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Chapter

Combinatorial Enumeration
of Graphs
Carlos Rodríguez Lucatero

Abstract

In this chapter, I will talk about some of the enumerative combinatorics prob-
lems that have interested researchers during the last decades. For some of those
enumeration problems, it is possible to obtain closed mathematical expressions, and
for some other it is possible to obtain an estimation by the use of asymptotic
methods. Some of the methods used in both cases will be covered in this chapter as
well as some application of graph enumeration in different fields. An overview
about the enumeration of trees will be given as an example of combinatorial prob-
lem solved in a closed mathematical form. Similarly, the problem of enumeration of
regular graphs will be discussed as an example of combinatorial enumeration for
which it is hard to obtain a closed mathematical form solution and apply the
asymptotic estimation method used frequently in analytic combinatorics for this
end. An example of application of the enumerative combinatorics for obtaining a
result of applicability criteria of selection nodes in a virus spreading control prob-
lem will be given as well.

Keywords: combinatorial graph enumeration, generating functions, probability

1. Introduction

Enumerating a finite set of objects is one of the most basic tasks that can be done
by any person. Anybody begins to do it at first while learning the basic arithmetic
operations at school. In a very general setting, to enumerate a finite set of things is
to put in bijective relation a finite subset of the natural numbers with the things to
be counted. As simple as it can be at first sight, the enumeration of things can
become a very interesting mathematical activity when we start to count, for
instance, in how many ways can we dispose or can we select the n elements of set in
k places without repeating them, sometimes allowing repetitions of all of them, or
just some of them, etc. That is the starting point of the combinatorics subject.
Combinatorics is the field of discrete mathematics that allows us, among other
things, to calculate in how many ways some objects can be selected or arranged to
comply with any given property.

Within the topic of combinatorial analysis, there is a subfield that is interested in
accurately predicting large structured configurations under the analytical method
approach and that uses the tool known as generating functions. The analytic com-
binatorics is devoted to the study of finite structures whose construction follows a
certain finite number of given rules. On the other hand, the use of generating
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functions is a tool that allows to relate discrete analysis proper to discrete mathe-
matics with continuous analysis.

One of the most beautiful and ingenious applications of combinatorial enumer-
ation is the probabilistic method. The probabilistic method is intimately related to
the important role that randomness plays in the field of theoretical computer sci-
ence. The utility and beauty of the probabilistic method consists of being an indirect
or nonconstructive proof method. This method has been used successfully during
the last 60 years and constitutes one of the most important scientific contributions
of the great Hungarian mathematician Erdös [1, 2]. Commonly, this method has
been used to prove the existence of a certain mathematical object by showing that if
we choose some object of a given class in a random way, the probability that this
mathematical object complies with certain property is greater than zero.

The probabilistic method has been used with great success to obtain important
results in fields as diverse as number theory, combinatorics, graph theory, linear
algebra, computational sciences, or information theory.

One aim of combinatorial analysis is to count the different ways of arranging
objects under given constraints. Sometimes the structures to be counted are finite
and some other times they are infinite. To enumerate is very important in many
scientific fields because it allows to evaluate and compare different solutions to a
given problem. For example, in computer science, if I want to compare different
algorithms that solve a given kind of information processing problem, it is necessary
to enumerate the number of steps taken by each one of them in the worst case and
to choose the one whose performance is the best. The task of enumerating things
can evolve in complexity to some point that the elementary arithmetical operations
are not enough to reach the goal. For that reason many enumeration problems have
inspired the most talented mathematicians for developing very ingenious methods
for solving them. Some of these techniques for solving combinatorics enumeration
problems are going to be exposed in the next section. One very interesting subject of
the discrete mathematics is the graph theory. It is in the graph theory where many
of the most interesting enumerations of graphs arise that have some given structural
property that require the utilization of mathematical tools that facilitate the discov-
ery of closed mathematical forms for the calculation of the number of graphs that
accomplish some topological property. In this context it can be important to enu-
merate how many labeled graphs can be constructed with n vertex or how many
connected graphs with n vertex exist, etc. For some of these problems, clever
methods have been devised for their calculation that lead to closed mathematical
forms by the use of generating functions. For other problems, it is very hard to
obtain a closed mathematical form solution, and in that case some asymptotic
methods have been developed for estimating a bound when the number of vertex is
very large by means of the Cauchy theorem. These mathematical tools are going to
be covered in the following sections of the present chapter.

2. Body of the manuscript

The chapter will have the following structure. In Section 3, we will make a quick
revision of some mathematical tools that are frequently used for solving combina-
torial enumeration problems. The first tool described will be the ordinary generat-
ing functions as well as the exponential generating functions. These tools are used
when a closed form solution for an enumeration problem can be obtained. The
second tool that will be described in this section will be the analytic combinatorics
method that is normally used for those enumeration problems whose closed math-
ematical form are hard to be calculated. The analytic combinatorics techniques
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allow to estimate an upper bound of that kind of enumeration problems. We take
the enumeration of labeled trees as an example of combinatorial enumeration
problem that can be solved in a closed mathematical form and make an overview of
some different methods devised for that end in Section 4. In Section 5, we roughly
describe how the generating functions can be used to solve graph enumeration
problems. In Section 6, we take the problem of enumerating regular graphs as an
example of a problem whose closed mathematical form is hard to obtain and apply
the analytic combinatorics techniques for estimating an upper bound. In Section 7, I
give an application of the combinatorial enumeration for proving the almost sure
applicability of a node selecting criteria for controlling virus spreading in a complex
network. Finally in Section 8, we make some comments about the possible future
applications of the combinatorial enumeration methods.

3. Generating functions and analytic combinatorics overview

In this section of the chapter, we are going to make a revision of the basic
mathematical tools that have been developed and that facilitate the solution of
many combinatorial enumeration problems. We are going to start with some basic
conceptual definitions that can be found in many textbooks about this topic. In
order to be able to clearly expose the mathematical tools used, it will be necessary to
make use of some basic concepts about them that can be consulted more widely in
texts such as [3]. One of these basic notions that can be found in [3] is the concept
of combinatorial class whose definition is as follows:

Definition 1.1 A combinatorial class is a finite or denumerable set in which a size
function is defined, satisfying the following conditions:

i. The size of an element is a nonnegative integer.

ii. The number of elements of any given size is finite.

