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Abstract

Robust motion planning algorithms for mobile robots consider stochasticity in the
dynamic model of the vehicle and the environment. A practical robust planning ap-
proach balances the duration of the motion plan with the probability of colliding with
obstacles. This thesis develops fast analytic algorithms for predicting the collision
probability due to model uncertainty and random disturbances in the environment
for a planar holonomic vehicle such as a marine surface vessel. These predictions lead
to a robust motion planning algorithm that finds the optimal motion plan quickly
and efficiently. By incorporating model learning into the predictions, the integrated
algorithm exhibits emergent active learning strategies to autonomously acquire the
model data needed to safely and effectively complete the mission.

The motion planner constructs plans through a known environment by concate-
nating maneuvers based upon speed controller setpoints. A model-based feedfor-
ward/feedback controller is used to track the resulting reference trajectory, and the
model parameters are learned online with a least squares regression algorithm. The
path-following performance of the vehicle depends on the effects of unknown envi-
ronmental disturbances and modeling error. The convergence rate of the parameter
estimates depends on the motion plan, as different plans excite different modes of
the system. By predicting how the collision probability is affected by the parameter
covariance evolution, the motion planner automatically incorporates active learning
strategies into the motion plans. In particular, the vehicle will practice maneuvers
in the open regions of the configuration space before using them in the constrained
regions to ensure that the collision risk due to modeling error is low. High-level feed-
back across missions allows the system to recognize configuration changes and quickly
learn new model parameters as necessary. Simulations and experimental results using
an autonomous marine surface vessel are presented.

Thesis Supervisor: Franz S. Hover
Title: Assistant Professor
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Chapter 1

Introduction

Classical control theory has been applied successfully to ship maneuvering problems

for many years. More recently, modern techniques such as adaptive and non-linear

control have appeared in the literature. Meanwhile, the robotics and artificial intelli-

gence (AI) communities have developed many robust search and planning algorithms

for generating paths and action sequences. This thesis combines the benefits of both

areas of research to generate a robust planning and navigation system for marine

vehicles.

A recent document published by the US Navy outlines their plans for the re-

search and development of Unmanned Surface Vehicles (USVs) in the near future

[61]. The main message of the document is that the Navy wishes to get these systems

operational and in use as soon as possible, on scales from custom 3-meter vehicles

to larger 7-meter Rigid Inflatable Boat (RIB)-based vehicles and 11-meter planing

craft. One application for these vehicles is for patrolling a harbor environment using

video and chemical sensors. The operating environment has many obstacles in the

form of shorelines, docks, and other vessels, and disturbances such as wind, waves,

and currents. An autonomous patrol craft must be able to plan a safe path through

this environment to a goal location in real-time. The characteristics of the craft may

change over time, either through gradual wear or due to a configuration change for a

new mission. The vessel must be able to adapt its controller and its motion plans to

these changes.
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The autonomous harbor patrol craft is a specific example of a general class of

configurable robots that must be able to navigate through a cluttered environment

with very little human interaction. Consider a commercial robot company that sells

a standardized robot that can subsequently be modified by the end user with various

attachments or enhancements. When the robots are shipped from the factory, the

final configuration of each robot is unknown to the designers. However, an end user

who reconfigures the robot has no desire (or no ability) to adjust control parameters or

planning parameters to reflect the new dynamic model for the robot. The robot must

be able to recognize configuration changes and learn the new model while performing

its commanded tasks.

In this thesis we develop an integrated motion planning and model learning al-

gorithm for mobile robots that automatically utilizes learning strategies to identify

system parameters while finding an optimal route through a cluttered environment.

In particular, the vehicle will practice maneuvers in the open regions of the space so

that errors are minimized when those maneuvers are used near obstacles.

The emergence of practicing behavior depends on two key predictions: the model

uncertainty evolution throughout each motion plan, and the effect that the uncer-

tainty evolution has on the cost function. If those two effects are predicted for each

motion plan, then the benefits of practicing are revealed in the cost function, and the

planner will choose to perform practicing maneuvers when the benefits outweigh the

added costs such as time and fuel usage. While those two predictions are straightfor-

ward for a very simple mobile robot model, they are more difficult for a mobile robot

with real dynamics.

The specific class of mobile robots that we focus on in this thesis is planar holo-

nomic vehicles, which describes marine vehicles, aerial vehicles and space vehicles

that operate in a planar environment. Process noise, sensor noise, and parameter

uncertainty are all assumed to be Gaussian random variables. All aspects of the

problem are solved with analytic predictions rather than particle simulations such as

Monte Carlo to ensure that the planner is fast and repeatable. The problem can be

broken down into three core issues: motion planning, model learning, and planning
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under uncertainty. The following sections describe these issues in more depth.

1.1 Robust Motion Planning

The overall algorithm for planning and learning is built upon a robust motion plan-

ning algorithm. Motion planning is the process through which the vehicle chooses a

nominal trajectory through the environment that the vehicle must follow. The control

inputs for a marine vehicle are forward thrust, lateral thrust, and possibly an inde-

pendent yaw moment. Because the input space is continuous, the planning problem

is infinite-dimensional and standard optimization techniques are impractical.

To make the motion planning problem tractable, a discretization of the problem

is necessary. One approach is to discretize the state and action spaces, as well as

discretizing time, in a partially observable Markov decision process (POMDP). The

optimal solution to the POMDP is the optimal policy, which maps observed states to

actions. However, achieving fine control resolution would require a dense discretiza-

tion of the state and action spaces, which is impractical for a robot with multiple

degrees of freedom.

In our approach, motion plans are constructed from discrete maneuvers that are

concatenated together. The Maneuver Automaton is a convenient framework for this

problem: each maneuver connects discrete points in the velocity space, so a motion

plan is represented as a sequence of speed controller setpoints. Waypoints can be

used to enrich the planning domain. This approach preserves continuous time and

continuous states, but by discretizing the problem with a finite set of maneuvers and

waypoints the planning problem is tractable. The problem is then solved with an

expanding tree search algorithm to find the best sequence of maneuvers that arrives

at the goal without hitting any obstacles along the way.

During the execution of the plan, the controller simply shifts to the appropriate

setpoint at the appropriate time to cause the vehicle to follow the reference trajectory.

The controller we employ is a linear quadratic regulator (LQR) designed around the

dynamic vehicle model. This approach is open-loop in the sense that position or
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orientation perturbations will not be corrected by the velocity controller. To add

position feedback, we incorporate waypoints into the motion planning framework.

While a motion plan may be nominally collision-free, environmental disturbances

may result in a non-neglible probability that the vehicle will hit an obstacle. Fur-

thermore, instantaneous velocity setpoint changes may result in transient path errors

even in the absence of external disturbances. It is therefore important to be able

to predict both the mean path-following error as well as the variance of the error.

From these statistics it is possible to compute the probability that the vehicle will

hit an obstacle when following any particular motion plan. Given the choice between

two motion plans of the same duration in which one plan has a higher probability of

hitting an obstacle, we would like the planner to choose the safer plan. To accomplish

this, we insert the collision probability into the planner’s cost function. This is not

the same as penalizing large path errors; it does not matter if there are large errors

if there are no obstacles nearby that will result in a collision. By incorporating the

collision probability, the motion planner is made more robust to disturbances. This

robust motion planner is the core of the integrated planning and learning algorithm

discussed later.

1.2 Model Learning

The controller used by the vehicle is model-based, meaning that it depends on an esti-

mate of the vehicle’s parameters, such as mass and drag. In general these parameters

may not be known with a high degree of confidence or they may change over time

(either gradually or discretely, as when the vehicle configuration changes for a new

mission). Because the dynamic vehicle model is linear in the parameters, the least

squares regression algorithm is an appropriate choice for learning the parameters. For

compatibility with the motion planning algorithm, the learning takes place in stages:

at the end of each maneuver the least squares learning algorithm is applied to the

input/output data from that maneuver, then the controller is redesigned based on the

new parameter estimates for use in the next maneuver. This approach results in a
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more immediate effect on the path-following performance than waiting until the end

of the mission to update the parameters, and it is easier to analyze than the recursive

least squares algorithm.

The motion planner requires an a priori estimate of the parameter values to

generate feasible motion plans, even if the confidence in those parameter estimates

is low (i.e. the a priori parameter variance is high). As the vehicle executes the

motion plan, the parameter estimates will improve and the confidence will increase

(the parameter variance will decrease). It is important for the planner to be able to

predict this parameter variance evolution as it affects the collision probability and

the overall cost of each candidate plan. The parameter convergence is not uniform;

it is affected by the information content of the inputs to the learning algorithm,

which in turn depend on the motion plan and the path-following error statistics. For

example, the parameters related to the yaw dynamics of the vehicle will not improve

if the vehicle only drives in a straight line. Predicting the parameter convergence is

equivalent to predicting the expected inverse of the information content associated

with each parameter. This calculation is very difficult because the input data is

correlated in time, yet it is the key component in the integrated planning and model

learning algorithm discussed in the next section.

The parameter convergence prediction relies on assumptions about the process

noise and the sensor noise in the system, the a priori parameter variance, and the

steady nature of the true parameter values. If the noise assumptions are incorrect,

the initial confidence in the parameter values is not well known, or the parameter

values change, then the predicted parameter variance at the end of the mission will

be different from the true parameter variance (as determined by many executions

of the motion plan, i.e. Monte Carlo simulations). If it is possible to estimate the

true parameter variance at the end of the mission based on the prediction error from

the mission data, then the a priori parameter variance for the next mission can be

adjusted appropriately. In this way, the vehicle automatically adjusts to the noise

levels in the system, initial confidence errors, and changes to the true parameter

values.
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1.3 An Integrated Motion Planning and Model Learn-

ing Algorithm

The previous section described how to predict the parameter uncertainty for each

motion plan considered by the motion planner. To make the optimal motion plan

robust against model uncertainty as well as process noise, we must be able to pre-

dict the effect of model uncertainty on the collision probability and consequently the

planner’s cost function. Expressing the collision probability in terms of the param-

eter uncertainty is straightforward for simple robots but it is quite difficult for a

holonomic vehicle with an LQR controller. For the more complex vehicle model we

use numerical quadrature to evaluate the collision probability at specific samples in

the parameter space and combine those collision probabilities with an appropriate

weighting function. A very simple diagram of the integrated planning approach is

shown in Figure 1-1.

Plan
Duration

Parameter 
Convergence

Error 
Variance

Collision 
Probability

Cost 
Function

Disturbances Obstacles

Planner

Figure 1-1: A basic diagram of the integrated motion planning and model learning
algorithm. The planner predicts how each candidate motion plan contributes to
reducing model uncertainty, and it predicts how that model uncertainty evolution
affects the collision probability.

Once the planner can predict the parameter convergence for each candidate plan

and also predict the effect of that parameter convergence on the cost function, then

some interesting behaviors emerge. If a mission requires very tight path-following

at a particular point, then the planner will ensure that the relevant parameters have

converged to a great extent before that point in the plan; this may require “practicing”
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similar maneuvers earlier in the plan to expose the learning algorithm to enough data

that the parameter error will be low. In other words, the vehicle will employ active

learning as necessary, not because it is explicitly told to learn the parameters, but

because it understands that the convergence of certain parameters is necessary to

complete the mission successfully.

1.4 Novel Contributions in the Thesis

This section lists the various novel contributions in the thesis, along with relevant

papers published by the author.

• Added waypoints to the Maneuver Automaton framework and eliminated the

need for motion primitives as a bridge between trim maneuvers. [37, 40].

• Derived predictions of the mean and variance of the path-following error for a

planar holonomic vehicle [39].

• Solved the particle absorption prediction problem for dynamic systems of second-

order and higher. Derived predictions for the collision probability based on the

path-following error statistics and incorporated the collision probability into a

robust motion planner [37, 40].

• Derived predictions of the parameter variance evolution when using the least

squares learning algorithm applied to a dynamic system with correlations through

time.

• Derived posterior parameter variance estimates based on the prediction error

to detect changes to the model parameters.

• Developed the integrated motion planning and model learning algorithm to put

learning into the motion planning framework, resulting in autonomous learning

strategies [41].
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1.5 Outline of the Thesis

Chapter 2 surveys the existing literature on the various aspects of the thesis. It

first covers the existing practices in marine vehicle navigation and control, including

waypoint-based path following and various techniques for lower-level velocity con-

trol. As many marine vehicle controllers use adaptation to track the vehicle system

parameters, we look at well-known regression techniques and active learning. The

bulk of this thesis is built on a kinodynamic motion planner for holonomic vehicles,

so Chapter 2 discusses the requirements of a motion planner and the relevant frame-

works and graph search algorithms. Next we discuss some aspects of the general topic

of planning under uncertainty. Finally we review some of the existing literature on

the important tradeoff of exploration vs. exploitation that governs many planning

algorithms in uncertain environments.

The construction and analysis of the robust kinodynamic motion planner is pre-

sented in Chapter 3. The vehicle we consider is an underactuated planar holonomic

vehicle, meaning that the vehicle experiences sideslip that it cannot control indepen-

dently from the surge and yaw states. After establishing the dynamic and kinematic

model for the vehicle, we develop a simple control law and we study the resulting

path-following error statistics. The motion planner is made robust by evaluating the

collision probability for each plan; this is a non-trivial calculation that is based on

the error statistics and the vehicle dynamics. Next, Chapter 3 presents the A* search

algorithm that finds the optimal plan from the infinite set of feasible motion plans.

Finally, experimental results using a small autonomous vehicle model are presented.

The parameters used by the controller are learned with least squares regression.

