced input is split into outputs that are half power each and 
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o180  out of phase with each other. A transmission line version of the Marchand balun is 

shown in Fig. 6.22. The Marchand balun has a better bandwidth and more balanced 

outputs than the coupled line baluns because the smaller differences between the even 

and odd mode impedances compared with what is needed for the coupled line balun case. 

As seen in Fig. 6.22, the Marchand balun consists of two sets of coupled lines with each 

being 4/λ  long at the center frequency of operation. The principle of operation of the 

Marchand balun is very well explained in literature [85] and [145]. Usually these coupled 

lines are side coupled, but in recent times it has been moving towards broadside coupled 

lines (top and bottom). Broadside coupling, which provides a better coupling factor, is 

able to achieve a tighter coupling than side by side coupling and will be introduced into 

our new transformer design in the sections below. 

 

6.4.3 Design and Fabrication 
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Fig. 6.23: The cross section view of the multi-layer transformer. 
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Fig. 6.23 shows the multilayer structure used to realize our proposed low temperature co-

fired ceramic (LTCC) transformer network. The Ferro-A6 M LTCC tape is adopted and 

the dielectric constant for each layer is 5.9. Gold metal is used for the spiral traces. The 

cross section view of the proposed transformer network is illustrated in Fig. 6.23. 

portopen

1port

layerupper
3port2port

layerlower

2B

2B

3i2i

3B

3B

linesvertical

1i

linesvertical

portopen

 
Fig. 6.24: Two-layer transformer structure with spiral inductors. 

 

As illustrated in Fig. 6.24, due to the symmetrical structure of the two spiral traces 

on the lower layer, the input current 1i  generates a pair of differential magnetic field, 2B  

and 3B . These differential magnetic fields will in turn induce a pair of non-differential 

current signals, 2i  and 3i  in ports 2 and 3 respectively on the upper layer. Due to the 

symmetrical but opposite spiral directions of the two spiral traces on the upper layer, the 

induced currents will flow in the direction indicated in Fig. 6.24. 

 

All the spiral traces in one transformer will have the same outer dimensions, metal 

width, spacing, and number of turns. The spiral traces on the two layers are not entirely 

overlapped, in order to reduce the coupling capacitance loss between the upper and lower 
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layers (see the dotted “vertical lines” in Fig. 6.24). In addition, to achieve better balanced 

outputs, a capacitor is inserted between the two spiral traces on the upper layer. 

 

6.4.4 Transformer Characterization 

 
Fig. 6.25: Microphotograph of the fabricated transformer. 

 
Fig. 6.25 shows a microphotograph of the fabricated transformer. The intrinsic area of the 

transformer is 0.8cm×1.3cm. The width of the gold-traced line is 10mils, the spacing 

between the turns of the spiral traces is 10mils, and the outer dimension of each spiral 

trace is 200mils. The distances between the two spiral traces in the upper and lower 

layers are 55mils and 35 mils, respectively. The height between the upper and lower 

metallic trace is 7.4mils. The numbers of turns of each spiral trace are 2. 

 

Fig. 6.26 indicates the measured and simulated (with Sonnet and ADS) insertion 

losses of the transformer. The measured insertion loss is better than -4dB from 5.45GHz 

to 5.75GHz, with a minimum loss around -3.5dB at the center frequency of 5.6GHz. Fig. 

6.27 provides the measured return losses for all the output and input ports of the 
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transformer. The return loss of the input port, including a minimum -16.3dB point at 

5.55GHz, is less than -10dB from 5.5GHz to 5.7GHz. The return losses of the output 

ports are less than -10dB from 5.4GHz to 5.7GHz. The shift between the measured and 

simulated results, as shown in Figs. 6.8 and 6.9, is caused by the fabrication tolerances 

and the non-uniformity of the in-house LTCC fabrication. 

 
Fig. 6.26: Insertion loss of the transformer. 

 
Fig. 6.27: Return loss of the transformer. 
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Fig. 6.28 gives the phase imbalance between two output ports. As noted from the 

figure, the phase imbalance is below 10 degrees from 5.18GHz to 6.4GHz. 

 
Fig. 6.28: Simulated and measured phase difference of the balanced outputs of the transformer. 