On the other hand, it is necessary to know if two combinatorial classes are related
in any way which can be determined using the concept of isomorphism and that can
be defined as follows:

Definition 1.2 The combinatorial classesA and B are said to be (combinatorially)
isomorphic which is written A ffi B if and only if their counting sequences are
identical. This condition is equivalent to the existence of a bijection from A to B

that preserves size, and one also says that A and B are bijectively equivalent.
The notion of ordinary generating functions (OGF) as

P∞
i¼0 aix

i where the
coefficients ai are elements of the sequence A ¼ a0; a1;…f g or combinatorial
class A. This function is also the generating function of the numbers An

whose sizes an ¼ card Anð Þ such that the OGF of class A admits the combinatorial
form

A xð Þ ¼
X

α∈A

x∣α∣: (1)

This means that the variable x marks size in the generating function. The OGF
form (1) can be easily interpreted by observing that the term xn occurs as many
times as there are objects in A of size n. A basic operation that can be defined is the
one that allows to extract the coefficient of the term xn in the power series
A xð Þ ¼

P

anx
n as follows:
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xn½ �
X

n≥0

anx
n

 !

¼ an: (2)

The concept of generating function can then be defined as:
Definition 1.3 Let be a0, a0,… a succession of real numbers. The function

f xð Þ ¼ a0 þ a1xþ a2x
2 þ… ¼

X

∞

i¼0

aix
i (3)

is the generating function of the given succession.
The idea comes from the development of Newton’s binomial that con be

defined as:
Definition 1.4

1þ xð Þn ¼
n

0

� �

þ
n

1

� �

xþ
n

2

� �

x2 þ⋯þ
n

n

� �

xn (4)

which is the generating function of the succession

n

0

� �

,
n

1

� �

,
n

2

� �

,
n

3

� �

,…,
n

n

� �

,0;0;0,… (5)

We can say, for example, that

X

n

i¼0

xi ¼ 1þ xþ x2 þ x3 þ…þ xn ¼ 1þ xnþ1

1� x
(6)

is the generating function of the succession 1; 1; 1,…, 1;0;0;0,… where the first
nþ 1 terms are equal to 1. The upper limit of the generating function 6 can be
extended to ∞ which is known as geometric series. This series is known to be
convergent if x< 1 and that case can be defined as

X

∞

i¼0

xi ¼ 1þ xþ x2 þ x3 þ…þ ¼ 1
1� x

(7)

which is the geometric series of the succession 1; 1; 1,…. One of the nice proper-
ties of the generating functions is that they can be easily manipulated due to the fact
that they are infinite polynomials.

For instance, if we take the first derivative of the generating function 7, we get

d

dx

1
1� x

¼ d

dx
1þ xþ x2 þ x3 þ…
� �

¼ 1þ 2xþ 3x2 þ 4x3 þ… ¼ 1

1� xð Þ2
(8)

then 1
1�xð Þ2 is the generating function of the succession 1; 2; 3;4,…, while x

1�xð Þ2 is

the generating function of the succession 0; 1; 2; 3;4,…. Similarly if we take the first
derivative of the generating function x

1�xð Þ2, we get

d

dx

x

1� xð Þ2
¼ d

dx
0þ xþ 2x2 þ 3x3 þ 4x4 þ…
� �

¼ xþ 1ð Þ
1� xð Þ3

(9)
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then xþ1ð Þ
1�xð Þ3 is the generating function of the succession 12, 22, 32,…, and x xþ1ð Þ

1�xð Þ3

is the generating function of the succession 02, 12, 22, 32,… Other simple
manipulations that can be done with the generating functions allow us to cancel
some element of an associated succession. For example, if g xð Þ ¼ 1

1�xð Þ and

h xð Þ ¼ g xð Þ � x2 ¼ 1
1�xð Þ � x2, then h xð Þ becomes the generating function of the

succession 1; 1;0; 1; 1; 1,…. By the other side, if we know that x xþ1ð Þ
1�xð Þ3 is the generating

function of the succession 02, 12, 22, 32,… and that x
1�xð Þ2 is the generating

function of the succession 0; 1; 2; 3;4,…, then if we add these two generating
functions, we get

x xþ 1ð Þ
1� xð Þ3

þ x

1� xð Þ2
¼ 2x

1� xð Þ3
(10)

where 2x
1�xð Þ3 becomes the generating function of the succession

0; 2; 6; 12; 20; 30;42,…whose nth element can be expressed as an ¼ n2 þ n. If we use
the coefficient extracting operator defined by 2, we can say that

xn½ � 2x

1� xð Þ3
¼ n2 þ n (11)

As an example, let us take the sequence 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55,… know as
Fibonacci numbers. This succession can be generated by applying the recurrence
relation

Fnþ1 ¼ Fn þ Fn�1 where n≥ 1, F0 ¼ 0, F1 ¼ 1: (12)

The goal is to obtain nth element of the succession of numbers generated by 12
that is the coefficient of xn in the expansion of the function

x

1� x� x2
(13)

as a power series about the origin. The roots of 1� x� x2 are x1 ¼ 1þ
ffiffi

5
p

2 and

x2 ¼ 1�
ffiffi

5
p

2 . Given that the generating function of the Fibonacci succession is 13, we
have that

f xð Þ ¼ x

1� x� x2
¼ 1

ffiffiffi

5
p 1

1� 1þ
ffiffi

5
p

2 x
� 1

1� 1�
ffiffi

5
p

2 x

" #

(14)

and the nth term of the Fibonacci succession is expressed in closed form as

Fn ¼
1
ffiffiffi

5
p 1� 1þ

ffiffiffi

5
p

2

� �n

� 1� 1�
ffiffiffi

5
p

2

� �n
" #

(15)