The regression framework is presented in Chapter 4; it is straightforward except for

some subtleties that arise when learning only a subset of all the parameters. The

planner must be able to predict the expected convergence rate of the parameter

values, which is characterized by the parameter variance evolution. Predicting the

parameter variance evolution when learning from a system with correlations in time

hinges on the prediction of the expected inverse of the information matrix used by the
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learning algorithm. This prediction is developed in great detail in Chapter 4. Next

we discuss how to update the parameter variances after the plan has been executed

and some learning has taken place.

In Chapter 5 all the pieces are brought together and the motion planner is aug-

mented with information about the parameter uncertainty that arises from the learn-

ing algorithm. To understand how the integrated planning and learning algorithm

can generate emerging practicing behaviors in the vehicle, we present a simple 2D

robot model for which the parameter covariance evolution and the resulting effect

on the error variance can be calculated analytically. Based on that example we try

to evaluate the problem conditions under which the vehicle exhibits those practicing

behaviors. Next the problem is extended to the holonomic vehicle; in that case, pa-

rameter uncertainty is handled with numerical quadrature. Chapter 5 concludes with

experimental results showing how the vehicle uses its understanding of uncertainty

to autonomously perform active learning, when necessary, to learn a model or adapt

to changes in the vehicle or the environment.

Chapter 6 summarizes the novel contributions in the thesis and discusses promising

avenues for future research. The autonomous marine vehicles used in the experiments

are described in Appendix A. Appendix B describes some of the numerical procedures

used in the implementation of the planning and prediction algorithms.
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Chapter 2

Background

This chapter provides some background material for the integrated motion planning

and model learning algorithm described in Chapter 1. Because the main application

of this work is marine vehicles, we begin with a summary of existing techniques in

marine vehicle navigation and control. Next we discuss model learning and adaptive

control strategies. The motion planning algorithm is the core component of this

thesis, and it is based on an existing motion planning framework and search algorithm

which are described in this chapter. Next we discuss how to handle uncertainty in

the environment and in the dynamic model of the vehicle when designing motion

plans. We conclude by studying how the exploration vs. exploitation problem has

been addressed in various fields.

2.1 Marine Vehicle Navigation and Control

The planning and control task for marine vehicles can be divided into two problems:

the navigation problem of finding a route through obstacles, and the control problem

of keeping the vehicle on that route. The navigation problem is generally handled by

defining as series of waypoints on the way to the goal location, and there are several

different methods of low-level control. These different tasks are described below.
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2.1.1 Waypoint-Based Navigation

The standard approach to marine vehicle navigation is waypoint-based path following

[27]. A waypoint is a point in space: a point on the ocean surface for surface vessels,

or a point in the ocean volume for underwater vehicles. Waypoints are positioned be-

tween the vehicle’s starting point and its destination so that the passage between the

waypoints is safe and efficient. The navigation task when using waypoints is simply

to drive from one waypoint to the next, in series, until arriving at the destination. In

the simplest form of waypoint navigation, the vehicle simply steers so that its heading

points toward the target waypoint (Figure 2-1). When the vehicle approaches within

a certain distance of the target waypoint, that waypoint is abandoned and the vehicle

seeks the next waypoint.

Ψd

WP1 WP2

Figure 2-1: Simplest waypoint navigation: the vehicle points to the next waypoint.

An analysis of the sensitivity of the approach described above reveals that, for a

fixed heading controller, the closed-loop dynamics change as the vehicle approaches

the waypoint [36]. This is an undesirable feature, so the waypoint path-following

algorithm is usually modified as follows. First, a line is defined connecting the current

waypoint to the last waypoint. Next, the vehicle location is projected onto the line.

A target is created a certain distance ∆ ahead of the projected vehicle position on

the line, and the heading controller is commanded to point the vehicle toward that

new point. This procedure, generally known as the line-of-sight (LOS) algorithm

[28], is illustrated in Figure 2-2. The look-ahead distance ∆ is typically chosen as

2 or 3 boatlengths [65]. Because it is constant, the linearized closed-loop dynamics

of the vehicle around the straight path leg do not change with the distance from

the waypoint. Furthermore, it has been proven [65] that, when moving forward at
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a constant speed in a vehicle with pure yaw control with the LOS algorithm, any

exponentially stable heading controller will cause the vehicle to converge to the path

leg with global asymptotic stability. This powerful result explains the widespread

use of LOS waypoint algorithm. However, the pure yaw control assumption excludes

most surface vessels whose dynamics are non-minimum phase.

Ψd

WP1 WP2
∆

Figure 2-2: Line-of-sight waypoint navigation: the vehicle points to a target on the
path leg.

If the heading controller is linear and the deviations from the path are small, the

LOS algorithm represents a linear cross-track position feedback controller, and linear

control design techniques can be used to tune the system by changing the heading

controller gains or ∆.

2.1.2 Low-Level Control

Low-level control for a marine vehicle comprises velocity control, heading control,

and position control. It does not consider any knowledge of obstacles or higher-

level mission goals; a state vector x, which may include velocities and/or positions, is

regulated to match a reference state r which may or may not be known in advance. In

velocity control, the position states are left unregulated, but the higher-level planner

may be able to predict the resulting trajectory given assumptions about the low-level

controller’s rate of convergence and/or steady-state errors.

In some cases, each state in x is measured directly: this leads to full-state feedback

control. In other cases, only some of the states are measured; for example, if a vehicle’s

only sensor is GPS, then position is measured directly but velocities must be inferred

from changes in the measured position over time. In the latter case, either output
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feedback must be used to control the system (unmeasured states do not appear in

the control law) or a state estimator such as a Kalman filter must be coupled with a

full-state feedback controller.

Low-level control can be achieved through many different methods. The simplest

method is linear time-invariant (LTI) control, which is particularly suited for vehicles

with linear dynamics, linearizable kinematics, and no saturation limits. The simplicity

of the analysis of LTI systems means that these restrictive assumptions are often

worthwhile. Proving stability for linear control of nonlinear systems, nonlinear control

of linear systems, and nonlinear control of nonlinear systems (each resulting in a

nonlinear closed-loop system) can be very difficult [78].

Proportional, integral and derivative (PID) control is the most ubiquitous control

method used in industry because it is simple to implement, it can be applied to

nonlinear systems, and it requires tuning only three gains (on the error signal, its

integral, and its derivative). In many applications only PI or PD control is necessary,

simplifying the tuning process further. However, general PID control does not have

any stability or robustness guarantees and for complex systems even tuning three

gains can be difficult. Self-tuning PID control [84] can help with the latter issue, but

the lack of guaranteed stability and robustness means that PID control is unattractive

for modern applications. Furthermore, PID control can only be used for single-input,

single-output (SISO) systems.

The linear quadratic regulator (LQR) is a control method for LTI systems with

guaranteed robustness. Unlike PID control, an LQR is designed from the system

model, and it can be applied to multiple-input, multiple-output (MIMO) systems.

LQR control is also known as optimal control, because it minimizes (optimizes) a

cost function J that is a combination of state errors and control effort:

J =

∫ ∞
t=0

xTQx + τ TRτdt (2.1)

In Equation (2.1), τ is the control vector and Q and R are symmetric positive-

definite state and control cost weighting matrices, respectively. The control gain
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matrix K in the control law τ = −Kx is designed from Q, R, and the system model.

The elements of Q and R are the tunable parameters for the controller. If x and

τ are properly scaled, then the cost matrices can often be simplified to Q = I and

R = ρ I where ρ is the single tunable parameter that defines the bandwidth of the

closed-loop system. Because robust MIMO control systems can be designed using

a single tuning parameter, LQR control is very common; it is even used to control

nonlinear systems.

Vehicle kinematics can be linearized around the straight paths between waypoints

and folded into the LTI model for the vehicle plant. Consequently, line-of-sight

waypoint-based path following (Figure 2-2) can be accomplished with an LQR control

law.

Feedback linearization and sliding mode control can be used to control nonlinear

systems [78]. Both methods cancel out the known nonlinearities in the system and

replace them with stable linear dynamics. As such, the methods work best when the

nonlinearities in the system are known exactly. Sliding mode control uses a smoothed

switching control law to achieve some robustness to modeling error. Nonlinear back-

stepping is another approach that derives a control law from a Lyapunov function,

resulting in guaranteed stability as long as the system parameters are known. Sliding

mode control [1, 38] and nonlinear backstepping [66, 28, 21] have been applied to the

low-level control of marine vehicles.

Another nonlinear control technique is fuzzy control, in which the measured state

is mapped to a set of discrete sets (“large positive”, “small negative”, etc.) through

one interpolation and the corresponding rules (“large rudder right”,“zero action”,

etc.) are mapped to the control values through another interpolation. One advantage

of fuzzy control is that the rules can be designed by a human expert. The fuzzy rules

can also be learned from human pilot data [58], yet fuzzy control is not significantly

better than PID control [14].

Finally, neural networks have proven to be very effective for autonomous vehicle

control [53, 62, 9] including ship berthing [20]. The weights in the neural network

must be learned from training data, so they require a high-fidelity simulation of the
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system or a rich batch of experimental data.

2.2 Learning

Some of the low-level control techniques presented in the previous section depend

on a mathematical model of the system: LQR, feedback linearization, sliding mode

control, and nonlinear back stepping all require a system model. The others do not:

PID control, fuzzy control, and neural networks are tuned without a system model.

A system model can be determined offline from theory (knowing the mass, damp-

ing and geometry of all the components, for example, and calculating the system

equations from the equations of motion) or empirically with separate model identi-

fication techniques. If the system changes, then the theoretical or empirical system

model must be recalculated. The alternative approach is to learn the system model

online while the system is running; when the system changes, the learning algorithm

causes the model to change accordingly. For the control techniques that require a

system model, the controller is redesigned online as the system model changes.

For the control techniques that do not require a system model, the controller

must be designed from data that is either presented to a learning algorithm offline

or collected online. When the system changes, the learning algorithm must be run

again.

2.2.1 Adaptive Control

Adaptive control can either refer to learning the system model from which the con-

troller is designed, or (for the controllers that do not use a system model) learning

the control parameters or neural network weights. In either case, the parameters are

updated online in response to tracking errors of the control system. This approach

can be applied to a PID controller [84], neural networks [53, 62, 9], and many other

systems [85, 77]. In adaptive control, the system can only learn parameters or control

values associated with actions and behaviors that the system has performed. If a

vehicle only drives in a straight line then adaptation will occur for the straight-line
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parameters but not for the turning parameters, as those parameters have not yet been

excited. This property may be undesirable if the goal is to learn all of the parameters

in the system. Active learning, described below, is a strategy to use adaptive control

to learn all of the parameters by designing trajectories that excite all of the modes of

the system.

2.2.2 Least Squares System Identification

System identification is a general term referring to any method to learn about the

structure of a system or the values of the parameters within that structure using

measured data. It is related to adaptive control, except that the only aim is to learn

about the system properties instead of learning how to control the system. Often a

system model is needed for purposes besides control, such as prediction or planning.

Once the system has been identified, the low-level control methods that require a

system model (LQR, sliding mode control, nonlinear backstepping, etc.) can be used.

Least squares (LS) system identification is a linear regression technique for learn-

ing the values of parameters in a known model structure. If an output of the system

y is a linear combination of the n states and inputs φ, then the output can be repre-

sented as an n-dimensional hyperplane described by the following equation.

y = βTφ (2.2)

We acknowledge that the output measurement y may be corrupted by some sensor

noise. If a finite number of input and output samples are collected then the LS

algorithm finds the hyperplane such that the sum of the squared error between the

hyperplane and each output sample is minimized. The parameter vector that satisfies

this condition is shown below,

β̂ = arg min
β∈Rn

N∑
i=1

(
βTφi − yi

)2

=
(
ΦΦT

)−1
ΦYT (2.3)
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where Φ = [φ1 . . .φN ] and Y = [y1 . . . yN ]. The model structure appears in the

mapping from the states and control inputs to the learning input vector φ. This

mapping can be nonlinear; equation (2.2) is still valid as long as the elements of φ

combine linearly. For a MIMO system, (2.3) is evaluated for each output.

If ΦΦT is ill-conditioned then the parameter estimates will be poor. This happens

when the number of data points is less than the size of β or not all of the modes of

the system have been excited. In these cases, the parameter estimates may need to

be regularized [22]. Regularization refers to using a priori estimates of the system

parameters to initially guide the estimates to the correct values and prevent numerical

instability.

The LS algorithm presented above requires computing
(
ΦΦT

)−1
for the entire

data set; this may be computationally expensive if it is recomputed whenever a new

data point appears in online learning. The Recursive Least Squares (RLS) algorithm

produces the same estimate β̂ but it involves a smaller incremental calculation when

each new data point is added. The RLS algorithm can be written with a forgetting

factor so that recent data is given more weight than old data; this is a useful feature

when the system is changing through time. Several methods exist for adjusting the

forgetting factor online to foster fast convergence to a time-varying system without

instability [26, 15, 63, 83, 87].

2.2.3 Active Learning

Adaptive control and least squares estimation are both sensitive to the richness of the

data provided to them. Adaptive control techniques will only learn the control gains

that are used by the system to generate the data, and the least squares parameter

estimates only converge if the associated mode has been excited. While it is not

necessary to learn all of the control gains or all of the system parameters at the

same time, it is often beneficial to learn a model for the entire system as quickly

as possible. The data used to learn the parameters in adaptive control and least

squares estimation is dependent on the open-loop commands applied to the system

or the reference trajectory that the system is asked to follow. In active learning, these
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commands are generated online to probe the system so as to learn the parameters as

efficiently as possible.

An excellent example of active learning for system identification is found in [69]. It

has been applied to the design of an underactuated cart-pole stabilization problem [74]

and robot juggling [73]. A related topic, active probing, is used to diagnose problems

in distributed network systems [11, 71]. Finally, active learning has been used to learn

reward distributions from different actions, similar to multi-armed bandit problems

(described in a later section). In fact, many exploration vs. exploitation problems

exhibit active learning.