 
Fig. 6.29: Simulated and measured amplitude difference of the balanced outputs of the transformer. 

 
Fig. 6.29 compares the measured and simulated amplitude imbalance between the 

two balanced output ports of the transformer. The amplitude imbalance is below 0.5dB 

from 5.33GHz to 5.7GHz and is below 1dB from 5.27GHz to 6.2GHz. 
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6.5 Conclusion 

 

In conclusion, the idea of EBG is introduced into the antenna and power divider designs. 

The experimental results show that the spiral EBG can help to enlarge the bandwidth of 

the devices. As a result, we achieved a modified triple-band slot antenna and a modified 

CPW Wilkinson power divider. 

 

In this Chapter, a new type of two-layer LTCC transformer, which is based on the 

balun network design with minimum phase difference and non-differential outputs, is 

proposed. A prototype of the proposed transformer was successfully designed in the band 

5.45GHz to 5.75GHz. The new transformer can be used for microwave power divider 

design. As the two branches of transmission lines are wound as spiral metallic traces, this 

can reduce the fabrication area needed for the device. 
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CHAPTER 7 

 

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORKS 

 

7.1 Conclusions 

 

In this thesis, the detailed characteristics of many general planar spiral inductors, 

symmetrical spiral inductors, multi-layer spiral inductors, transformers, power dividers, 

and baluns are investigated. 

 

The non-uniform B-field around a spiral inductor will cause eddy current in the 

metallic trace. The appearance of eddy current will dramatically increase the transmission 

loss and series resistance of the metallic trace with the increasing of frequency. A new 

prediction for the series resistance of general microwave spiral inductor, based on the 

analysis of skin effect and eddy current, is derived in this thesis. This new prediction can 

provide more accurate frequency-dependent results for the resistance of spiral inductor 

than the conventional formulae. From these results, we conclude that the resistance of a 

spiral inductor is approximately proportional to 2ω  at low frequencies when the skin 

depth δ  is much larger than the metal thickness T, and is approximately proportional to 
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5.1ω  at high frequencies when δ  is much smaller than T. Furthermore, two innovative 

circuit models, which include the eddy current effects on the resistance of the spiral 

inductor, are obtained. Through the de-embedding technique, the measured S-parameters 

and series resistances of spiral inductors are in good agreement with our theoretical 

predictions. 

 

The overall inductance of the spiral inductor can be separated into two parts, 

namely, the self- and mutual inductances. Based on the fundamental formulae of 

inductance calculations given by Grover [58], the inductance calculations of spiral 

inductors with non-uniform current distributions in the metallic trace have also been 

derived in Chapter 3. Through the detailed investigation, we found that both skin effect 

and eddy current in the metal cannot cause significant changes on the total external 

inductance of spiral inductors with the increasing of frequency. However, the internal 

inductances of inductor metallic trace and ground will decrease as functions of frequency; 

and further deviation of the inductance with frequency may be caused due to the eddy 

current in the substrate. For most spiral inductor simulations and measurements, the 

overall inductance of the spiral inductor is usually an increasing function of frequency. 

But in reality, it will be a decreasing function of frequency once it is computed by 

subtracting the effect of the parasitic capacitance in the measured S-parameters. 

 

In the inductance calculation of the spiral inductor, two different improved methods, 

based on the magnetic flux and magnetic energy respectively, are also derived and 

compared with each other. The results of these two methods are found to be quite similar 
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in the inductance calculations for non-uniform current distribution cases. The measured 

data are in good agreement with the computed ones. 

 

This thesis also studies the physical meaning of the quality factor Q and provides 

detailed interpretations of the Q-factors of symmetrical spiral inductors in Chapter 4. 

Compared with the non-symmetrical structure, symmetrical octagonal spiral inductor can 

reduce the coupling capacitance from the overlaps of the metallic traces. This results in 

an increase of the Q-factor of symmetrical spiral inductor. Furthermore, the concept of 

electric and magnetic center (EMC) is introduced in this chapter. As the EMC of the 

symmetrical case is the accurate geometric center of the spiral inductor which balances 

the effect of inductance coupling between different parts of the inductor, we can achieve 

high Q-factor and high resonance frequency from the symmetrical inductor structure. 

These theories are confirmed by the simulation results. 