The calculation of the n-th term of the Fibonacci sequence by using power series
allows us to obtain a mathematical closed formula. Because of that we can calculate
the n-th term of the Fibonacci sequence in a more efficient way given that the
computer program to do it will consist in the direct application of the closed
mathematical expression obtained, which is much more efficient than using a
computer program based on the application of the Fibonacci recurrence.
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In [4] the problem of the various results that can be obtained using generating
functions is addressed. The authors of [4] say that by using the tool of generating
functions for obtaining the nth element of a succession, sometimes an exact formula
can be obtained easily, and if it is not the case, a good estimation of the nth element
can be obtained. It can happen also that we get a recurrence formula from where a
generating function can be obtained, or it can happen that from the generating
function a new recurrence is obtained giving us a deeper understanding about the
succession. The use of generating functions provides statistical information about
the succession. The authors of [4] also point out that when it is very difficult to
mathematically obtain the n-th term of a given sequence as a closed mathematical
expression, a good option is to use asymptotic methods to obtain an estimate of that
term. For example, the nth prime number is approximately n log n when n is very
big. The authors of [4] also also point out that using generating functions some
properties of a succession such as unimodality or convexity can be proven. Another
advantage of using generating functions is that some identities as, for example,

X

n

j¼0

n

j

� �2

¼
2n

n

� �

n ¼ 0; 1; 2;…ð Þ, (16)

are easy to obtain. Finally, the authors of [4] pointed out that by using generat-
ing function, the relationship between problems that have similar generating func-
tions can be discovered.

As was mentioned in the last paragraph, sometimes it is hard to obtain mathe-
matically closed formulas when using generating functions, and in that case, a good
alternative is to the use asymptotic formulas. The mathematical tools used for this
purpose are part of the field known as analytic combinatorics, and a good reference
of this topic is [3]. The main objective of analytic combinatorics is to estimate with a
high level of precision the properties of large structured combinatorial configura-
tions by the use of mathematical analysis tools [3].Under this approach, we begin
with an exact enumerative description of the combinatorial structure using the
generating functions. This description is considered as an algebraic object. The next
step is to take the generating function as an analytical object which is a mapping
from the complex plane to itself. The singularities found in such a mapping allow to
obtain the coefficients of the function in its asymptotic form, resulting in an excel-
lent estimate on the count of the sequences. With this purpose, the authors of [3]
classify the analytic combinatorics in the next three topics:

1.Symbolic methods that establish systematically relations of discrete
mathematics constructions and operations on generating functions that encode
counting sequences

2.Complex asymptotics that allow for extracting asymptotic counting
information from the generating functions by the mapping to the complex
plane mentioned above

3.Random structures concerning the probabilistic properties accomplished by
large random structures

A large material concerning the subject of complex asymptotic analysis is
addressed in [5]. A highly recommended text to consult because it covers the appli-
cations of the combinatorial tools enumerative to the analysis of algorithms is [6].
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In this chapter, there will be a particular interest in the application of generating
functions tool for the enumeration of graphs that have some given properties.

Let us start with the definition of a graph. A graph G ¼ V;Eh i is a structure
with a set of vertices V ¼ v1; v2;…; vp

� �

whose size ∣V∣ ¼ p it is called the order
of G and a set of unordered pairs of adjacent vertices, called edges,

E ¼ vi1 ; vj1
� �

; vi2 ; vj2
� �

;…; viq ; vjq

n on o

if G is undirected or a set of ordered pairs of

adjacent vertices E ¼ vi1 ; vj1
� �

; vi2 ; vj2
� �

;…; viq ; vjq

	 
n o

, if G is a directed graph,

whose edge set size is ∣E∣ ¼ q, that has no loops and that has no loops multiple edges.
A graph G with p vertices and q edges is called a p; qð Þ graph. In a labeled graph of
order p, each vertex has a label that is an integer from 1 to p. Typical questions such
as how many graphs can be constructed with n vertices, how many trees with n
vertices can be obtained, and how many of these trees are binary can be answered
using the generating functions, and a mathematically closed formula can be
obtained. In the case that a closed mathematical formula is very hard to be obtained,
an accurate asymptotic estimation formula can be a good option.

There are two commonly used generating functions: the first is the ordinary
generating functions (OFG) and the other is the exponential generating functions
(EGF).

An ordinary generating function is a mathematical function defined by the
following expression:

a xð Þ ¼
X

∞

k¼0

akx
k, (17)

where the coefficients are elements of the succession of numbers a0, a1, a2,….
The ordinary generating functions are used for enumeration problems where the
order of the objects is not important. An exponential generating function is a
mathematical function defined by the following expression:

b xð Þ ¼
X

∞

k¼0

bk
xk

k!
, (18)

where the coefficients are elements of the succession of numbers b0, b1, b2,….
The exponential generating function are used for enumeration problems where the
order of the objects matter. Graphs, words, trees, or integer partitions are some of
the kinds of objects with which combinatorics deals. Combinatorics deals with
discrete objects as, for example, graphs, words, trees, and integer partitions.
Counting such objects is one of the most interesting tasks. Enumeration of graphs
that have some structural property is the main purpose of the present chapter.

The great mathematician George Pólya made huge contributions to the field of
graph enumeration graphs. He obtained closed mathematical expressions for the
enumeration of graphs with a given number of vertices and edges for many graph
counting problems using group theory [7]. Pólya’s formulas greatly facilitated the
enumeration of rooted graphs, connected graphs, etc. The enumeration of number
of triangulations of certain plane polygons was one of the first problems of enu-
meration that attracted the attention of the great mathematician Leonhard Euler [8]
in the eighteenth century. Some years later, Kirchhoff in [9] discovered a method
for enumerating spanning trees in a connected graph. After that, Arthur Cayley
obtained a closed mathematical formula that enumerates labeled trees, rooted trees,
and ordinary trees in [10]. The Cayley discovery will be covered with more detail in
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Section 4. The brilliant and unknown mathematician John Howard Redfield [11]
discovered many enumeration formulas anticipating some of Pólya’s contributions.

Some enumeration problems of objects that are not graphs (automata, Boolean
functions, or chemical isomers) can be solved by cleverly transforming them to
graphs. The generating functions are the tool used for enumerating graphs. There
are two types of graphs associated with combinatorial graph enumeration problems:

1.Labeled graph problems

2.Unlabeled graph problems

Some enumeration problems of labeled graphs are normally addressed by
applying the exponential generating functions tool. The enumeration problems of
unlabeled graphs are normally addressed by applying the ordinary generating func-
tions but require the application of Pólya’s theorem.

One of the first problems of enumerating labeled graphs that may arise is that of
how many graphs with p vertices and q edges can be obtained.