2.3 Motion Planning

The full integrated algorithm presented in this thesis is based around a robust motion

planner. This planner generates motion plans that have a low probability of collisions

with obstacles in the presence of external disturbances and modeling uncertainty. This

section describes the Maneuver Automaton motion planning framework in which the

motion plans are built, and the search algorithm that is used to find the optimal plan

within the framework.

2.3.1 Requirements

The general requirement of a motion planner is that it must find a feasible sequence of

actions that moves a mobile robot from an initial configuration to a goal configuration

while avoiding contact with obstacles along the way. The planner may also take the

robot’s dynamic constraints into account. Ideally the motion planner finds the plan

that optimizes some objective function such as plan duration, energy expended, etc.

If the motion planning framework discretizes the plans in some way then the optimal

plan can be found through a graph search, of which there are many techniques. Oth-

erwise, a continuous optimization method such as mixed integer linear programming

must be used.
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2.3.2 POMDPs

A common framework for planning in stochastic environments is a partially observ-

able Markov decision process (POMDP) [45]. In this framework, the state space is

discretized into the finite set S, actions are discretized into the finite set A, and all

of the possible observations (measurements) that the robot might encounter are dis-

cretized into the finite set Ω. There is a state transition function T that maps all

possible combinations of states and actions to a probability distribution over the set

of states; in other words, it defines the probability that the robot will end up in each

state given an initial state and an action. Similarly, there is an observation function

O that maps all possible combinations of states and actions to a probability distribu-

tion over the set of observations; in other words, it defines the probability that the

robot will measure each possible observation given that it is in a particular state after

executing a particular action. Finally, the reward function R defines the reward (or

alternatively the cost) that would be gained by taking each action in each state. The

POMDP is subject to the Markov property, which means each state and reward is a

only a function of the previous state and action, but not any states or actions farther

in the past. The goal is to maximize the reward (or minimize the cost) over a finite or

infinite time horizon. Solving a POMDP refers to determining the policy (action as a

function each state) that maximizes the reward. The policy may be time-dependent.

POMDPs are typically solved with value iteration [72, 82].

The disadvantage of using POMDPs for motion planning is that the discretiza-

tions of the states, actions and observations would either be too coarse for practical

control implementations or too fine to be solved in a computationally efficient manner.

Furthermore, the Markov property is violated for a mobile robot with real dynamics,

unless several layers of previous poses are included in the set of discrete states. As an

alternative to the POMDP framework, we use the Maneuver Automaton framework,

which is described next.
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2.3.3 Maneuver Automaton Framework

Frazzoli’s Maneuver Automaton (MA) framework [29] is a general method for repre-

senting kinodynamic plans built from a discrete set of maneuvers. Maneuvers com-

prise trims or trim trajectories, which are periods of constant velocity, and motion

primitives which are used to connect the various trim states in the state space in a

finite amount of time. A simple MA system is shown in Figure 2-3. Motion plans are

concatenations of maneuvers, including trims of arbitrary duration and fixed-duration

motion primitives.

u = U 
r = R

u = U 
r = 0

u = 0 
r = 0

u = U 
r = -R

trimtrim

trim

trim

Figure 2-3: A simple maneuver automaton system. The vehicle can hover (u =
0, r = 0), drive straight forward at a constant speed U , or drive forward and turn
at a constant yaw rate R. Each of those behaviors is a trim. A trim trajectory is a
maneuver that stays in a trim, indicated with a green arrow, while motion primitives
are maneuvers that move between trims, shown as black arrows.

The MA framework has been applied to air vehicles [29, 76, 75, 33] and marine

vehicles [30, 81, 37]. Both of these types of vehicles represent holonomic systems, for

which the MA framework is particularly attractive; however, this framework can be

applied to non-holonomic systems such as wheeled ground vehicles as well.

If there are no obstacles in the configuration space of the vehicle, it is possible to

47



prove which regions of the space can be reached by a given set of trims and motion

primitives [31]. It is almost certain that there are multiple possible motion plans

that can be generated within the MA framework to get to any particular point in the

space. Obstacles limit the possible endpoints of the plans (a plan cannot end in an

obstacle or in a region of the space entirely cut off from the vehicle by obstacles) and

the number of plans that can be used to get to other points in the space. Yet even

with obstacles and a finite set of trims, there may be an infinite number of feasible

plans to get to a goal point in the free space. While the MA framework can be used to

represent plans, it does not offer any mechanism for finding plans, let alone optimal

plans (by any metric of optimality).

Motion plans are described by two lists: the sequence of maneuvers that make up

the plan, and the list of durations for each maneuver. Motion primitives often have

fixed durations; the time it takes to go from one trim to the next can be evaluated

experimentally or in simulations. Trim trajectories, on the other hand, can have

arbitrary durations. The list of maneuver durations in a plan includes fixed values

for the motion primitives and variable trim durations. The planning task is twofold:

(a) find the optimal sequence of maneuvers, and (b) find the optimal values of the

different variable-length trims within that sequence.

Within a given maneuver sequence, if the only variable-length trims are straight

trims (r = 0 in Figure 2-3) and there are no obstacles, then the trim-length problem

becomes a linear programming (LP) problem. (Turning trims add nonlinearities due

to the rotating coordinate frame, making the trim-length problem a nonlinear pro-

gramming problem). Therefore one solution to the motion planning problem is to

concatenate maneuvers together one by one in all combinations, and then solve the

LP problem for each maneuver sequence [29]. As more time is devoted to the problem,

the number of maneuvers increases and the possibility of finding a lower-cost solution

increases. This approach only works if the number of maneuvers is small and there

are no obstacles (meaning the probability that any particular maneuver sequence can

end at the goal is high).

This approach can be extended to include obstacles that are represented as poly-
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gons; optimal plans can be found using dynamic programming to generate the se-

quences and solving a Mixed Integer Linear Programming (MILP) problem for each

sequence [76, 75]. The MILP is necessary to encode the obstacle constraints.

The various motion plans represented by the MA framework form a tree structure

in the state space; as different maneuvers are concatenated to an existing plan, the

new plans branch out in different directions according to the configuration change

resulting from the maneuver. Branches of the tree that intersect with obstacles or

violate other constraints are deleted. A feasible motion plan is a path through the

tree that ends at the goal point. Motion plans have been generated using the MA

framework with randomized tree search algorithms [32, 81] and deterministic search

algorithms [37]. As trees are a subset of graphs, we now consider various graphs

search algorithms that could be used to find feasible and optimal motion plans.

2.3.4 Graph Search Algorithms

A network graph is a collection of nodes (points in the state space) that are connected

to each other by edges (state transitions). Usually each node is only directly connected

to a small number of neighboring nodes. Nodes can have a cost or a reward associated

with being at the node; similarly, traversing an edge is usually associated with a cost

or reward. A typical problem involving graphs is to find the path through the graph

from a start node to a goal node that incurs the smallest cost or reaps the largest

reward. Graph search algorithms find these optimal paths. Because nodes and edges

can represent very abstract concepts, graph search algorithms can be applied to many

different problems in robotics and planning [6]. The two most common graph search

algorithms are Dijkstra’s Algorithm and A*.

Dijkstra’s Algorithm

Dijkstra’s algorithm was first introduced in 1959 [18]. For a graph with known non-

negative edge costs, the algorithm computes the minimum cost from every node to

a goal node. The algorithm first initializes each node with an infinite (or very large)
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cost. Then the goal node is assigned a cost of zero and added to the queue. Next the

algorithm spreads outward from the goal, updating the minimum cost of each node.

When a node cost is updated, the node is added to the queue so that its neighboring

nodes can be updated as well. The complete algorithm is presented in Algorithm 1.

Algorithm 1 Dijkstra’s Algorithm.

1: Create a network graph G consisting of nodes N , edges E , and edge costs
c(e), ∀e ∈ E .

2: Initialize every node with an infinite cost: ∀n ∈ N , c(n) =∞.
3: Set the cost of the goal node to zero and add it to the queue Q.
4: while |Q| > 0 do
5: Remove the first (lowest-cost) node from the queue: n← Q(0).
6: for each edge e entering node n do
7: Compare the cost of the connecting node m to the cost of n plus the cost of

e, and assign the smaller value to m: c(m)← min(c(m), c(n) + c(e)).
8: If c(m) has been updated, add node m to the queue, sorted by cost.
9: end for

10: end while

Once the minimum costs have been assigned using Algorithm 1, the minimum-cost

path from any node to the goal can be found by simply moving to the neighboring

node with the minimum cost until arriving at the goal node. If the graph represents

a physical space through which a mobile robot moves, then Dijkstra’s algorithm

provides a robust method to get to the goal: if the robot is pushed off the path due

to external disturbances or control errors, then the new optimal path to the goal is

easily computed by following the minima from the new node.

If a node’s cost is infinity after running Dijkstra’s algorithm, then there is no path

from that node to the goal. A similar algorithm is the Bellman-Ford algorithm [5]. It

can handle negative edge costs, as long as those edges do not form a negative-valued

loop, but it has a longer runtime than Dijkstra’s algorithm.

A* Algorithm

While Dijkstra’s algorithm finds the optimal path from all nodes to a goal node by

working backwards, it is often more desirable to compute the optimal path from a

single node to the goal node. Dijkstra’s algorithm would of course work in this case,
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but it would involve evaluating far more nodes than are necessary for the task. A* is

an algorithm introduced in 1968 [43] to perform an optimal forward search to find a

path to the goal. It is a best-first algorithm, which expands nodes in order from the

“best” to the worst.

There are three costs involved in the A* algorithm. For each node n there is the

cost accrued from the start of the path to the node: this is g(n). A heuristic function

h is used to estimate the cost-to-go from n to the goal, h(n). The estimated overall

cost of the plan f is the known cost from the start to n plus the estimated cost from

n to the goal: f(n) = g(n) + h(n). The steps of A* are listed in Algorithm 2.

Algorithm 2 A* Algorithm.

1: Create a network graph G consisting of nodes N , edges E , and edge costs
c(e), ∀e ∈ E .

2: Add the initial node n to the queue Q.
3: while |Q| > 0 do
4: Remove the first (lowest-cost) node from the queue: n← Q(0).
5: if n is the goal then
6: return with success.
7: end if
8: for each edge e leaving node n do
9: The cost of the path up to the connecting node m is g(m) = g(n) + c(e).

10: Compute the estimated cost-to-go h(m).
11: The cost of node m is f(m) = g(m) + h(m).
12: Insert m into Q sorted by f .
13: end for
14: end while
15: return with failure.

If A* returns with failure, then no path exists from the start node to the goal.

Otherwise it is guaranteed to return the optimal path. It should be noted that the

algorithm does not terminate when a path ending at the goal is placed onto the queue,

but rather when it is removed from the queue; otherwise it cannot be guaranteed that

the path is optimal.

The optimality of A* depends on the heuristic function h. If h never overestimates

the cost to the goal, then A* is guaranteed to return the lowest-cost path from the

start to the goal. The speed of the algorithm (the number of node expansions)
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depends on the accuracy of h; if h exactly equals the cost-to-go, then the algorithm

will only expand the nodes along the optimal solution path. If the heuristic is poor

or nonexistent (h = 0) then A* will return the optimal solution but it may expand

many unnecessary nodes. In fact, in the limiting case h = 0, A* degenerates to a

forward version of Dijkstra’s algorithm. If the heuristic overestimates the cost-to-go

then it is an inadmissible heuristic; the planner may return a solution more quickly

than with an admissible heuristic, but the solution is not guaranteed to be optimal.

A detailed discussion on the optimality of A* is found in [17].

Extensions to A*

If the network graph used by Dijkstra’s algorithm or A* changes (either the connec-

tions between the nodes change, or the edge costs change) then those algorithms do

not have facilities to find the new optimal path without starting the algorithm from

scratch. A* was extended to changing graphs in 1994 [79] with the introduction of

Dynamic A*, or D*. D* was rewritten and combined with an incremental version of

A* in 2002 to become D* Lite [47]. In D* Lite, when edge costs are found to have

changed during the execution of the plan, the changes are propagated downstream to

find a new optimal path given the known cost change without rerunning A*.

Anytime Repairing A* (ARA*) [56] uses the property that inadmissible heuristics

(a function h which overestimates the cost-to-go) may return a solution faster than an

admissible heuristic would, although the solution may be sub-optimal. If the planning

time is limited, then a sub-optimal solution may be more desirable than no solution

at all. ARA* runs A* with an inflated heuristic (the admissible heuristic multiplied

by an inflation factor α ≥ 1 to generate a solution quickly. If some planning time

remains, the algorithm then reduces the inflation factor and runs the algorithm again.

This process continues until planning time runs out. If the inflation factor has reduced

to α = 1, then the solution is optimal; otherwise it is sub-optimal.

Physical A* (PHA*) adds a twist to the planning problem; rather than exploring

the state space in the planning process, the space is physically explored by a mobile

robot to determine edge costs and node feasibility [25].
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2.3.5 Kinodynamic Planning

The planning algorithms described above can be used to find the minimum-cost path

through a network graph. For basic path planning, the graph represents points in

the physical space in which the vehicle is moving, such as grid points or features on

a map. However, graphs can represent much more abstract concepts [6]. Each node

is a discrete state of the system, and edges are simply the transitions between those

discrete states. The states and transitions may be as specific or general as necessary.

Similarly, obstacles in the physical environment translate to general state constraints

in the abstract environment. These constraints may be time-dependent.

Vehicles are also subject to equations of motion, which serve as dynamic and

kinematic constraints. A path generated in a physical environment may not be re-

alizable by the vehicle. The vehicle’s turning radius and stopping distance prevent

vehicles from following paths with sharp corners. Wheeled vehicles have additional

nonholonomic constraints. In these situations, state transitions are maneuvers that

the vehicle is known to be able to perform. The maneuvers themselves are designed to

obey control input constraints, velocity constraints, and other dynamic and nonholo-

nomic constraints. If all the edges in the graph are admissible maneuvers, and none

of the maneuvers collide with physical obstacles, then every path through the graph

can be executed by the vehicle. The motion plan is a concatenation of maneuvers.

