5,905 research outputs found

    Combinatorial Enumeration of Graphs

    Get PDF
    In this chapter, I will talk about some of the enumerative combinatorics problems that have interested researchers during the last decades. For some of those enumeration problems, it is possible to obtain closed mathematical expressions, and for some other it is possible to obtain an estimation by the use of asymptotic methods. Some of the methods used in both cases will be covered in this chapter as well as some application of graph enumeration in different fields. An overview about the enumeration of trees will be given as an example of combinatorial problem solved in a closed mathematical form. Similarly, the problem of enumeration of regular graphs will be discussed as an example of combinatorial enumeration for which it is hard to obtain a closed mathematical form solution and apply the asymptotic estimation method used frequently in analytic combinatorics for this end. An example of application of the enumerative combinatorics for obtaining a result of applicability criteria of selection nodes in a virus spreading control problem will be given as well

    Bounded affine permutations I. Pattern avoidance and enumeration

    Full text link
    We introduce a new boundedness condition for affine permutations, motivated by the fruitful concept of periodic boundary conditions in statistical physics. We study pattern avoidance in bounded affine permutations. In particular, we show that if τ\tau is one of the finite increasing oscillations, then every τ\tau-avoiding affine permutation satisfies the boundedness condition. We also explore the enumeration of pattern-avoiding affine permutations that can be decomposed into blocks, using analytic methods to relate their exact and asymptotic enumeration to that of the underlying ordinary permutations. Finally, we perform exact and asymptotic enumeration of the set of all bounded affine permutations of size nn. A companion paper will focus on avoidance of monotone decreasing patterns in bounded affine permutations.Comment: 35 page

    Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster

    Full text link
    The scaling properties of self-avoiding walks on a d-dimensional diluted lattice at the percolation threshold are analyzed by a field-theoretical renormalization group approach. To this end we reconsider the model of Y. Meir and A. B. Harris (Phys. Rev. Lett. 63:2819 (1989)) and argue that via renormalization its multifractal properties are directly accessible. While the former first order perturbation did not agree with the results of other methods, we find that the asymptotic behavior of a self-avoiding walk on the percolation cluster is governed by the exponent nu_p=1/2 + epsilon/42 + 110epsilon^2/21^3, epsilon=6-d. This analytic result gives an accurate numeric description of the available MC and exact enumeration data in a wide range of dimensions 2<=d<=6.Comment: 4 pages, 2 figure

    The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics

    Get PDF
    Prudent walks are special self-avoiding walks that never take a step towards an already occupied site, and \emph{kk-sided prudent walks} (with k=1,2,3,4k=1,2,3,4) are, in essence, only allowed to grow along kk directions. Prudent polygons are prudent walks that return to a point adjacent to their starting point. Prudent walks and polygons have been previously enumerated by length and perimeter (Bousquet-M\'elou, Schwerdtfeger; 2010). We consider the enumeration of \emph{prudent polygons} by \emph{area}. For the 3-sided variety, we find that the generating function is expressed in terms of a qq-hypergeometric function, with an accumulation of poles towards the dominant singularity. This expression reveals an unusual asymptotic structure of the number of polygons of area nn, where the critical exponent is the transcendental number log23\log_23 and and the amplitude involves tiny oscillations. Based on numerical data, we also expect similar phenomena to occur for 4-sided polygons. The asymptotic methodology involves an original combination of Mellin transform techniques and singularity analysis, which is of potential interest in a number of other asymptotic enumeration problems.Comment: 27 pages, 6 figure

    On the enumeration of closures and environments with an application to random generation

    Get PDF
    Environments and closures are two of the main ingredients of evaluation in lambda-calculus. A closure is a pair consisting of a lambda-term and an environment, whereas an environment is a list of lambda-terms assigned to free variables. In this paper we investigate some dynamic aspects of evaluation in lambda-calculus considering the quantitative, combinatorial properties of environments and closures. Focusing on two classes of environments and closures, namely the so-called plain and closed ones, we consider the problem of their asymptotic counting and effective random generation. We provide an asymptotic approximation of the number of both plain environments and closures of size nn. Using the associated generating functions, we construct effective samplers for both classes of combinatorial structures. Finally, we discuss the related problem of asymptotic counting and random generation of closed environemnts and closures

    Asymptotic formulas for stacks and unimodal sequences

    Full text link
    We study enumeration functions for unimodal sequences of positive integers, where the size of a sequence is the sum of its terms. We survey known results for a number of natural variants of unimodal sequences, including Auluck's generalized Ferrer diagrams, Wright's stacks, and Andrews' convex compositions. These results describe combinatorial properties, generating functions, and asymptotic formulas for the enumeration functions. We also prove several new asymptotic results that fill in the notable missing cases from the literature, including an open problem in statistical mechanics due to Temperley. Furthermore, we explain the combinatorial and asymptotic relationship between partitions, Andrews' Frobenius symbols, and stacks with summits.Comment: 19 pages, 4 figure
    corecore