To solve this enumeration problem, let Gp xð Þ be the polynomial or ordinary
generating function whose coefficient of the term xk represents the number of
labeled graphs with p vertices and k edges. If V is the set of vertices of cardinality p,

there are q ¼
p

2

� �

pairs of these vertices. In every vertex set V, each pair is

adjacent or not adjacent. The number of labeled graphs with k edges is therefore

q

k

� �

¼
p

2

 !

k

0

B

@

1

C

A
. Thus, the ordinary generating function Gp xð Þ for labeled graphs

with p vertices is given by

Gp xð Þ ¼
X

m

k¼0

m

k

� �

xk ¼ 1þ xð Þm, (19)

wherem ¼ p

2

� �

. Then, the number of labeled graphs with p vertices is Gp 1ð Þ; so

we have:

Gp ¼ 2m ¼ 2

p

2

� �

: (20)

For example, if we want to know how many labeled graphs with p ¼ 3 vertices
can be obtained, we apply Formula (20), and we get:

G3 ¼ 2

3

2

� �

¼ 2
3!

2!1! ¼ 23 ¼ 8: (21)

If we want to know how many labeled graphs with p ¼ 4 vertices and exactly
q ¼ 5 edges exist, before expression (19), we use the coefficient of the term x5

x5
� �

Gp xð Þ ¼ x5
� �

X

6

k¼0

6

k

� �

xk ¼ 6

5

� �

¼ 6!

5!1!
¼ 6: (22)
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A question that arises naturally when working with labeled graphs is in how
many ways can this be constructed from a certain number of vertices and edges. In
order to give a possible answer, the number of symmetries or automorphisms must
be taken into account. It is said that there is isomorphism between two graphs G and
G1 if there is a one-to-one map A : V Gð Þ↦V G1ð Þ between them that preserve
adjacency. When G1 ¼ G, then the mapping A is called automorphism of G. The set
of all the automorphisms of G, represented by Γ Gð Þ, is called the group of G. The
elements of Γ Gð Þ are permutations over V. Let s Gð Þ ¼ ∣Γ Gð Þ∣ be the order of the
group or number of symmetries of G. Therefore, the number of ways in which a
graph G of order p can be labeled is

l Gð Þ ¼ p!

s Gð Þ : (23)

Another example of graph enumeration problem is to count the number of
differently labeled connected graphs. The notion of path of length n is defined as a
sequence of vertices v0; v1;…; vnf g where the edges vi; viþ1f g for i ¼ 0,…n that
belong to the path are distinct. It is said that a graph is connected if for any pair of
vertices there is a path between them. To obtain the formula that counts all the
connected graphs Cp of order p, it will be necessary to make use of the concept of
subgraph. It is said that a H is a subgraph of a graph G if V Hð Þ⊂V Gð Þ and
E Hð Þ⊂E Gð Þ. A subgraph that is maximally connected is called component. A rooted
graph is a graph that has a distinguished vertex called root. When there exists an
injective mapping f : V H1ð Þ↦V H2ð Þ between two rooted graphs H1 and H2 that
preserves the adjacency among vertices as well as the roots, it is said that the two
rooted graphs are isomorphic. Let us make the assumption that ak for k ¼ 1; 2; 3,…
represents the number of ways in which we can label all graphs of order that
accomplish the property P að Þ and whose exponential generating function is

a xð Þ ¼
X

∞

k¼1

akx
k

k!
: (24)

Let us also assume that bk for k ¼ 1; 2; 3,… is the number of ways of labeling all
graphs of order that accomplish the property P bð Þ and whose exponential generat-
ing function is

b xð Þ ¼
X

∞

k¼1

bkx
k

k!
: (25)

If we make the product of series (24) and (25), the coefficients of xk

k!
in a xð Þb xð Þ

is the number of ordered pairs G1;G2ð Þ of two disjoint graphs, where G1 meets the
property P að Þ, G2 fulfills the property P bð Þ, k is the number of vertices in G1 ∪G2,
and the labels from 1 to k have been distributed over G1 ∪G2. If C xð Þ is the expo-
nential generating function for labeled connected graphs

C xð Þ ¼
X

∞

k¼1

Ckx
k

k!
, (26)

then C xð ÞC xð Þ becomes the generating function that counts all the ordered pairs of
connected graphswith labels. If you divide by 2, equation (26) that is, we divide it by 2,
we get the generating function for labeled graphs that have exactly two components.
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By applying this operation n times, the coefficient of xk

k!
that corresponds to the

number of labeled graphs of order k is obtained with exact n components

G xð Þ ¼
X

∞

n¼1

Cn xð Þ
n!

: (27)

From (27), we obtain the following relation

1þ G xð Þ ¼ eC xð Þ: (28)

Riordan in [12] obtained the relation Cp ¼ Jp 2ð Þ, where Jp xð Þ enumerates the
trees by inversions, and then deduced

Cp ¼
X

p�1

k¼1

p� 2

k� 1

� �

2k � 1
� �

CkCp�k: (29)

From (29), it should be noted that if the exponential generating function for the
graph class is known in advance, then the exponential generating function for the
class of graphs will be the logarithm of the first series, just as in (28). It should also
be mentioned that another equivalent recurrence function can be obtained for the
enumeration of the connected graphs that have order tags p (p. 7 in [13]) and that
can be expressed mathematically as

Cp ¼ 2

p

2

� �

� 1
p

X

p�1

k¼1

k
p

k

� �

2

p� k

2

� �

Ck: (30)

From (30), the following MATLAB code can be implemented for calculating the
number of connected graphs Cp of orders going from p ¼ 1 to p ¼ 20.

function y = CuentaGrafConnEtiq( p )

% recurrence satisfied by the number of connected graphs

% Harary Graph Enumeration pag. 7

% C_p= 2ˆ{combinations(p,2)}-1/p* \sum_{k=1}ˆ{p-1} k*

% combinations(p,k)*2ˆ{combinations(p-k,2)}*C_{k}

C(1:p)=0;
C(1,1)=1;

for k=2:p

acum=0;
for j=1:k

acum = acum + j * combinaciones(k,j) * CuentaGrafEtiq(k-j) * C(1,j);

end

C(1,k) = CuentaGrafEtiq(k)-(1/k)*acum;

end

y=C(1,p);

sprintf(‘end function z=combinaciones(n,k) z= factorial(n)/(factorial(k)

*factorial(n-k));

end

function z=combinaciones(n,k)

z= factorial(n)/(factorial(k)*factorial(n-k));
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end

%% calling the function from the matlab prompt for the calculation of the

%% evaluation from graphs of order 1 to 20

>> for i=1:20

R(1,i)=CuentaGrafConnEtiq( i );

end

The calculations obtained by the execution of MATLAB code are shown in
Table 1.