Using maneuvers to construct a network graph, and planning within that graph, is

known as kinodynamic planning.

It is not necessary to generate the entire graph before finding the plan. Using

a best-first search algorithm such as A*, not all of the nodes of the graph need to

be explored. Furthermore, the maneuvers can often be added in an infinite number

of combinations, leading to infinite graphs. Expanding search algorithms build the

graphs as necessary during the search process.
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2.3.6 Expanding Search Algorithms

Graph search algorithms can find paths through existing graphs whose connections

and edge costs are already known. Simply constructing these graphs can be an enor-

mous computational effort, especially when planning in higher dimensions. The plan-

ning effort then involves the comparable computational costs of generating a collision-

free graph that connects the start configuration to the goal, and finding the best path

through that graph. In these situations merely finding a path is considered as success,

to say nothing of the optimal path.

In high-dimension planning spaces, such as those describing robotic arms with

many degrees of freedom, the “obstacles” may be physical obstacles, kinematics con-

straints, or (for state spaces involving velocities) dynamic constraints. The effect of

these obstacles is that a path to the goal configuration may require significant explo-

rations of the state space. Furthermore, constructing heuristics for this space is very

difficult.

An expanding search algorithm adds actions or maneuvers to a tree-shaped graph.

The algorithm selects a node of the graph to expand using one or several of the actions

available to the vehicle. The new actions are added to the tree and a new node is

selected for expansion. An example of an expanding search is shown in Figure 2-4.

Start

Goal

Figure 2-4: An expanding search algorithm adds maneuvers to a tree in order to find
the goal. Maneuvers that collide with obstacles (dashed) are discarded.
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Rapidly-Exploring Random Trees

The motivations listed above led to the introduction of Rapidly-Exploring Random

Trees (RRTs) in 1998 [49]. The algorithm expands a tree by picking a random point in

the state space, choosing the nearest node of the tree to that point, and extending the

tree from the node in the direction of the selected point using an admissible maneuver

or control input. If the new edge crosses an obstacle, then it is discarded; otherwise

the algorithm continues. The general form of the algorithm is shown in Algorithm 3.

Algorithm 3 RRT Algorithm.

1: Initialize a network graph G with a node representing the start configuration.
2: Define g, the goal region of the state space X .
3: while ∀n ∈ G, n /∈ g do
4: Choose a random point x in X .
5: Find the node n in G that is closest to x.
6: Add an edge e from n toward x, terminating at a new node m.
7: Check if e crosses an obstacle in the state space; if it does, discard e and m.
8: end while

The RRT algorithm expands outward from the start node, with the nodes of

the graph approaching the distribution of the random samples. In particular, the

graph on average breaks up the large Voronoi regions of the free space; this means

that the algorithm has excellent exploration properties. The RRT algorithm can take

many flavors depending on the methods used in Algorithm 3. The probability density

function for the random samples can be skewed toward the goal node to encourage

the tree to expand there [49]; alternatively, a small fraction of the time the goal node

can be used for x in step 4 instead of a random point. Both methods are forms of

goal-biasing. The distance metric used in step 5 may be the Euclidian distance or any

other metric. Finally, there are many possible methods that could be used in step 6

to add a new node to the tree. (i) An inverse problem could be solved to find the set

of inputs that drive the state of the system in the direction of x. (ii) A discrete set

of inputs could be compared to see which input drives the system closest to x. (iii)

A feedback control law can be constructed to move the system toward x for a finite

amount of time.
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A similar approach combines a probabilistic roadmap (PRM) with predictive mod-

els (the edges in the RRT) to explore the configuration space [13]. However, neither

method uses the plan cost in a meaningful way; different collision-free paths in the

configuration space may both arrive at the goal with vastly different costs, and an

optimal motion planner must find the path that arrives with the guaranteed lowest

cost. Fortunately, the A* algorithm can be modified to expand into the configuration

space like the RRT algorithm. This technique is described below.

Expanding A*

The standard A* algorithm is used to find the shortest path through a known graph.

However, for kinodynamic planning the problem is to find the optimal path through a

possibly infinite tree-shaped network like the one shown in Figure 2-4. By combining

the heuristic of Algorithm 2 with the plan concatenation of Algorithm 3, we can

create a search algorithm that finds the lowest-cost plan that ends at the goal. The

robust motion planning algorithm used in this thesis is based on Algorithm 4.

Algorithm 4 Expanding A* Algorithm.

1: Load a maneuver library M.
2: Initialize the search queue Q with a plan containing only the initial node.
3: while |Q| > 0 do
4: Remove the first plan from the queue: p← Q(0).
5: if p ends at the goal then
6: return p with success.
7: end if
8: for each maneuver m in M do
9: Add m to p: p′ ← p+m.

10: if p′ is collision-free then
11: Compute the cost g(p′).
12: Compute the predicted cost-to-go h(p′).
13: The predicted total cost of p′ is f(p′) = g(p′) + h(p′).
14: Insert p′ into Q sorted by f(p′).
15: end if
16: end for
17: end while
18: return with failure.

These planning algorithms can either apply to a deterministic system or a stochas-
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tic system, as the actions or maneuvers can be direct low-level signals (“turn the left

wheel through three revolutions”) or high-level policies (“apply a feedback law until

the desired terminal condition is achieved”). It is important for a robust planner to

know how the execution of each action will contribute to the plan cost, as the cost

may be higher than expected if execution errors arise. The next section how the

planner can handle uncertainty in the system or the environment.

2.4 Planning Under Uncertainty

The planning community has recently shifted from planning for deterministic systems

in known environments to planning for stochastic systems in unknown environments.

This section outlines several existing views on the problem.

2.4.1 Various Sources of Uncertainty

LaValle and Sharma (1998) list four different types of uncertainty that may be present

in motion planning problems: robot sensing uncertainty (RS), robot predictability un-

certainty (RP), environment sensing uncertainty (ES), and environment predictability

(EP) [52].

RS uncertainty means that the robot does not exactly know its position and

configuration within the environment; this may be the result of sensor noise. Similarly

ES uncertainty means that the robot does not exactly know about the environment

around it, which can also result from incomplete sensing or sensor noise. Simultaneous

Localization and Mapping (SLAM) seeks to reduce RS and ES uncertainty.

RP uncertainty means that the robot cannot accurately predict its future config-

urations given a known sequence of control actions. This can arise from an imperfect

system model or external disturbances. If the uncertainty is bounded then a back-

projection algorithm can be used to identify plans that will be guaranteed to succeed

[23]. The backprojection is also known as a preimage; it has been extended to encom-

pass uncertainty probability density functions [51]. If environmental sensing is good

and the robot’s sensors are more reliable when near obstacles (as with most laser and
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acoustic positioning systems), then the planner will choose paths that hug the walls

of obstacles to reduce the position uncertainty on the way to the goal [4, 72]. The

Maneuver Automaton framework has been extended to include maneuver uncertain-

ties by simply adding a cost associated with each maneuver’s uncertainty to the cost

function [76]. This author’s work uses the Maneuver Automaton framework with an

analytic error variance prediction to explicitly include the risk of collisions in the cost

function [37].

EP uncertainty arises in dynamic environments: the future state of the environ-

ment, including other robotic or human agents, may not be known exactly. A* has

been extended to try to handle this case [86], and an evolutionary algorithm has been

created for a deterministic aerial robot in which collision probabilities depend on the

time-varying probability density functions for the obstacles [68].

2.4.2 SLAM

An important problem in mobile robotics is to build a map of an unknown environ-

ment without the use of a global position reference. Lunar and subsea navigation fall

into this category because in both cases it is unlikely that a ground-truth position

reference like GPS is available. To build a map with body-fixed sensors, the vehicle

must have a good knowledge of its own position, but with out an accurate global

reference it must infer its position from the features it is mapping. This chicken-and-

the-egg problem is called Simultaneous Localization and Mapping (SLAM) [54, 19].

In the most basic form, the vehicle follows a pre-planned trajectory and uses SLAM

to build a map and find its position within that map. However, it is possible to

design trajectories that actively reduce either the uncertainty in the map [48] or the

uncertainty of the robot’s position through a one-step look-ahead [24] or a multi-step

look-ahead [44].
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2.4.3 Probabilistic Algorithms

All forms of uncertainty can be handled using probabilistic algorithms [82]. In par-

ticular, particle methods can be used for robot localization. The general idea behind

particle methods is that the probability distribution for the robot’s position within

the configuration space is represented by a set of particles. New sensor data affects

the belief distribution across the particles. The particles are redistributed in the

space according to the updated probability distribution. Applying this approach to

the mapping problem results in a huge increase in complexity. Furthermore, Kalman

Filter approaches may not be effective because the distributions are often multimodal.

Particle methods can also be used to generate optimal control sequences in the

presence of stochastic process disturbances [7]. Each control action throughout the

time horizon is a free parameter. If the system dynamics and the constraints can

be linearized, then the particle problem can be written as a Mixed Integer Linear

Program (MILP). The result is a control sequence that can be guaranteed to result in

a collision-free trajectory with a specified probability. The accuracy of this guarantee

increases as the number of particles increases.

In this work we consider primarily RS and RP uncertainty; we assume that the

robot has a complete and accurate map, and any changes to the environment are

known in advance. This is a very limiting assumption in terms of real robotics, but

it is necessary to limit the scope of this work.

It may be possible for the mobile robot to reduce its uncertainty through the

actions it chooses to take. However, those actions may delay or add cost to the

mission. This tradeoff is discussed in the next section.

2.5 Exploration vs. Exploitation

Throughout the planning world there are many examples of the “exploration vs.

exploitation” problem. This problem is particularly relevant in reinforcement learning

[50]. On the one hand, it is often beneficial for a robot to explore its environment

(either the physical environment or the robot’s state space) and learn about the risks
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and rewards [80, 57]. This could be considered to be a form of intrinsic motivation

[46]. On the other hand, if the robot is seeking to maximize an objective function

then it makes sense to exploit the rewards that are already known. When faced

with a new or uncertain environment, a robust strategy strikes a balance between

exploration and exploitation.

Two examples in the literature apply this tradeoff to the path search problem.

The exploring/exploiting tree (EET) algorithm explicitly balances exploration and

exploitation. The algorithm is weighted more toward exploitation when the expanding

tree makes successful connections, and it is weighted more toward exploration when

it does not [70]. Physical A* (PHA*) is an example of a planning algorithm that

balances exploration (in this case physically performing the search with a mobile

robot to determine the connectivity and edge costs in the graph) with exploitation

(the cost of moving within the physical graph) [25].

Reinforcement learning is a form of integrated planning and learning in which

an agent moves through an unknown world learning about reward and cost distribu-

tions. Two examples are [80], which uses dynamic programming to find strategies to

move through a grid-based world, and [57], which operates in a world with obstacles,

enemies, and food.

More recently, path planning has been used to reduce map uncertainty [48]. In

this case a high-level coverage planner chooses a set of destination points within the

known space to optimally reduce the map accuracy. Next a reinforcement learning

algorithm learns the best way to arrive at the destination point while most improving

the map. This approach can be adapted to ensure a high probability of arriving at a

destination by choosing to drive near known features [72, 67]. This process is known

as coastal navigation, because it is similar to a ship sailing within sight of a coastline

rather than taking the shortest path to a destination across open water.

However, these examples deal with learning about the environment. In this thesis

we assume to have a perfect knowledge of the obstacles in the environment and we

learn about the robot’s own dynamic model instead. An active learning approach

similar to the multi-armed bandit is used to learn the parameters of an economic
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system in [88]. Another model-learning example is given in [74], in which a minimum-

time cart-pole maneuver is learned through many trials using stochastic dynamic

programming. As the system is exposed to more and more data through the trials

and the confidence in the model improves, the controller chooses more aggressive

maneuvers that span larger regions of the state space. This increase in aggressiveness

with improving confidence is a feature that we hope to capture with the integrated

motion planning and model learning algorithm described in this thesis. A similar

result is obtained in [73], where the system slowly builds up data in the state space

over time. A controller is designed using the data near the system’s current state.

Randomness (real and artificial) causes the system to gather data in a small region

around the desired state. Once the confidence in that data is large enough, the desired

state is shifted slightly towards the ultimate goal state and the procedure repeats.

Again, this consideration of the model uncertainty when moving the setpoint is a

feature we incorporate into our algorithm.

The most relevant work in the literature uses trajectory optimization to discrimi-

nate between multiple system models [8]. A system is assumed to have a finite number

of failure modes, each with a known system model. A finite sequence of control val-

ues can be designed using sequential quadratic programming to discern which failure

mode best describes the data collected from the system. The model discrimination

can be performed while executing another mission, such as driving to a goal. The

integrated motion planning and model learning algorithm presented in this thesis is

similar in that the planning algorithm takes the predicted reduction of uncertainty

into account in the planning process, but we allow for a continuous variation of the

system model rather than being restricted to finite set of known models.

2.6 Summary

In this chapter we have outlined the existing research in adaptive marine vehicle

control, motion planning algorithms, and planning algorithms that seek to reduce

uncertainty in the environment or the dynamic model of a robot. With few exceptions
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there has not been a focus on planning based on what knowledge will be acquired

during the execution of the motion plan, and using such predictions to improve the

robustness of the plans to external disturbances and modeling errors. In this thesis we

develop an integrated motion planning and model learning algorithm that optimally

balances active learning strategies (exploration of the state space) with goal-seeking

behavior (exploitation). This algorithm is built around a robust motion planner,

which is described in the next chapter.
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Chapter 3

Robust Motion Planning

This chapter describes the robust motion planning algorithm that is the core of the

thesis. Standard motion planning is fairly straightforward: using a simplifying frame-

work, the planner finds a sequence of actions that moves the vehicle from a start con-

figuration to a goal configuration without intersecting with obstacles along the way.

