2,906 research outputs found

    Semimajor Axis Estimation Strategies

    Get PDF
    This paper extends previous analysis on the impact of sensing noise for the navigation and control aspects of formation flying spacecraft. We analyze the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters, with a particular focus on the filter correlation coefficient. This work was motivated by previous publications which suggested that a "good" navigation filter would have a strong correlation (i.e., coefficient near -1) to reduce the semimajor axis (SMA) error, and therefore, the overall fuel use. However, practical experience with CDGPS-based filters has shown this strong correlation seldom occurs (typical correlations approx. -0.1), even when the estimation accuracies are very good. We derive an analytic estimate of the filter correlation coefficient and demonstrate that, for the process and sensor noises levels expected with CDGPS, the expected value will be very low. It is also demonstrated that this correlation can be improved by increasing the time step of the discrete Kalman filter, but since the balance condition is not satisfied, the SMA error also increases. These observations are verified with several linear simulations. The combination of these simulations and analysis provide new insights on the crucial role of the process noise in determining the semimajor axis knowledge

    Integrated motion planning and model learning for mobile robots with application to marine vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 269-275).Robust motion planning algorithms for mobile robots consider stochasticity in the dynamic model of the vehicle and the environment. A practical robust planning approach balances the duration of the motion plan with the probability of colliding with obstacles. This thesis develops fast analytic algorithms for predicting the collision probability due to model uncertainty and random disturbances in the environment for a planar holonomic vehicle such as a marine surface vessel. These predictions lead to a robust motion planning algorithm that nds the optimal motion plan quickly and efficiently. By incorporating model learning into the predictions, the integrated algorithm exhibits emergent active learning strategies to autonomously acquire the model data needed to safely and eectively complete the mission. The motion planner constructs plans through a known environment by concatenating maneuvers based upon speed controller setpoints. A model-based feedforward/ feedback controller is used to track the resulting reference trajectory, and the model parameters are learned online with a least squares regression algorithm. The path-following performance of the vehicle depends on the effects of unknown environmental disturbances and modeling error. The convergence rate of the parameter estimates depends on the motion plan, as different plans excite different modes of the system.(cont.) By predicting how the collision probability is affected by the parameter covariance evolution, the motion planner automatically incorporates active learning strategies into the motion plans. In particular, the vehicle will practice maneuvers in the open regions of the configuration space before using them in the constrained regions to ensure that the collision risk due to modeling error is low. High-level feedback across missions allows the system to recognize configuration changes and quickly learn new model parameters as necessary. Simulations and experimental results using an autonomous marine surface vessel are presented.by Matthew Greytak.Ph.D

    State estimation for aggressive flight in GPS-denied environments using onboard sensing

    Get PDF
    In this paper we present a state estimation method based on an inertial measurement unit (IMU) and a planar laser range finder suitable for use in real-time on a fixed-wing micro air vehicle (MAV). The algorithm is capable of maintaing accurate state estimates during aggressive flight in unstructured 3D environments without the use of an external positioning system. Our localization algorithm is based on an extension of the Gaussian Particle Filter. We partition the state according to measurement independence relationships and then calculate a pseudo-linear update which allows us to use 20x fewer particles than a naive implementation to achieve similar accuracy in the state estimate. We also propose a multi-step forward fitting method to identify the noise parameters of the IMU and compare results with and without accurate position measurements. Our process and measurement models integrate naturally with an exponential coordinates representation of the attitude uncertainty. We demonstrate our algorithms experimentally on a fixed-wing vehicle flying in a challenging indoor environment

    Analytic and experimental evaluation of shadow shields and their support members for thermal control of space vehicles

    Get PDF
    The thermal performance of shadow shields, and their support struts, for the thermal protection of cryogenic propellants in a simulated deep-space environment was investigated analytically and experimentally. Very low overall heat-transfer rates were obtained when highly reflective aluminized Mylar shadow shields were used. The thermal interactions between the shields and support struts were investigated with fair to good agreement between the analysis and experimental data. The exterior surface of both fiberglass and titanium struts was coated to reduce the heat input into the test tank. The vacuum level inside the test facility strongly influenced the heat-transfer rates

    Belief-space Planning for Active Visual SLAM in Underwater Environments.

    Full text link
    Autonomous mobile robots operating in a priori unknown environments must be able to integrate path planning with simultaneous localization and mapping (SLAM) in order to perform tasks like exploration, search and rescue, inspection, reconnaissance, target-tracking, and others. This level of autonomy is especially difficult in underwater environments, where GPS is unavailable, communication is limited, and environment features may be sparsely- distributed. In these situations, the path taken by the robot can drastically affect the performance of SLAM, so the robot must plan and act intelligently and efficiently to ensure successful task completion. This document proposes novel research in belief-space planning for active visual SLAM in underwater environments. Our motivating application is ship hull inspection with an autonomous underwater robot. We design a Gaussian belief-space planning formulation that accounts for the randomness of the loop-closure measurements in visual SLAM and serves as the mathematical foundation for the research in this thesis. Combining this planning formulation with sampling-based techniques, we efficiently search for loop-closure actions throughout the environment and present a two-step approach for selecting revisit actions that results in an opportunistic active SLAM framework. The proposed active SLAM method is tested in hybrid simulations and real-world field trials of an underwater robot performing inspections of a physical modeling basin and a U.S. Coast Guard cutter. To reduce computational load, we present research into efficient planning by compressing the representation and examining the structure of the underlying SLAM system. We propose the use of graph sparsification methods online to reduce complexity by planning with an approximate distribution that represents the original, full pose graph. We also propose the use of the Bayes tree data structure—first introduced for fast inference in SLAM—to perform efficient incremental updates when evaluating candidate plans that are similar. As a final contribution, we design risk-averse objective functions that account for the randomness within our planning formulation. We show that this aversion to uncertainty in the posterior belief leads to desirable and intuitive behavior within active SLAM.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133303/1/schaves_1.pd

    A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    Full text link
    Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National-Geospatial Intelligence Agency (NMA201-01-1-2016

    Towards Learning-Based Gyrocompassing

    Full text link
    Inertial navigation systems (INS) are widely used in both manned and autonomous platforms. One of the most critical tasks prior to their operation is to accurately determine their initial alignment while stationary, as it forms the cornerstone for the entire INS operational trajectory. While low-performance accelerometers can easily determine roll and pitch angles (leveling), establishing the heading angle (gyrocompassing) with low-performance gyros proves to be a challenging task without additional sensors. This arises from the limited signal strength of Earth's rotation rate, often overridden by gyro noise itself. To circumvent this deficiency, in this study we present a practical deep learning framework to effectively compensate for the inherent errors in low-performance gyroscopes. The resulting capability enables gyrocompassing, thereby eliminating the need for subsequent prolonged filtering phase (fine alignment). Through the development of theory and experimental validation, we demonstrate that the improved initial conditions establish a new lower error bound, bringing affordable gyros one step closer to being utilized in high-end tactical tasks
    • …
    corecore