From the results of 1, it can be observed that the number of possible connected
graphs Cp grows very fast in terms of the number p of vertices. It should be
mentioned that (29) and (30) are recurrence relations instead of a closed formula.
The recurrences (29) or (30) can be used for the calculation of Cp with a computer
program. The generating functions can be used to solve recurrences and obtain a
closed mathematical expression for the nth term of the succession associated with
the recurrence. It can happen that calculation of the solution of some recurrences
becomes very hard to be solved and in the worst cannot be solved at all. An
alternative method for obtaining an approximate value for big values of p is to recur
to the application of methods used in analytic combinatorics and calculate accurate
approximations of the pth coefficient of the generating function. The generating
functions algebraic structure allows to reflect the structure of combinatorial classes.

p Cp

1 1

2 1

3 4

4 38

5 728

6 26,704

7 1,866,256

8 251,548,592

9 66,296,291,072

10 34,496,488,594,816

11 35,641,657,548,953,344

12 7:335460� 1019

13 3:012722� 1023

14 2:471649� 1027

15 4:052768� 1031

16 1:328579� 1036

17 8:708969� 1040

18 1:41641� 1046

19 2:992930� 1051

20 1:569216� 1057

Table 1.
Order 1–20.
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The analytic combinatorics method consists in examining the generating functions
from the point of view of the mathematical analysis by giving not only real value
values to its variables but also values in the complex plane. When complex values
are assigned to the variables of the generating functions, the function is converted
in a geometric transformation of the complex plane. This kind of geometrical
mapping is said to be regular (holomorphic) near the origin of the complex plane.
When we move away from the origin of the complex plane, some singularities
appear that are related with the absence of smoothness of the function and give a lot
of information about the function coefficients and their asymptotic growth. It can
happen that elementary real analysis is enough for estimating asymptotically enu-
merative successions. If this is not the case, the generating functions are still
explicit, but its form does not allow the easy calculation of the coefficients of the
series. The complex plane analysis however is a good option for asymptotic estima-
tion of these coefficients. In order to give an example of the use of the notion of
singularities, let us take the ordinary generating function of the Catalan numbers

f xð Þ ¼ 1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4x
p	 


: (31)

Eq. (31) expresses in a compact way the power series of the form

1� yð Þ1=2 ¼ 1� 1
2
y� 1

8
y2 �…: (32)

The generating function (31) coefficients can be explicitly expressed as

f n ¼ xn½ � f xð Þ ¼ 1
n

2n� 2

n� 1

� �

: (33)

Using the Stirling formula, we can get the asymptotic approximation of (33) that
is expressed as

f n � lim
n!∞

4n

ffiffiffiffiffiffiffiffi

πn3
p : (34)

If the generating function is used as an analytic object, the approximation (34)
can be obtained.

In order to do it, we substitute in the power series expansion of the generating
function f(x) any real or complex value ρf whose modulus is small enough, for
example, ρf ¼ 4. The graph that we get by the use of (31) is smooth and differen-

tiable in the real plane and tends to the limit 1
2 as x ! 1

4

� ��, but, if we calculate its
derivative, we obtain the following function

f xð Þ ¼ 1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4x
p , (35)

and it can be noticed that the derivative (35) becomes infinite in ρf ¼ 1
4. The

singularities will correspond to those points where the graph is not smooth.
It should be pointed out that that the region where function (31) is still being

continuous can be extended. Let us take for example the value x ¼ �1

f �1ð Þ ¼ 1
2

1�
ffiffiffi

5
p	 


: (36)
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We can evaluate in the same manner (31) giving to x values in the complex plane
whose modulus is less than the radius of convergence of the series defined by (31)
and realize that the orthogonal and regular grid in it transforms the real plane in a
grid on the complex plane that preserves the angles of the curves of the grid. This
property corresponds to the complex differentiability property, which also is
equivalent to the property of analyticity. Concerning the asymptotic behavior of the
coefficients fn of the generating function, it should be observed that it has a general
asymptotic pattern composed by an exponential growth factor An and a
subexponential factor θ nð Þ.

For the case of the expression (34) A ¼ 4 and θ nð Þ � 1
4

ffiffiffiffiffiffiffiffi

πn3
p	 
�1

, the exponen-

tial growth factor can be put in relation with the radius of convergence of the series
by A ¼ 1

ρf
that is the singularity that can be observed along the positive real axis of

the complex plane that normally corresponds to the pole of the generating function,

and the subexponential part θ nð Þ ¼ O n�
3
2

	 


arises from the singularity of the square

root type. This asymptotic behavior can be compactly expressed as

xn½ � f xð Þ ¼ Anθ nð Þ: (37)

The exponential growth part of (37) is known as first principle of coefficient
asymptotics and the subexponential growth part as second principle of coefficient
asymptotics. By recalling to the results that can be found in the field complex
variable theory, more general generating functions can be obtained. One of those
results is the Cauchy residue theorem that relates global properties of a meromor-
phic function (its integral along closed curves) to purely local characteristics at the
residues poles. An important application of the Cauchy residue theorem concerns a
coefficient of analytic functions. This is stated in the following theorem [3]:

Theorem 1.5 (Cauchy’s coefficient formula). Let f zð Þ be analytic in a region
containing 0, and let λ be a simple loop around 0 that is positively oriented. Then,
the coefficient zn½ � f zð Þ admits the integral representation:

f n � zn½ � f zð Þ ¼ 1
2iπ

ð

λ

f zð Þ dz

znþ1 : (38)

For more details about analytic combinatorics, we recommend to consult [3] as
well as [5].