A rapidly-exploring random tree (RRT) is a common example of a standard motion

planner [49]. An optimal motion planner such as the A* algorithm uses a similar

expanding tree, but optimal algorithms ensure that the returned path is the best

(with respect to a cost function) among all motion plans in the planning framework.

A robust motion planner must consider disturbances and other effects that may push

the vehicle off the specified motion plan so that the returned plan has a good chance

of succeeding even in the presence of those disturbances. In this chapter, we develop

a robust motion planner that minimizes a combination of the plan duration and the

probability of collisions with obstacles.

In the Section 3.1 we describe the requirements of the motion planner and the

planning problems we expect to be able to solve. In the Section 3.2 we list the dynamic

equations for a planar holonomic vehicle. The subsequent two sections describe the

planning framework and the maneuvers that are used to construct the motion plans.

In Section 3.5 we introduce the simple controller that is used to keep the vehicle

on the reference path in the presence of stochastic disturbances and we compute

predictions of the resulting error (Algorithm 5). Computing the collision probability
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from the path-following error distribution is a non-trivial task that can be reduced to

the particle absorption problem from statistical physics [12]. Section 3.7 deals with

the analytic prediction of the absorption rate (Algorithm 6) and the corresponding

collision probability (Algorithm 7). Section 3.8 describes the A* planning algorithm

(Algorithm 8) that finds the optimal motion plan within the framework. The final

sections present experimental results for the robust motion planning algorithm and

summarize the innovations developed in this thesis.

3.1 Problem Definition

The motion planner is used to navigate a planar holonomic vehicle through a cluttered

environment to arrive at a target location as efficiently as possible. The following

pieces of information are required to specify the planning problem.

• Start position, orientation and velocity.

• Goal position.

• Obstacle positions.

• Nominal forward/backward velocity and yaw rate.

The start position is ideally the vehicle’s position when it begins executing the

plan, which may in practice be different from the vehicle’s position when starting the

planning process. In the interim the vehicle may be in motion due to the thrusters

or external disturbances. Because the motion plan may be very sensitive to the start

position, care should be taken to ensure that the vehicle is at the planned start

position and orientation when it begins executing the plan.

The terminal state of any motion plan is a full state vector, but we may only

want to use a subset of the terminal state when defining the goal. Using the full

state (that is, specifying a goal position, orientation, speed and yaw rate) may be

desirable, but it is problematic for three reasons. First, it may be impossible to

independently specify three goal velocity components for an underactuated vehicle.
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Second, specifying both a goal position and a goal velocity requires a backward search

to ensure that the proper terminal states are reached. Third, it is very difficult to find

a heuristic function that incorporates both the distance to the goal (position error)

and the relative goal heading (orientation error). For example, for most motion

planning problems for marine surface vehicles, heading errors relative to the goal

heading should not be penalized at the beginning of the plan as the vehicle may

need to steer around obstacles. To avoid these issues we specify only a goal position,

leaving the terminal heading and velocities unconstrained. This simplification leads to

hazardous conditions in planning scenarios such as pulling into a slip, as the velocity

at the end of the plan may be large, or docking the vehicle, as the terminal orientation

may be undesirable, but it is a necessary assumption to make the planning problem

tractable.

The obstacle positions are assumed to be known exactly during the planning

process. If the obstacles are moving then it is assumed that their positions can be

accurately predicted throughout the duration of the motion plan. The obstacles can

have any representation (points, polygons, curved objects, concave objects, etc.) as

long as it is possible to test if a point is inside the obstacle and it is possible to

compute the distance and angle to the closest point on the obstacle from any point

in the space.

The final pieces of information needed to define the problem are the nominal

forward speed and the nominal turn rate. These speeds define the library of maneuvers

and trims that are used to generate the motion plans. Ideally these speeds are not

the maximum speeds that the vehicle can achieve, because for combined position and

velocity feedback it is useful to have some extra control authority when driving at

the reference speed. Even for vehicles whose dynamic model is not well known, it

is usually easy to define an expected cruise speed and a safely achievable yaw rate.

Using these speeds one can define a 3×3 grid of points in the surge/yaw space. These

points define the setpoints for the speed controller. A denser grid of setpoints would

provide a better resolution for the planner, at the expense of added computational

cost.
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Figure 3-1 shows a typical planning problem using these pieces of information. The

initial vehicle position and orientation are indicated in the figure. The goal position

is shown as a green square. The obstacles are drawn in red. The black path is a

motion plan using maneuvers built around the nominal forward speed and yaw rate.

The motion plan shown in the figure is the optimal motion plan within the planning

framework for a particular cost function that includes the estimated vehicle dynamics

and process noise; this cost function is developed throughout this chapter. The next

section describes the equations of motion for the vehicle, including the dynamics and

the kinematics.

Figure 3-1: This motion plan brings the vehicle from the indicated start position and
orientation to the goal position (the green square) while avoiding the obstacles (red
regions). This plan is optimal given the vehicle dynamics and a particular metric
based on collision probability.

3.2 Equations of Motion for a Planar Holonomic

Vehicle

This section lists the equations of motion for a planar holonomic vehicle. These

equations are the core of the various prediction algorithms used in this chapter and

Chapter 4.
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The (X, Y ) coordinates of the center of mass of the vehicle and the vehicle’s

heading angle ψ are contained in the vector η (3.1). When η = 0, the vehicle points

along the X axis with the Y axis extending to the left (port) side of the vehicle

(Figure 3-2). The Z axis points up from the center of mass of the vehicle.

η =


X

Y

ψ

 ν =


u

v

r

 τ =


τx

τy

τψ

 (3.1)
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Figure 3-2: Global (X, Y ) and vehicle-fixed local (x, y) coordinate systems. The
velocities (u, v, r) and control inputs (τx, τy, τψ) are shown as well.

A second coordinate system (x, y) is aligned with the vehicle and attached to its

center of mass, as shown in Figure 3-2. The z axis points up from the center of

mass. The surge velocity u, sway velocity v and yaw rate r are assembled in the

velocity vector ν (3.1). The control inputs are τ ; these represent forces in the x

and y directions, τx and τy, and a torque about the z axis, τψ. In general in this

thesis we consider an underactuated vehicle for which τψ = 0; this is valid for vehicles

powered by a single azimuthing thruster. Fossen studies underactuated vehicles for

which τy = 0, which is the case when a vehicle is steered with differential thrust, such

as many ROVs [28, 64]. The algorithms developed in this thesis are valid for both

types of underactuated vehicles.
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3.2.1 Dynamics

The dynamics for a marine vehicle, which can be adapted to any holonomic vehicle

moving in a planar environment, can be expressed as follows [27]:

Mν̇ + C(ν)ν + D(ν)ν = τ + wT (3.2)

where the mass matrix M, the Coriolis matrix C(ν), and the drag matrix D(ν)

(up to the quadratic terms) are defined below and wT is a vector of environmental

disturbance forces and moments.

M =


m11 0 0

0 m22 0

0 0 m33

 C(ν) =


0 0 −m22v

0 0 m11u

m22v −m11u 0



D(ν) =


d11 + du2|u| 0 0

0 d22 + dv2|v| d23 + dvr|v|

0 d32 + drv|r| d33 + dr2|r|


(3.3)

Equation (3.2) can be rearranged into the following state space form,

ν̇ = a(ν)ν + bτ + fν(ψ) + wν (3.4)

where

a(ν) =


− d11
m11
− du2

m11
|u| 0 m22

m11
v

0 − d22
m22
− dv2

m22
|v| −m11

m22
u− d23

m22
− dvr

m22
|v|

m11−m22

m33
v − d32

m33
− drv

m33
|r| − d33

m33
− dr2

m33
|r|



b =


1
m11

0 0

0 1
m22

0

0 0 1
m33

 (3.5)

The state transition matrix a(ν) contains drag and Coriolis effects, and the input

matrix b contains the gains for the control inputs τ . The mean environmental dis-
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turbance in body-fixed coordinates is fν(ψ). The noise vector wν is a random vector

sampled from a zero-mean multinormal distribution with a covariance matrix Wν ;

in other words, the total noise in body-fixed coordinates is N (fν(ψ),Wν). For small

velocities, a(ν) can be linearized around ν = 0, as shown below. In general, a(ν)

can be linearized around any reference velocity νr.

a|ν=0 =


− d11
m11

0 0

0 − d22
m22

− d23
m22

0 − d32
m33

− d33
m33

 (3.6)

3.2.2 Kinematics

To derive the kinematics of a vehicle moving in the plane, we first consider a point

in the local coordinate system p expressed in global coordinates P through the fol-

lowing transformation, where the origin of the local coordinate system is (X, Y ) in P

coordinates with an orientation ψ: Px

Py

 =

 cosψ − sinψ

sinψ cosψ

 px

py

+

 X

Y

 (3.7)

When a vehicle starting at the origin of the P coordinate system is moving at a

velocity ν, the position of the vehicle after a time δt is η(δt), derived below using

(3.7).


X(δt)

Y (δt)

ψ(δt)

 =


uδt cosψ − vδt sinψ

uδt sinψ + vδt cosψ

rδt

+


X

Y

ψ

 (3.8)
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Using the definition of the derivative, we have:

η̇ = lim
δt→0

η(δt)− η(0)

δt

= J(ψ)ν (3.9)

where J(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.10)

The rate of change of J is derived below.

J̇(ψ) =


−r sinψ −r cosψ 0

r cosψ −r sinψ 0

0 0 0


= S(r)J(ψ) (3.11)

where S(r) ≡


0 −1 0

1 0 0

0 0 0

 r ≡ Srr (3.12)

The matrices S(r) and Sr will be used in Section 3.6 to derive the path-following

error dynamics.

3.2.3 Full System

The state space equations (3.4) and (3.9) can be combined into a single nonlinear

state space equation. The full state x contains both the velocity vector ν and the

position/orientation vector η.

x =

 ν

η

 (3.13)
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The evolution of (3.13) is shown below.

 ν̇

η̇

 =

 a(ν) 0

J(ψ) 0


︸ ︷︷ ︸

=A(x)

 ν

η

+

 b

0


︸ ︷︷ ︸

=B

τ +

 fν(ψ)

0


︸ ︷︷ ︸

=Fν(ψ)

+

 wν

0


︸ ︷︷ ︸

=w

ẋ = A(x)x + Bτ + Fν(ψ) + w (3.14)

Equation (3.14) is a nonlinear state space system even when the velocities are small

(a(ν) = a) due to the rotation matrix J(ψ) and the body-frame steady disturbance

fν(ψ).

3.3 Motion Planning Framework

The motion planning framework used to construct and describe motion plans is based

on Frazzoli’s Maneuver Automaton (MA) [29]. The MA framework builds motion

plans from two types of maneuvers: motion primitives and trims. We ignore this

distinction and represent motion primitives and trims in the same way; we also add a

third type of maneuver, driving to a waypoint, and represent it as a general maneuver

as well. Maneuvers can be described mathematically using motion groups, which are

a type of Lie group particularly useful for building motion plans. See [55] for a useful

overview of Lie groups applied to motion plans. This section defines motion groups

and studies their properties, and in the next section we use motion groups to build

motion plans for planar vehicles.

3.3.1 Motion Groups

A convenient representation for the position and orientation of the vehicle is a motion

group. The motion group M is a rotation matrix J(ψ) augmented with the global
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position states. In 3 DOF, the motion group is:

M =


cosψ − sinψ X

sinψ cosψ Y

0 0 1

 . (3.15)

Motion groups can also be used to represent maneuvers; these are known as local

motion groups. The local motion group m contains the local position and orientation

changes ∆x, ∆y and ∆ψ.

m =


cos ∆ψ − sin ∆ψ ∆x

sin ∆ψ cos ∆ψ ∆y

0 0 1

 (3.16)

Note that by their construction, global and local motion groups are always invertible.

A trim is a cruising condition for the vehicle in which the velocities ν remain

constant. To predict the evolution of the local motion group m(t) during a trim, we

take the derivative of m with respect to time evaluated at (∆x,∆y,∆ψ) = 0, that is,

m = I3×3. This derivative, ξ, is derived below.

ξ ≡ ∂m

∂t

∣∣∣∣
m=I

=


−r sin ∆ψ −r cos ∆ψ u

r cos ∆ψ −r sin ∆ψ v

0 0 0


∣∣∣∣∣∣∣∣∣
∆ψ=0

=


0 −r u

r 0 v

0 0 0

 (3.17)

The derivative ξ is used in the following first-order linear matrix differential equation:

ṁ = m ξ (3.18)

Equation (3.18) is solved using the matrix exponential. The solution from an initial
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position at the origin (m(0) = I3×3) is shown below.

m = m(0)eξt

= eξt (3.19)

Equation (3.19) has an explicit form in 3 DOF: m has the form of (3.16) with:

∆x = (u sin (rt) + v(cos (rt)− 1))/r

∆y = (u(1− cos (rt)) + v sin (rt))/r

∆ψ = rt

 for r 6= 0

∆x = ut, ∆y = vt, ∆ψ = 0 for r = 0

(3.20)

3.3.2 Combining Motion Groups Through Concatenation

Motion groups are a convenient representation for the maneuver automaton frame-

work because local motion groups can be concatenated through multiplication. Start-

ing from an initial configuration M0, the configuration after i maneuvers with corre-

sponding local motion groups m1, m2, etc., is:

Mi = M0m1︸ ︷︷ ︸
M1

m2︸ ︷︷ ︸
M2

. . .mi−1

︸ ︷︷ ︸
Mi−1

mi (3.21)

Another way of expressing (3.21) is:

mi : Mi−1 →Mi ∀i > 0 (3.22)

The next section describes how to use this property of local and global motion

groups to easily construct motion plans.
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3.4 Motion Plans for Planar Vehicles

Through the use of (3.21), entire motion plans can be constructed by concatenating

maneuvers. As long as the maneuvers are feasible, then the motion plan is feasible.