 

Improved analysis of the eddy current in the substrate of multi-layer spiral 

inductors is undertaken in Chapter 5. The effects of eddy current in the substrate of multi-

layer spiral inductor are assumed to be more significant than those of the single layer case. 

Both the magnetic fields and the induced eddy current are found to be proportional to the 

excitation current in the metallic trace of spiral inductor. As such, there exists a mutual 

coupling factor, which can be denoted as M between the current flowing in the two 

sandwiched metallic layers and the eddy current in the substrate. Based on the previous 

consideration for the eddy current in the substrate, another new and more accurate circuit 
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model with the coupling factor M for the multi-layer inductors is derived. Better 

simulation results are achieved with our new model from the experimental data. 

 

In Chapter 6, we introduce the idea of EBG into the antenna and power divider 

designs. The experimental results show that the spiral EBG can help to enlarge the 

bandwidth of the devices. As a result, we achieved a modified triple-band slot antenna 

and a modified CPW Wilkinson power divider. The measured insertion loss of the divider 

is better than -3.5dB from 1.2GHz to 2.2GHz and the bandwidth is 58.8% centered at 

1.7GHz. The measured return losses of the divider are less than -10dB from 0.4GHz to 

2.6GHz for the input port and from 0.2GHz to 2.15GHz for the two output ports. 

 

In addition, with a type of special structure of spiral metallic traces as explained in 

Chapter 6, we finally design a new LTCC transformer which provides one pair of well-

balanced and non-differential signals in this thesis. The measured insertion loss of the 

transformer is better than -4dB from 5.45GHz to 5.75GHz, with a minimum loss around -

3.5dB at the center frequency 5.5GHz. The return loss of the transformer’s input port, 

including a minimum -16.3dB point at 5.55GHz, is less than -10dB from 5.5GHz to 

5.7GHz. The return losses of the output ports are less than -10dB from 5.4GHz to 5.7GHz. 

Compared with the conventional baluns used for microwave mixers and phase shifters, 

this type of transformer can be used to fabricate microwave dividers and combiners. 

Excellent balance performances are achieved for both the amplitude and the phase of the 

signals. The design is verified experimentally in Chapter 6. 
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7.2 Recommendations and Suggestions for Future Works 

 

In the metallic trace of spiral inductors, the phase difference between the eddy current 

and excitation current is temporarily considered by us to be constant o90 . But for detailed 

consideration, the excitation current is delayed by the spiral inductance in its proceeding 

through the metal and it should have different phases in different turns of the inductor. As 

for a multiturn spiral inductor, the B-field at turn n is the superposition of B-fields from 

all turns, the phases of both their induced B-fields and the eddy current in the second-

order estimations will be changed (although the most significant effect on the induced B-

field in the n-th turn is from the excitation current in the n-th turn itself). So more 

precisely speaking, if the eddy current is no longer in quadrature with the excitation 

current, they may provide their extra contributions to the overall inductance of the 

inductor with the change of frequency. With these considerations, more accurate 

predictions on the inductance of spiral inductors should be achieved. 

 

In addition, as B-field and the eddy current in the substrate usually affect the 

inductance and resistance of spiral inductor significantly, more attentions should be paid 

to the CMOS substrate effects on the series resistance, inductance, and capacitances of 

the inductor network. Relative discussions are proposed in Chapter 3. 

 

More experimental data are needed to confirm our theory of high-Q symmetrical 

octagonal spiral inductors proposed in Chapter 4. Relative designs and further analysis 

shall be done in the future work. 
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On the basis of this thesis, more full-wave methods or EM simulations are still 

needed in the simulations and optimizations for different kinds of spiral inductors, 

transformers, and baluns. Proper combinations of the full-wave and circuit methods are 

quite important for all the MMIC studies and designs. 

 

Finally, as the symmetrical spiral inductors can sometimes provide high Qs and 

high resonance frequencies. There is a good motivation for us to combine the 

symmetrical-structured spiral traces into the transformer and power divider design (as 

illustrated in Chapter 6). With the concept of well-balanced EMC in the geometric center 

of the metallic traces, this new structure should be able to provide lower insertion losses, 

lower return losses, and wider bandwidth for the microwave divider or combiner design. 
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