4. Enumeration of trees

A graph is a structure composed by a set of vertices V ¼ v1; v1;…vnf g and a set of
pairs of connected vertices E ¼ e1; e2;…; emf g called edges where E⊂V � V and
each edge ek ∈E is composed as pair of vertices ek ¼ vi; vj

� �

. A tree is a special type
of graph that do not have cycles. A tree have no loops or edges that connect a vertex
with himself. The subject of combinatorial graph enumeration has been the center
of interest of many mathematicians a long time ago. The enumeration of total
possible labeled trees with n nodes being nn�2 was one of first results obtained by
Cayley in [10]. Cayley’s formula for enumerating trees is one of the simple and
elegant mathematical results in enumeration of graphs. He detected that from nþ 1
vertices, the number of possible trees that can be built is equal to nþ 1ð Þn�1. Cayley
[10] gives an example for the case of four vertices 4 ¼ nþ 1 then n ¼ 3, and the
total number of possible trees calculated using his formula gives 4ð Þ2 ¼ 16. In this
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same publication, Cayley gives another example having nþ 1 ¼ 6 vertices (he used
the term knots in his publication) with labels a, b, c, d, e, f and related the concate-
nation of vertices given by the edges for obtaining sequences of labels representing
a given tree. For instance, if the tree is a chain of vertices connected by edges
starting with the vertex a and ending with the vertex f and having as connecting
edges a; bð Þ, b; cð Þ, c; dð Þ, d; eð Þ, e; fð Þ, the corresponding label sequence is abcdef as
shown in Figure 1. As another example of sequence of vertex labels, if the root of
the tree is α and it is connected directly with the other five vertices, then the
connecting edges will be a; bð Þ, a; cð Þ, a; dð Þ, a; eð Þ, a; fð Þ, and the corresponding
sequence of vertex labels will be in that case a5bcdef as shown in Figure 2. As can be
noticed, the exponent of a is 5 that represents the number of occurrences of this
label in the set of connecting edges.

After that Cayley states the theorem for this particular case as follows:
Theorem 1.6 The total number of trees T nþ 1ð Þ that can be built with nþ 1 ¼ 6

vertices can be calculated as follows

T nþ 1ð Þ ¼ aþ bþ cþ dþ eþ fð Þ4abcdef ¼ 64 ¼ 1296 (39)

This calculation relates the sum of the products of the coefficients of the multi-
nomial aþ bþ cþ dþ eþ fð Þ4 with the number of terms of its corresponding type.
Each term obtained by multiplying abcdef with the vertex label inside
aþ bþ cþ dþ eþ fð Þ4 corresponds to different trees.

At the end of [10], Cayley generalizes his theorem by recalling a result obtained
by C.W. Borchardt in [14] that relates some particular kind of determinants that
represent spanning trees and whose product represents the branches of those span-
ning trees. Given that the number of terms of these determinants is nþ 1ð Þn�1,
Cayley can conclude that the number of spanning trees is the same. Since these first
results, many other methods have been proposed for obtaining the same result. One
way to enumerate a collection of objects is to find a bijection between a set of
objects whose enumeration is known and the set of objects that we want to
enumerate. This was the method used by Prüfer in [15] for enumerating the set of
possible spanning trees with n vertices. The set whose number was known before-
hand was a sequence of length n� 2 of numbers from 1 to n. For this end the autor
of article [15] encoded the trees as Prüfer sequences. In [16] Moon generalized the
result derived by Clarke in [17] by induction on d the degree, making induction on
n, and the number of vertices and obtains a new enumeration method for n-labeled
k trees.

Figure 1.
Example of tree of one branch.

Figure 2.
Example of tree with more branches.
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5. Enumeration and generating functions

The field of combinatorial enumeration has aroused enormous interest among
mathematicians who have worked in the area of discrete mathematics during
the last decades [18–21]. Combinatorial enumerative technique developed by
these brilliant researchers have allowed us to count words, permutations,
partitions, sequences, and graphs. As was mentioned in Section 3, the mathematical
tool frequently used for this purpose is the generating functions or formal power
series.

The generating functions allow to connect discrete mathematics and continuous
analysis in a very special way with complex variable theory. The typical situation
that someone faces when trying to solve an enumeration problem is that you want
to know the mathematically closed form that has the nth term of a given sequence
of numbers a0, a1, a2,… For some sequences, we can do by inspection. For example,
if the numerical sequence 1; 3; 5; 7; 9,…, it is easy to see that it is a sequence of odd
numbers whose nth element is an ¼ 2n� 1.

A more complicated sequence is the set of prime numbers 2; 3; 5; 7; 11; 13; 17; 19,…,
whose an is the nth prime number. A closed mathematical formula for nth prime
number is not known, and it seems impossible to obtain in general.

In many cases it is very hard to get a simple formula just by inspection. However
it can be very useful to use the generating functions whose coefficients are the
elements of that sequence transforming it as follows:

X

∞

i¼0

aix
i: (40)

Eq. (40) defines an ordinary generating function. As mentioned in Section 3,
since they are infinite polynomials, they can be algebraically manipulated easily.

In this chapter, the main interest will be the application of the generating
functions tool as well as the analytic asymptotic methods for the enumeration of
graphs accomplishing some given properties. Many questions about the number of
graphs that have some specified property can be answered by the use of generating
functions. Some typical questions about the number of graphs that fulfill a given
property are, for example: How many different graphs can I build with n vertices?
Howmany different connected graphs with n vertices exist? Howmany binary trees
can be constructed with n vertices? [18, 19], etc. For some of these questions, the
application of generating functions allows us to easily obtain a simple formula. For
some other questions, the answer is an asymptotic estimation formula. The most
commonly used generating functions are the ordinary generating functions and the
exponential generating functions. The generating functions are the tool used for
enumerating graphs. From the point of view of the generating functions, there are
two types of graph enumerating problems:

1.Labeled graph problems

2.Unlabeled graph problems

The labeled graph problems can be easily solved with the direct application of
the exponential generating functions. The case of the unlabeled enumeration prob-
lems can be solved by using ordinary generating functions but require the use of
more combinatorial theory and the application of Pólya’s theorem.
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6. Enumerating regular graphs

As we mentioned in Section 6, some enumerating problems can be solved easily
using generating tools for obtaining a closed formula. Some other problems are
more hard to deal with for obtaining a closed mathematical expression, but we can
resort in such a case to the asymptotic approximation of the coefficients of the
power series [22–25]. It was also mentioned in Section 6 that there are some graph
enumerating problems where the nodes are labeled, and in such a case the use of the
exponential generating functions is well adapted for these kinds of problems. The
other case of graph enumerating problems is when we are dealing with graphs
whose nodes do not have an assigned label. Then, we can resort in such case to
Pólya’s enumerating method [7, 13], and the best choice is to use ordinary generating
functions. It should also be mentioned that the edges of the graphs to be enumerated
can be directed or undirected.