A motion plan p consists of |p| maneuvers or path legs, where |p| is the plan length.

There are |p|+ 1 nodes, including the initial node. Each node can be represented by

a global motion group M.

The motion plan serves as a reference trajectory for the vehicle. Because of distur-

bances, modeling error and underactuation, the actual vehicle trajectory may differ

from the reference. Nonetheless, it is desirable to have a continuous and smooth

reference trajectory so that path errors and overshoot are minimized. Because the

position at the end of maneuver mi matches the position at the beginning of the next

maneuver mi+1 through the concatenation procedure, the continuity of the reference

trajectory is guaranteed. Furthermore, because the orientation of the vehicle at the

end of maneuver mi matches the orientation at the beginning of maneuver mi+1, the

are no heading discontinuities either. The various maneuvers that form the motion

plans are discussed below.

3.4.1 Trim Library

Trims represent discrete points in the velocity (ν) space. For an underactuated vehicle

with two control inputs (the primary vehicle model considered in this thesis), we

actively control only the surge and yaw velocities u and r. The set of discrete trims

forms a trim library called T . One of the simplest sets of speed controller setpoints

is a 3× 3 grid of points in the (u, r) space using nominal surge and yaw velocities U

and R respectively. Each of these setpoints is assigned a letter code as follows:
(U,R) (U, 0) (U,−R)

(0, R) (0, 0) (0,−R)

(−U,R) (−U, 0) (−U,−R)

⇔


a b c

d e f

g h i

 (3.23)

A richer library of setpoints could be used, at the price of higher computation
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costs for the planner. Each trim remains at one speed controller setpoint for some

amount of time; for example, trim c keeps the vehicle driving at its nominal forward

speed U and a constant turn rate −R.

When u and r alone are being regulated by the speed controller, the sideslip

velocity v may be nonzero, depending on the speed controller setpoint and the vehicle

dynamics. While v is unregulated, it can be calculated for each setpoint given the

plant model {a(ν),b}.

Each maneuver has an associated reference velocity vector νr. Unless two consec-

utive maneuvers are the same, there is a discontinuity in the reference velocity at the

transition. In the original Maneuver Automaton framework, motion primitives are

used to smoothly connect the trim points in the velocity space between one maneu-

ver and the next. In our framework, we instead handle the trim velocity transitions

by predicting the transient behavior; this prediction of the mean error is derived in

Section 3.6.

Figure 3-3 shows a motion plan with |p| = 9 using the trims defined in (3.23).

The plan in the figure can be written using the speed controller codes ebabbccfbb,

where e refers to the speed at the start of the plan. This representation is convenient

but it does not capture the trim times, so it does not completely describe the plan.

A complete plan description would also include the durations of each maneuver; for

example, the motion plan shown in Figure 3-3 is described by a 1× 9 vector of fives,

as each maneuver is five seconds long.

3.4.2 Waypoint Maneuvers

Waypoints are fixed points in space that are used to enrich the planning domain. If all

trim maneuvers are constrained to a fixed duration, then the set of reachable config-

uration space is finite using trim maneuvers alone. Waypoints expand the reachable

configuration space and provide shortcuts (in a planning sense) across large tracts

of the configuration space, as shown in Figure 3-4. For example, a waypoint can be

used to traverse a large open region of the space with one maneuver instead of many

fixed-duration trims concatenated together.
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M0: e

M9

M8

M6, M7

M5

M4

M3

M2

M1

m1: b m2: a

m3: b

m4: b

m5: c m6: c

m7: f

m8: b

m9: b

Figure 3-3: The motion plan ebabbccfbb uses 9 trims, each 5 seconds long. The red
rectangles represent obstacles.

Figure 3-4: Waypoints (large circles) are automatically generated around the obstacle
to enrich the planning domain. A waypoint is also placed at the goal.
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Waypoint locations can be chosen manually or they can be automatically gen-

erated based on the map. For example, waypoints could be placed at the nodes of

a Voronoi graph of the free space, or they could be placed near the corners of the

obstacles. The latter approach is generally used in this thesis. The motivation for

placing waypoints near the corners of obstacles is that the shortest path through a

cluttered environment consists of line segments connecting the corners of the obsta-

cles; by placing waypoints at the corners (with a safe buffer distance), then the best

path given the constraints of the motion planning framework is likely to be very close

to the true best path.

To drive to a waypoint from any position in the free space, the vehicle uses two

maneuvers. The first maneuver aligns the heading of the vehicle with the waypoint,

and the second maneuver is used to drive straight ahead to the waypoint. This

approach is used to maintain the heading continuity throughout the motion plan.

These maneuvers can be seen in Figure 3-4, and their construction is described below.

Waypoint Motion Groups

Because waypoints are global position references, they correspond to global motion

groups M. However, to be used in the maneuver automaton framework, and (3.21) in

particular, driving to a waypoint must be represented as a local motion group m. The

waypoint specifies only the Cartesian coordinates (Xw, Yw), but the corresponding

global motion group Mw also includes an orientation angle. If we assume that the

approach to the waypoint will be a straight line, then the angle is ψw = tan−1 Yw−Y0

Xw−X0

where the coordinates of the end of the previous maneuver are (X0, Y0). Knowing the

initial global motion group M0 and the final global motion group Mw, we can derive

the local motion group for the maneuver, mw. Recall that motion groups are always

invertible.

M0mw = Mw

mw = M0
−1Mw (3.24)
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The position continuity of the reference trajectory is preserved when using the

waypoint maneuver mw, but unless the vehicle at M0 is pointing directly at the

waypoint (ψ0 = ψw) then the heading continuity will not be preserved. To enforce

the heading continuity, a trim maneuver must be inserted into the motion plan to

steer the vehicle toward the waypoint. There are several ways to align the vehicle with

a waypoint: the vehicle may enter a forward turn in the direction of the waypoint

(Figure 3-5), the vehicle may come to a stop and turn in place (Figure 3-6), or other

strategies may be employed. If the former strategy is used, the vehicle may never be

able to line up the waypoint if the waypoint is within a circle on either side of the

vehicle whose radius equals the vehicle’s turning radius. On the other hand, turning

in place may be a difficult maneuver for the vehicle to perform. In our planning

framework, the planner first tries the former approach; if the waypoint is unreachable

then it tries the second approach. The trim durations for each approach are derived

below. In the derivations, the initial vehicle position and orientation is (X1, Y1, ψ1)

and the waypoint is located at (X4, Y4).

Forward Turn

If the alignment trim is a forward turn (trim a or c), then the vehicle will drive around

an arc of a circle during the trim (Figure 3-5). The radius of the circle is R2 = |u/r|.

During the turn the vehicle will be oriented at an angle θ = − tan−1 v/r ≈ −v/r

with respect to the tangent of the circle due to sideslip. Using trigonometric addition

formulas, the center of the circle is derived below.

X2 = X1 −
u

r
sinψ1 −

v

r
cosψ1

Y2 = Y1 +
u

r
cosψ1 −

v

r
sinψ1 (3.25)

The angle of the tangent to the circle at the vehicle’s initial position is ψ2 = ψ1−θ.

The distance from the center of the circle to the waypoint is R4, and the angle of the

connecting segment is ψ4. If the waypoint is inside the circle (R4 < R2) then it is

inaccessible using a forward turn. However, if it is outside the circle then it can be
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(X4,Y4)

R4

(X2,Y2)

R2

Ψ4

Ψ3

Θ

Ψ1

(X1,Y1)

Φ

Ψ2

Figure 3-5: Derivation of the trim time using a forward turn. This approach is only
valid when the waypoint (X4, Y4) is outside the circle defined by the radius R2.
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reached after a finite amount of time in the trim. The angle between the tangent to

the circle passing through the waypoint (ψ3) and the line to the center of the circle

is φ = ψ3 − ψ4 = sin−1R2/R4. That means the pull-out angle neglecting sideslip is

ψ3 = ψ4 + φ. The actual pull-out angle is earlier, at ψ3 − θ, but the initial pull-in

angle is also earlier, at ψ2 = ψ1 − θ. Therefore the trim duration is t = (ψ3 − ψ1)/r.

Turn In Place

If the waypoint is inaccessible using a forward turn (R4 < R2 in the derivation above)

then it can be reached by stopping and turning in place (trim d or f, Figure 3-6).

This analysis is limited to a non-minimum phase underactuated vehicle whose source

of yaw moment causes a negative sway motion; the analysis for different vehicle

configurations is slightly different.

A pure yaw trim may still cause sideslip, resulting in a circular vehicle motion

with a radius R = |v/r|. The center of the circle is shown below.

X2 = X1 +R cosψ1

Y2 = Y1 +R sinψ1 (3.26)

The path to the waypoint passes through the center of the circle, so the pull-out

heading ψ4 is easily computed. Finally, the trim time is t = (ψ4 − ψ1)/r.

Waypoint Motion Plans

A motion plan using waypoints is shown in Figure 3-7. This motion plan uses forward

turns to line up with two of the waypoints, and a turn in place to line up with the

third. By comparing Figure 3-7 with Figure 3-3, we see that using waypoints can

reduce the total number of maneuvers in the plan; this results in faster searches

using the planning algorithm. Furthermore, all but one of the trims in Figure 3-7

are associated with a waypoint, meaning that they are added in the planning same

step as that waypoint; this further reduces the effective plan length. The plan in the

figure could be written as ebawcwfw; to capture the association between certain trims
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(X4,Y4)

Ψ4

(X2,Y2)

(X1,Y1)

Ψ1

R

Figure 3-6: Derivation of the trim time when turning in place.

and the waypoints, it could also be written as eb(aw)(cw)(fw). Here we can see that

the effective plan length, from the planner’s perspective, is four. However, as before,

these representations do not capture the variable trim length or the locations of the

waypoints; these pieces of data are necessary to fully describe the motion plan.

M0: e

M7

M5, M6

M4
M3

M2

M1

m1: b m2: a

m4: c
m5: w

m6: f

m7: w

m3: w

Figure 3-7: The motion plan ebawcwfw uses 4 trims and 3 waypoints (indicated by
large circles). The trims preceding each waypoint are variable-length trims used to
align the reference trajectory with the waypoint.

The motion plans generated by the planner represent the reference trajectory that

the vehicle is asked to follow. In practice the vehicle may not be able to follow the
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motion plan exactly, due to predictable effects (transients, reference velocity disconti-

nuities, etc.) and unpredictable effects (stochastic disturbances and modeling error).

The next section describes the control law used by the vehicle to track the reference

trajectory and reject unpredictable disturbances.

3.5 Control Law

The vehicle controller is used to track the reference position and velocity as the vehicle

executes a motion plan. There are many different types of controllers that could be

used to regulate the system (see Chapter 2). However, the planner needs to be able to

predict the error statistics associated with following each motion plan, and the error

prediction can only be solved analytically if the control law is relatively simple. For

this reason we use linear state feedback control: it can be easily and quickly designed

on-line from an estimate of the vehicle model parameters, and its effect on the path-

following error dynamics can be predicted analytically. In this section we derive the

control law and describe how the controller changes for different maneuvers.

3.5.1 State Feedback Control

The goal of state feedback control is to drive the full state x (3.13) to the reference

state r. The control law, shown in Figure 3-8, includes a feedforward term Krr and

a feedback term −Kxx. The feedback term alone drives the state to 0, and the

feedforward term shifts the target from 0 to the reference r.

τ = −Kxx + Krr (3.27)

r x

-Kx

Kr

τ
plant+

Figure 3-8: Feedforward/feedback control law.
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The reference can be split into a reference speed νr and a reference position/orientation

ηr. The error between the state and the reference, e = x − r, can similarly be split

into speed error νe and position/orientation error ηe.

e = r− x (3.28) νe

ηe

 =

 νr

ηr

−
 ν

η



Note that because the reference state vector r contains both velocities and posi-

tions, it must be self-consistent, that is, its two components must satisfy the following

differential equation:

η̇r = J(ψr)νr (3.29)

Furthermore, we assume that the reference velocity is constant over each maneu-

ver, that is, ν̇r = 0. This is always true when using the motion plans constructed in

the previous section. The feedback matrix Kx has a part that operates on the velocity

vector, Kν , and a part that operates on the position vector, Kη. The feedforward

matrix Kr has a similar structure.

Kx =
[

Kν Kη

]
(3.30)

Kr(ν) =
[

Kν−b−1a(ν) Kη

]
(3.31)

The term Kν−b−1a(ν) counteracts the damping in the plant. The inverse of b

exists if the vehicle is fully actuated (the rank of b is 3). For now we assume that the

vehicle is fully actuated and a(ν) and b are known exactly.
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3.5.2 Control Law Derivation

Plugging the control law (3.27) into the nonlinear state space system (3.14) results

in the following closed-loop system.

ẋ = A(x)x−BKxx + BKr(ν)r + Fν(ψ) + w

= Acl(x)x + BKr(ν)r + Fν(ψ) + w (3.32)

where Acl(x) = A(x)−BKx =

 a(ν)− bKν −bKη

J(ψ) 0

 (3.33)

The control law can be written in terms of the control matrix definitions (3.30-

3.31) and the error vectors.

τ = −Kνν −Kηη +
(
Kν − b−1a(ν)

)
νr + Kηηr

= −Kννe −Kηηe − b−1a(ν) νr (3.34)

The control law (3.34) is invariant to the orientation of the reference trajectory

ψr only if Kηηe is not a function of ψr. The position error ηe can be mapped to

reference-local coordinates (a coordinate system aligned with the ψr, Figure 3-9):

ηe0 = J(ψr)
Tηe. (3.35)

The full error vector e can be rotated to reference-local coordinates with the 6×6

matrix J2. The rotated error vector is e0.