One of the seminal articles of enumerating graphs is [26], where a fundamental
theorem was proven in the theory of random graphs on n unlabeled nodes and with
a given number q of edges.

In [26], the authors obtained a necessary and sufficient condition for relating
asymptotically the number of unlabeled graphs with n nodes and q edges with the
number of labeled graphs with n nodes and q edges. Let Tnq be the number of
different graphs with n nodes and q edges, Fnq the corresponding to number of

labeled graphs, N ¼ n n�1ð Þ
2 the possible edges, and Fnq ¼

N

q

� �

¼ N!

q! N�qð Þ!. The result

obtained in [26] can be stated as the following theorem:
Theorem 1.7 The necessary and sufficient conditions that

Tnq �
Fnq

n!
(41)

as n ! ∞ is that

min q;N � qð Þ=n� log n=2ð Þ ! ∞: (42)

The formal result expressed in Theorem 1.7 for unlabeled graphs is a starting
point on the enumeration of regular graphs because it allows for enumerating those
unlabeled graphs that have some number of edges. In fact, the author of [26] proved
that if a graph with ∣E∣ ¼ E nð Þ edges, where n is the number of vertices or order of
such a graph, has no isolated vertices or two vertices of degree n � 1, then the
number of unlabeled graphs of order n and number of edges ∣E∣ divided by the
number unlabeled graphs is asymptotic to n!.

Another interesting article on asymptotic enumeration of labeled graphs having
a given degree sequence was [27]. The authors of [27] obtained their asymptotic
result for n� n symmetric matrices subject to the following constraints:

i. Each row sum is specified and bounded.

ii. The entries are bounded.

iii. A specified sparse set of entries must be zero.

The authors of [27] mentioned that their results can be interpreted in terms of
incidence matrices for labeled graphs. The results of [27] can be stated as follows.
LetM n; zð Þ be the set of all n� n symmetric 0; 1ð Þmatrices with at most z zeroes in
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each row, r a vector over d½ � ¼ 0; 1;…df g, and G M; r; tð Þ the number of n� n

symmetric matrices gij

	 


over t½ � ¼ 0; 1;…tf g such that

i. gij ¼ 0 if mij ¼ 0.

ii.
P

jgij ¼ ri.

Theorem 1.8 For given d, t and z,

G M; r; tð Þ � T f ; δð Þeεa�b

Q

ri!
: (43)

Uniformly, for M; rð Þ∈ ∪∞
n¼1 M n; zð Þ � 0; d½ �nð Þ as f ! ∞, where

f ¼Piri, ε ¼ �1 if t ¼ 1 andþ 1 if t>1, for

a ¼

P

i

ri

2

� �

f

0

B

B

@

1

C

C

A

2

þ

P

mij

ri

2

� �

f

0

B

B

@

1

C

C

A

, b ¼
P

mij¼0, i< jrirj þ
P

i

ri

2

� �

f

0

B

B

@

1

C

C

A

, δ ¼
P

mij¼0ri

and T f ; δð Þ being the number of involutions on [1, f] such that no element in some
specified set of size δ is fixed.

Three years later, the article [28] appeared giving a different approach of [27]
allowing for obtaining a more general asymptotic formula without reference to an
exact formula. The asymptotic result obtained by Bela Bollobás in [28] for enumer-
ating labeled regular graphs is proven by a probabilistic method. This result can be
stated as follows. Let Δ and n be natural numbers such that Δn ¼ 2m is even and

Δ≤ 2 log nð Þ12, where n is the number of vertices and m is the number of edges of the
graph G. Then, as n ! ∞, the number of labeled Δ-regular graphs on n vertices is
asymptotic to

e�λ�λ2 2mð Þ!
m!2m Δ!ð Þm , (44)

where λ ¼ Δ�1ð Þ
2 .

The authors of [27] affirm that the asymptotic Formula (44) holds not only for Δ
constant but also for Δ growing slowly as n ! ∞ and summarized this in the
following theorem.

Theorem 1.9 Let d1 ≥ d2 ≥…dn be natural numbers with
Pn

i¼1 di ¼ 2m even.

Suppose Δ ¼ d1 ≤ 2 log nð Þ12 � 1 andm≥max εΔn; 1þ εð Þnf g for some ε>0. Then, the
number L dð Þ of labeled graphs with degree sequence d ¼ dið Þn1 satisfies

L dð Þ � e�λ�λ2 2mð Þm
2m
Qn

i¼1 di!
� � , (45)

where λ ¼ 1
2m

Pn
i¼1

di

2

� �

:

In the next year, the author on [27] extended this result to the case of unlabeled
graphs in [29]. The result of Theorem 1.9 extended for the case of unlabeled graphs
can be summarized in the following theorem.

Theorem 1.10 If Δ≥ 3 and LΔ ¼ e�λ�λ2 2mð Þ!
m!2m Δ!ð Þm, then
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UΔ � LΔ

n!
� e�

Δ
2�1ð Þ
4

2mð Þ!
2mm!

Δ!ð Þ�n

n!
, (46)

where m ¼ Δn
2 .

For the details of the proof of Theorems 1. 9 and 1.10, see [28, 29], respectively.