J2 ≡

 I3×3 0

0 J(ψr)

 (3.36)

e0 ≡

 νe

ηe0

 = J2
Te (3.37)

Now consider the feedback matrix designed for the full state system (3.14) when

ψ = 0. In this case, the lower left quadrant of A is I3×3. We denote that feedback
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Y

X

Ψe, Ψe0
(X,Y)

Xe

Ye
xe0

ye0 reference path

(Xr,Yr)

Figure 3-9: The vehicle position (X, Y, ψ) relative to the reference position
(Xr, Yr, ψr) expressed in global coordinates (Xe, Ye, ψe) and reference-local coordi-
nates (xe0, ye0, ψe0).

matrix as Kx0, which is partitioned as follows:

Kx0 =
[

Kν Kη0

]
(3.38)

As ψ changes and the lower left quadrant of A becomes J 6= I, then the position

feedback matrix Kη changes as well. It is related to Kη0 as follows:

Kηηe = Kη0ηe0

= Kη0J(ψr)
Tηe

Kη = Kη0J(ψr)
T (3.39)

Rewriting (3.34), we can now write the control law in terms of reference-local

coordinates only.

τ = −Kννe −Kη0ηe0 − b−1a(ν) νr (3.40)

With these coordinate transformations, it is only necessary to design a feedback

controller (3.38) once for the ψ = 0 system, and the control law can be applied in

the reference-local coordinates. This approach is much easier than redesigning the

controller whenever the heading changes.
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3.5.3 Controller Structure and LQR Design

In the motion planning framework, there is no need to specify whether a particular

maneuver is completely open-loop (playing back a sequence of pre-recorded control

actions), completely closed-loop (position, orientation and velocity feedback) or some-

where in between. The trim library T is defined as a set of speed control setpoints

to regulate the vehicle’s surge velocity u and yaw rate r. The speed controller is

closed-loop for velocity, but open-loop for position; the speed controller alone cannot

correct for disturbances that push the vehicle off the reference trajectory. Alterna-

tively, the controller could add position feedback during the maneuver. While this is

feasible for fully actuated vehicles, it may be impossible for underactuated vehicles.

For example, with an underactuated surface vessel it is impossible to hold a fixed

position and orientation (underactuated point stabilization) with a fixed feedback

control law [10, 38]. However, the kinematics of forward and backward motion mean

that position can be regulated for certain trims. For the underactuated vehicle that

we consider, position feedback is possible for the trims in which u 6= 0: a, b, c, g, h

and i. However, in this example we restrict position feedback to forward maneuvers,

a, b and c. Because driving to a waypoint (w) is a special case of b, the waypoint

maneuver has position feedback as well.

The reference-local feedback control law has the following form in the speed control

and speed/position control cases.

Kx0 =

 [ Kν 0 ] for defghi

[ Kν Kη0 ] for abcw
(3.41)

The state feedback controller is a linear quadratic regulator (LQR) designed

around the vehicle’s A(ν) and B matrices (3.14) with ψ = 0. The LQR controller is

tuned with a state cost matrix Qlqr and a control cost matrix Rlqr. For simplicity, we

can set Qlqr = I and Rlqr = ρ I, so that the only tuning parameter is the scalar value

ρ. For the maneuvers for which there is no position feedback (defghi), the state cost

on the position and orientation states is zero and Qlqr = diag(I,0).
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Because the A matrix depends on the vehicle’s velocity, the controller is designed

around each maneuver and its associated reference velocity νr. A complete motion

plan can therefore store a controller {Kx0,Kr} with each maneuver. During the

execution of the motion plan, the vehicle simply loads the reference velocity νr for the

maneuver, computes the reference position ηr(t) from (3.29), and loads the controller

associated with the maneuver.

Once the motion plan is specified and a linear state feedback controller is designed

for each maneuver in the plan, then it is possible to predict the mean trajectory of the

vehicle and the variance of the path-following error. These calculations are needed

to compute the predicted collision probability for the vehicle; the planner uses this

prediction to select the optimal plan. The next section covers the prediction of the

path-following error statistics for a motion plan.

3.6 Error Dynamics

In this section we derive the dynamics of the path-following error for a motion plan,

focusing on the error evolution through each maneuver. The state error is used to

predict the probability of hitting obstacles and to predict the amount of information

available to the online parameter learning algorithm described in Chapter 4.

Given the assumption that the disturbances acting on the vehicle are Gaussian,

the vehicle state is normally distributed around a mean state at every moment in

time. We derive analytic expressions for the mean state error (3.57) and the state

error variance (3.65), and in Section 3.7 we develop an analytic approximation for the

collision probability. These analytic expressions allow the planner to evaluate each

motion plan very quickly so that the planner can run nearly in real-time.

First, in Section 3.6.1, the error dynamics are expressed in global coordinates as

a simple nonlinear differential equation. Next they are transformed to a reference-

local coordinate system (Section 3.6.2) where the mean and variance of the error are

solved analytically (Sections 3.6.3 and 3.6.4). Finally, error predictions for underac-

tuated vehicles are discussed in Section 3.6.5 and error propagation across maneuver
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transitions is described in Section 3.6.6.

3.6.1 Global Error Dynamics

The first step is to express the error e(t) as a differential equation by finding a simple

expression for ė(t). By the definition of e (3.28), the derivative of the error is:

ė = ẋ− ṙ = Acl(x)x + BKr(ν)r + Fν(ψ) + w − ṙ

= Acl(x)e + Acl(x)r + BKr(ν)r− ṙ + Fν(ψ) + w

= Acl(x)e + Ar(ψ)r− ṙ + Fν(ψ) + w (3.42)

The matrix Ar(ψ) used in (3.42) is defined below.

Ar(ψ) ≡ Acl(x) + BKr(ν)

=

 a(ν)− bKν −bKη

J(ψ) 0

+

 b

0

[ Kν−b−1a(ν) Kη

]

=

 0 0

J(ψ) 0

 (3.43)

The second and third terms of (3.42) can be condensed by recalling the self-

consistency of r (3.29).

Ar(ψ)r− ṙ =

 0

J(ψ)νr

−
 ν̇r = 0

η̇r = J(ψr)νr


=

 0

(J(ψe)− I) J(ψr)νr

 (3.44)

In (3.44) we used the relation J(ψ) = J(ψe)J(ψr), which arises from ψ = ψe +ψr.

Assuming the heading error is small, J(ψe)− I can be replaced with Srψe, where Sr

88



was defined in (3.12). With this simplification, the lower submatrix of (3.44) becomes:

(J(ψe)− I) J(ψr)νr = SrψeJ(ψr)νr

=
[

0 0 SrJ(ψr)νr

]
ηe

and we define A22(r) ≡
[

0 0 SrJ(ψr)νr

]
. (3.45)

Using A22(r) as defined above, (3.44) reduces to:

Ar(ψ)r− ṙ =

 0 0

0 A22(r)

 e. (3.46)

This new matrix (3.46) can be combined with Acl(x) to form a new nonlinear

state transition matrix that incorporates the reference information.

Aclr(x, r) =

 a(ν)− bKν −bKη

J(ψ) A22(r)

 (3.47)

When Aclr is inserted into the error dynamics equation (3.42), the result is a

nonlinear time-varying differential equation.

ė = Aclr(x, r) e + Fν(ψ) + w (3.48)

3.6.2 Reference-Local Error Dynamics

The error dynamics e(t) cannot be solved directly from (3.48), because Aclr(x, r) is

a function of the vehicle state. Even when the dynamics equation (3.4) is linearized

(a(ν) = a) and the heading error is small (J(ψ) ≈ J(ψr) and Fν(ψ) ≈ Fν(ψr)), the

differential equation is still time-varying if the yaw rate reference is nonzero (rr 6= 0),

since ψr = ψr(t). However, the evolution of the reference-local error e0(t) is more

favorable to computation. This quantity was computed in (3.37) using the matrix J2.

Similarly, the body-reference wind force vector is written in terms of the global force
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vector and another rotation matrix J1:

Fν(ψr) = J1
TF where J1 =

 J(ψr) 0

0 I

 . (3.49)

Using these definitions, the evolution of e0 is shown below.

ė0 = J2
T ė + J̇T2e

= J2
TAclr(x, r)e + J2

TJ1
TF + J2

Tw + J2
TS2

Te

= J2
T
(
Aclr(x, r) + S2

T
)
J2e0 + J1

TF + w (3.50)

where S2 =

 0 0

0 S(rr)

 and J̇2 = S2J2 (3.51)

The quantity J2
T
(
Aclr(x, r) + S2

T
)
J2 is simplified and renamed A0,

A0 = J2
T
(
Aclr(x, r) + S2

T
)
J2

=

 a(ν)− bKν −bKηJ(ψr)

I J(ψr)
T
(
A22(r) + S(r)T

)
J(ψr)


=

 A11(ν) A12

I Sν(νr)
T

 (3.52)

where

A11(ν) ≡ a(ν)− bKν (3.53)

A12 ≡ −bKηJ(ψr) = −bKη0 (3.54)

Sν(νr) ≡ J(ψr)
T
(
A22(r)T + S(r)

)
J(ψr)

=


0 −rr 0

rr 0 0

−vr ur 0

 . (3.55)

If the velocity errors are small, then a(ν) ≈ a(νr) and A0(νr) is constant for each
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maneuver. The simplification of Sν(νr) in (3.55) is only valid for 3 DOF vehicles.

For 3 DOF vehicles, the reference-local error dynamics equation, shown below, is a

linear time-varying differential equation.

ė0 = A0(νr)e0 + J1
TF + w (3.56)

This differential equation can be solved for the mean value and the covariance

matrix for e0. These solutions are described below.

3.6.3 Mean Error Evolution

The mean value of (3.56) can be solved analytically using the matrix exponential

to find the mean reference-local error throughout the maneuver. First we note that

J1(t) = J1(0)eS1t. Next we insert this into the explicit solution to the mean (w = 0)

differential equation,

˙̄e0 = A0ē0 + J1
TF

ē0(t) = eA0tē0(0) +

∫ t

0

eA0(t−τ)J1
T (τ)Fdτ

= eA0tē0(0) +

∫ t

0

e(A0t−A0τ+S1
T τ)dτ × J1(0)TF

= eA0tē0(0) +
(
A0 − S1

T
)−1
(
eA0t − eS1

T t
)

J1(0)TF. (3.57)

The mean error in global coordinates, ē, is computed using the following trans-

formation,

ē(t) = J2 (ψr(t)) ē0(t). (3.58)

3.6.4 Error Covariance Evolution

The covariance of the error vector e is:

Σ = E
[
(e− ē)(e− ē)T

]
(3.59)
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where E[·] is the expectation operator over all possible noise sequences w(t). Similarly,

the covariance of the reference-local error vector e0 is:

Σ0 = E
[
(e0 − ē0)(e0 − ē0)T

]
= J2

TΣJ2 (3.60)

The covariance matrix of the noise vector is:

W = E
[
wwT

]
=

 Wν 0

0 0

 (3.61)

and the evolution of Σ0 is the variance evolution equation [35] for the reference-local

error dynamics equation (3.56).

Σ̇0 = A0Σ0 + Σ0A0
T + W (3.62)

Equation (3.62) is a Riccati equation that can be solved analytically using the

method described in [35] or [34]; the latter method is presented here. First a block

matrix M is constructed as follows:

M =

 −A0
T 0

W A0

 . (3.63)

Next a block matrix is defined using two square matrices Y1 and Y2, each the

same size as Σ0.

Y ≡

 Y1

Y2

 Y(0) =

 I

Σ0(0)

 (3.64)

Equation (3.62) is equivalent to the differential equation Ẏ = MY with the initial

condition shown above. The equation is solved using the matrix exponential.

Y(t) = eMtY(0)

Σ0(t) = Y2Y1
−1 (3.65)
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The variance of the global error vector is computed using a rotation from the

reference-local coordinates back to the global coordinates.

Σ(t) = J2(t)Σ0(t)J2(t)T (3.66)

There may be numerical stability issues when computing Y1
−1 if t−t0 is too large;

this happens when Σ0(t) approaches the steady state. In that case, the problem is a

continuous algebraic Riccati equation,

0 = A0Σ0(∞) + Σ0(∞)A0
T + W. (3.67)

The solution to this equation is shown in Section B.1, taken from [2].

3.6.5 Error Dynamics for Underactuated Vehicles

The prediction of the mean error (3.57) and the error variance (3.65) applies only to

fully-actuated vehicles. In particular, the feedforward term Kr(ν) (3.31) requires that

b−1 exists. For underactuated vehicles this is not the case, either because b is singular

or it is non-square (only two control inputs, for example). Exact cancellation of the

damping term is therefore impossible for underactuated vehicles. One workaround is

to use the pseudoinverse b∗, but it may be more desirable to apply feedforward to

certain states and neglect other states entirely. For generality we define b(inv), which

is used below to construct Kr(ν). For a fully actuated vehicle, b(inv) = b−1. For an

underactuated vehicle, b(inv) is the same size as bT .

Kr(ν) =
[

Kν−b(inv)a(ν) Kη

]
(3.68)

The choice of the structure of b(inv) is left to the control designer. In our example,

where the trim library defines u and r setpoints, a reasonable option is to take the

inverse of the u and r rows of b and distribute them over the u and r columns of
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b(inv):

b =


b1 0

0 b2

0 b3

 b(inv) =

 1/b1 0 0

0 0 1/b3

 . (3.69)

Once b(inv) is defined, Ar is updated; for the underactuated vehicle, there is

incomplete cancelation of the damping matrix.