7. Example of proof of a result on control using combinatorial
enumeration

In [30] I used the combinatorial enumeration methods and probability for
showing the applicability of the selection node criteria in a virus spreading control
problem in complex networks. The main purpose of this section is to illustrate how
the enumerative combinatorics in combination with probability theory can be used
for demonstrating mathematically a result in an application field. We can mention
that the case of homogeneity in the behavior of the nodes and their interaction
cannot be discarded given what has been observed in the reaction of the agents in
the context of social networks is that they try to minimize the conflict. Many
successful models can, for example [30–33], base their predicting effectiveness on
the homogeneity of the behavior of the nodes and their interaction. By the other
side, in [30] we have obtained a criteria for selecting the nodes to be controlled, but
such criteria fail if we have homogeneity in the behavior of the nodes and, at the
same time, the topology of the network is regular. Then, what we want to do here is
to justify the applicability of node selection criteria, keeping the homogeneity of the
nodes and trying to compare the number of regular graphs with n vertices with the
total of graphs that can be constructed with n vertices. For this end, based on the
results on combinatorial graph enumeration mentioned on Theorems 1.9 and 1.10,
we can state our main result as follows. First of all, we suppose that our graph is
labeled, G ¼ V;Eð Þ is r-regular with r≥ 3 constant and rn ¼ 2m, where n ¼ ∣V∣

corresponds to the number of vertices and m ¼ ∣E∣ corresponds to the number of
edges. Let Lr the number of labeled regular graphs of degree r whose asymptotic
value is [28]

Lr � e�
r2�1
4

2mð Þ!
2mm!

r!ð Þn: (47)

Let Gn be the number of all possible graphs with n vertices whose value is

Gn ¼ 2
n

2

� �

: (48)

Theorem 1.11 If r≥ 3 and nr ¼ 2m, then

lim
n!∞

Lr

Gn
¼ 0: (49)

Proof of Theorem 1.11. If nr ¼ 2m and r is constant of value c1, then we can
deduce that m ¼ r

2 n ¼ c1
2 n, and this implies that m ¼ O nð Þ so let us say that m ¼ c2n;

then,

lim
n!∞

Lr

Gn
¼ lim

n!∞

e�
c2
1
�1

4
2c2nð Þ! c1!ð Þ�n

2c2n c2nð Þ!

2
n

2

� � (50)

18

Probability, Combinatorics and Control



¼ lim
n!∞

e�
c2
1
�1

4

c1!ð Þn
2c2nð Þ!

2c2n c2nð Þ!

2
n n�1ð Þ

2

, (51)

applying the approximation Stirling formula n! �
ffiffiffiffiffiffiffiffi

2πn
p

n
e

� �n

c1!ð Þn ¼
ffiffiffiffiffiffiffiffiffi

2πc1
p c1

e

	 
c1	 
n

(52)

then

¼ lim
n!∞

e�
c2
1
�1

4
ffiffiffiffiffiffiffi

2πc1
p c1

eð Þc1ð Þn
2c2nð Þ!

2c2n c2nð Þ!

2
n n�1ð Þ

2

(53)

simplifying

¼ lim
n!∞

1
ffiffiffiffiffiffiffi

2πc1
pð Þn c1ð Þc1ne

c2
1
þ4c1nþ1

4

2c2nð Þ!
2c2n c2nð Þ!

2
n n�1ð Þ

2

(54)

applying the approximation Stirling formula

2c2nð Þ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π 2c2nð Þ
p 2c2nð Þ

e

� � 2c2nð Þ
(55)

and

c2nð Þ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π c2nð Þ
p c2nð Þ

e

� � c2nð Þ
(56)

we get

¼ lim
n!∞

1
ffiffiffiffiffiffiffi

2πc1
pð Þn c1ð Þc1ne

c2
1
þ4c1nþ1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2π 2c2nð Þ
p 2c2nð Þ

e

� � 2c2nð Þ

2c2n
ffiffiffiffiffiffiffiffiffiffiffi

2π c2nð Þ
p c2nð Þ

e

� � c2nð Þ

2
n n�1ð Þ

2

, (57)

simplifying

¼ lim
n!∞

ffiffi

2
p

ffiffiffiffiffiffiffi

2πc1
pð Þncc1n1 e

c2
1
þ4c1nþ1ð Þ=4

c2n
e

� �c2n

2
n n�1ð Þ

2

(58)

given that r≥ 3, for which we assumed that r is a constant c1, and that nr ¼ 2m,
then we have that c1 ¼ 2c2, and replacing that, in (58), we can express it in terms of
c1, which is the regular degree r assumed as fixed; then, we get

lim
n!∞

ffiffi

2
p

ffiffiffiffiffiffiffi

2πc1
pð Þncc1n1 e

c2
1
þ4c1nþ1ð Þ=4

c1n=2
e

	 
c1n=2

2
n n�1ð Þ

2

, (59)
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and, replacing c1 by r in (59), we get

lim
n!∞

ffiffi

2
p

ffiffiffiffiffi

2πr
pð Þnrrne r2þ4rnþ1ð Þ=4

rn=2
e

	 
rn=2

2
n n�1ð Þ

2

: (60)

Therefore, if the degree r is constant, the limn!∞
Lr

Gn
¼ 0.

Now, our main result can be stated as a consequence of Theorem 1.11.
Theorem 1.12 If we assume that all graphs are uniformly distributed and that the

nodes have homogeneous behavior, then the criteria for selecting nodes to be
controlled are almost always applicable.

Proof of Theorem 1.11. As a consequence of Theorem 11, we know that the
probability that a regular graph appears tends to zero as n ! ∞. Then, the men-
tioned criteria are almost always applicable.

8. Conclusions

In the present chapter, some problems of combinatorial graph enumeration as
well as some useful techniques for obtaining a closed mathematical expression were
addressed. When it is not possible to obtain a closed expression, asymptotic esti-
mations of the kind used in analytic combinatorics can be used. In Section 10 the
use of these techniques for proving a result in the field of virus spreading control
was illustrated [31–34].

This allowed to explore the application of combinatorial techniques to control
problems in networks and thus verify the goodness of said methods for network
analysis and the control of virus propagation in them. This still needs to be studied
by applying the combinatorial methods discussed above, if there are any other types
of topologies that prevent the application of the selection criteria of nodes to be
controlled under the hypothesis of behavior of partially heterogeneous nodes, that
is, if in the network we have subsets of nodes with the same behavioral parameters.
The selecting node criteria described in [30] are based on the combination of the
parameter values of the selected nodes as well as their degrees. In many recent
publications [35–42], interesting and elaborated methods for detecting the
influencer nodes in complex networks have been proposed that I will try to apply in
combination with the mentioned criteria in the future in order to reduce the num-
ber of nodes to be controlled.
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