Ar(x) ≡ Acl(x) + BKr(ν)

=

 a(ν)−bb(inv)a(ν) 0

J(ψ) 0

 (3.70)

The quantity Arr− ṙ then becomes:

Arr− ṙ =

 (a(ν)−bb(inv)a(ν)
)

νr

A22(r)ηe

 . (3.71)

The lower half of (3.71) is merged into Aclr and A0. The remainder is defined as

d(νr). As before, we assume that the velocity errors are small and a(ν) ≈ a(νr).

d(νr) ≡

 (a(νr)−bb(inv)a(νr)
)

νr

0

 (3.72)

The dynamics equations are updated to account for this additive constant term:

ė = Aclr(x, r) e + d + J1
TF + w

ė0 = A0(νr)e0 + d + J1
TF + w (3.73)

The updated mean error solution is shown below. The new d term is an additive

constant, so the error variance is not affected by underactuation.

ē0(t) = eA0tē0(0) + A0
−1
(
eA0t − I

)
d

+
(
A0 − S1

T
)−1
(
eA0t − eS1

T t
)

J1(0)TF (3.74)
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3.6.6 Concatenating Maneuvers

So far the analysis of the mean error and the error variance has been restricted to

single maneuvers in which the reference velocity νr is constant. The next step is to

generalize the result to maneuver sequences by studying how the error is propagated

through maneuver transitions. At the transitions, the initial conditions for the error

statistics of the new maneuver must match the statistics at the end of the previous

maneuver. The actual vehicle state x is constant from the moment before (+) to

the moment after (−) the transition. The position reference ηr is constant over the

transition as well, and J2+ = J2−. The reference-local initial conditions are derived

below.

x = r+ + e+ = r− + e−

∴ e+ = e− − (r+ − r−)

e0+ = Jr
Te+

= Jr
Te− − Jr

T

 νr+ − νr−

0


= e0− − (r+ − r−)

ē0+ = ē0− − (r+ − r−) (3.75)

Next we consider the reference-local error covariance matrix before and after the

transition.

Σ0− = Jr
TE
[
(x− r− − ē−)(x− r− − ē−)T

]
Jr

Σ0+ = Jr
TE
[
(x− r+ − ē+)(x− r+ − ē+)T

]
Jr (3.76)

Plugging in the result from (3.75) reveals that Σ0+ = Σ0−, meaning that the error

covariance matrix does not change across the transition.

In the execution of the motion plan, the maneuver transitions need not be based

purely on the expected duration of the maneuver. For example, when driving to

a waypoint it makes sense to wait until the vehicle actually reaches the waypoint
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before switching to the next maneuver, in case disturbances or modeling error cause

the vehicle to arrive at the waypoint earlier or later than expected. This is simple to

implement on the vehicle. Maneuvers a, b, c and w end when the along-track position

error with respect to the planned end of the maneuver is zero, and maneuvers d and

f end when the heading error with respect to the planned end of the maneuver is

zero. Due to these termination criteria, the along-track position error is exactly zero

at the end of maneuvers a, b, c and w, and the heading error is exactly zero at the

end of maneuvers d and f. To account for this effect, the fourth row of ē0 and the

fourth row and column of Σ0 (corresponding to the along-track position state) must

be set to zero at the end of the maneuver in the former case, and the sixth row of ē0

and the sixth row and column of Σ0 (corresponding to the heading state) must be

set to zero at the end of the maneuver in the latter case. Subsequently, the initial

mean error at the beginning of the next maneuver is computed according to (3.75).

The procedure for evaluating the mean error and the error variance at t is com-

puted using the procedure shown in Algorithm 5. Assume that t is in the m’th

maneuver and the preceding maneuvers end at t0, t1, . . . , tm−1.

Algorithm 5 Procedure for computing the mean and variance of the state error.

1: Initialize ē0(t0) = 0 and Σ0(t0) = 0.
2: for i = 1 : (m− 1) do
3: Compute ē0(ti) from ē0(ti−1) using νr,i, J(ψr(ti)), and ∆t = ti − ti−1 (3.74).
4: Compute Σ0(ti) from Σ0(ti−1) using νr,i, J(ψr(ti)), and ∆t = ti − ti−1 (3.65).
5: Modify ē0(ti) according to the maneuver’s termination criterion.
6: Modify Σ0(ti) according to the maneuver’s termination criterion.
7: end for
8: Compute ē0(t) from ē0(tm−1) using νr,m, J(ψr(t)), and ∆t = t− tm−1 (3.74).
9: Compute Σ0(t) from Σ0(tm−1) using νr,m, J(ψr(t)), and ∆t = t− tm−1 (3.65).

10: Compute ē(t) from ē0(t) using J(ψr(t)) (3.58).
11: Compute Σ(t) from Σ0(t) using J(ψr(t)) (3.66).

3.6.7 Simple Example

A simple demonstration of the prediction of the mean and variance of the path-

following error is shown in Figure 3-10. The predicted growth and contraction of the
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error distribution matches the result of a 1,000-point Monte Carlo simulation.

Figure 3-10: The mean error (thick lines) and standard deviation (thin lines) for
the motion plan eccbaw. The nominal plan is shown in black; it brings the vehicle
around the obstacles to the goal (the green square). The predicted mean and standard
deviation are shown as dashed blue lines, and the results of a 1,000-point Monte Carlo
simulation are shown as solid red lines.

Now that we can predict the error distribution as a function of time for any motion

plan, we must consider how that error distribution affects the probability of hitting

nearby obstacles. The next section covers how to predict the collision probability for

each motion plan.

3.7 Collision Probability and Particle Absorption

The planner developed in this chapter constructs motion plans in the free configura-

tion space, so that in the absence of disturbances or errors the vehicle is guaranteed

to avoid all known obstacles. However, the actual vehicle trajectory may deviate

from the nominal motion plan, as discussed in the previous section. If the nominal

trajectory comes close to an obstacle, then disturbances may cause the vehicle to hit

the obstacle. In this section we develop a prediction of the probability that these

collisions will occur for any motion plan.

Predicting the collision probability for the vehicle given the mean error and the

error variance is non-trivial. Consider a vehicle modeled as a particle driving next to
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a wall. Because of correlations through time, if the particle has not hit the wall at

time t, then it is nearly certain that it has not hit the wall in infinitesimal time later,

t + ε. However, as time progresses the probability of the particle hitting the wall

becomes non-negligible due to stochastic disturbances. The evolution of the collision

probability as the particle moves down the length of the wall is known as the particle

absorption problem. In this section we attempt to solve this problem analytically.

Previous efforts to solve the particle absorption problem focus on specific cases

that do not apply to a holonomic vehicle. One approach uses the Fokker-Planck equa-

tion to describe the evolution of the trajectory distribution, and the steady solution is

found by solving four moment equations simultaneously [42]. Other solutions involve

random walks on lattices [59, 3]. The closest match to our problem is found in [12],

in which the particle absorption rate is computed for a randomly accelerated parti-

cle, but in that work the particle has no other dynamics. Our approach is described

below.

In the particle absorption problem, the stochastic process may be a random walk,

in which velocity is sampled from a normal distribution, or the output of a closed-

loop control system that is affected by Gaussian disturbances. Because the driving

disturbance is Gaussian and the system dynamics are locally linear, the resulting state

distribution is also Gaussian. The evolution of the state variance can be obtained

analytically by solving a Riccati equation, as in Section 3.6.

If the state vector for the system is x and the scalar output is y = Cx, then the

output follows a time-varying normal distribution, y ∼ N(ȳ(t),Σy(t)). We consider

the situation in which there is a constraint on the output space such that the system

fails if y(t) ≥ d(t) for any t, or equivalently the system succeeds only if ∀t, y(t) <

d(t). Without a loss of generality, we assume that the constraint is always positive:

∀t, d(t) > 0. The constraint d(t) may be thought of as the position of an obstacle

relative to the nominal trajectory of a vehicle moving in a physical space. If the

output y(t) exceeds d(t), then the vehicle has collided with the obstacle.

We are interested in predicting the probability that the system will succeed given

the constraint; that is, we would like to know the fraction of trajectories that do
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not violate the constraint, Pa(t). Because the probability of success monotonically

decreases as t increases (Ṗa ≤ 0), and trajectories that violate the constraint at t1 do

not need to be considered for t > t1, this problem is known as particle absorption.

In essence, the constraint absorbs the trajectories (particles) that violate it, and the

success probability refers to the fraction of the original particles that have not yet

been absorbed.

In Section 3.7.1 we introduce the state-space model that describes the system.

The variance evolution is derived in Section 3.7.2. The PDF for the output with no

constraints is presented in Section 3.7.4. In Section 3.7.5 we derive the PDF when the

constraint is first applied. It is useful to consider the special case when the constraint

is only applied at one point in time. In that case the constraint is called a gate.

The PDF of the output a short time after passing the gate is studied in Section

3.7.6. A continuous constraint, a wall, can be modeled as a series of gates spaced

infinitely close together. The wall constraint is studied in Section 3.7.7 for first-order

systems and higher-order systems. We have developed an analytic solution for the

higher-order case, but not the first-order case.

3.7.1 System Model

To ensure that the solution applies to as many different systems as possible, we use

a very general system representation. The state vector x evolves through time as

follows:

ẋ = Ax + Gw (3.77)

where w is a disturbance vector sampled from a zero-mean multinormal distribution

whose covariance matrix is W, A is the closed-loop dynamics matrix, and G maps

the disturbance vector to the states. We are interested in only one output y, which

is selected from x through the row vector C.

y = Cx (3.78)
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The noise vector Gw may have elements that are always zero, depending on the

system. If CGw is nonzero, then the noise directly affects the output y. In that case,

the lowest order of the system is first-order. However, if CGw is always zero, then

the system is second-order or higher. In this section we define two example systems:

• System 1: A first-order system with A = −1, G = 1, W = 0.015 and C = 1.

This system represents Brownian motion with feedback. The initial condition

is x(0) = 0.

• System 2: A third-order system with:

A =


1.04 1.20 0.50 0.85

−4.18 −4.01 −1.56 −2.66

1 0 0 0.25

0 1 0 0


and G = I4×4, W = diag[0.001, 0.001, 0, 0] and C = [0, 0, 1, 0]. This system

represents a holonomic vehicle following a straight reference path under closed-

loop control, with x = [v, r, y, ψ]T . The eigenvalues of the closed-loop system

are at -0.24, -0.31, and -1.21 ± 0.34, so the system is stable. Note that in

this system CGw = 0. The disturbance affects the output state through two

channels: a second-order channel (a lateral acceleration disturbance) and a

third-order channel (a yaw acceleration disturbance).

3.7.2 Variance Evolution

We have assumed that the state and output vectors are shifted so that the expected

value of the output is zero, E[y(t)] = 0 ∀t. The state variance is Σ = E[xxT ], and it

evolves through time according to the linear variance equation.

Σ̇ = AΣ + ΣAT + GWGT (3.79)

Equation (3.79) can be solved analytically when A is constant using the solution
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described in Section 3.6.4. If A is time-varying, then (3.79) must be integrated

directly to obtain Σ(t). The variance of the output is:

Σy(t) = CΣ(t)CT . (3.80)

Figure 3-11 shows a simulation of System 2 and its variance evolution. The pre-

dicted variance evolution from (3.80) matches the results from a 10,000-point Monte

Carlo simulation. The convergence of the Monte Carlo simulation is also shown in

Figure 3-11.
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Figure 3-11: 100 trajectories from System 2. The predicted standard deviation (blue
dashed lines) matches the measured standard deviation from 10,000 trajectories (red
lines). The convergence of the sum of the squared cross-track variance error is shown
on the right as a function of the number of Monte Carlo evaluations.

3.7.3 Summary of the Particle Absorption Solution

Here we summarize the prediction of the particle absorption rate that is developed

over the remainder of this section. This result is only valid when CGWGTCT =

0. The probability that the particle has not violated the constraint after t seconds

is Pa(t). This quantity evolves according to the following time-varying differential
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equation:

Ṗa(t) = −C(t)Pa(t) (3.81)

with the initial condition Pa(0) = 1. This equation can be solved using Runge-Kutta

integration, Euler integration, or any other method. The time-varying decay constant

C(t) is evaluated using the following equation. It is a function of the constraint d(t)

and its derivative ḋ(t), as well as a number of system parameters.

C(t) =
1

n0(t)
√

2πΣy(t)
exp

(
− d(t)2

2Σy(t)

)[√
Σc(t)

2π
− ḋ(t)

2

(
1− erf

(
ḋ(t)√
Σc(t)

))]
(3.82)

The unconstrained output variance Σy(t) is evaluated using (3.80), and n0(t) is

the probability that y(t) < d(t) if the output were unconstrained:

n0(t) =
1

2

(
1 + erf

(
d(t)√
2Σy(t)

))
. (3.83)

The remaining quantity in (3.82) is Σc(t), which is evaluated as follows:

Σc(t) = CAΣ(t)ATCT −
(
CΣ(t)ATCT

)2

Σy(t)
(3.84)

The overall procedure for evaluating the particle absorption evolution is listed in

Algorithm 6. The remainder of this section is devoted to the derivation of this result.

Algorithm 6 Procedure for computing the particle absorption evolution.

1: Compute the state variance evolution Σ(t).
2: Compute the output variance evolution Σy(t) using (3.80).
3: Compute n0(t) using (3.83).
4: Compute Σc(t) using (3.84).
5: Compute C(t) using (3.82).
6: Solve the time-varying differential equation (3.81) for Pa(t), with the initial con-

dition Pa(0) = 1.
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3.7.4 Output PDF with No Constraints

In the absence of constraints (∀t, d(t) =∞), the state variance Σ(t) can be predicted,

as a function of time, from the solution to (3.79) from arbitrary initial conditions

Σ(0). The PDF for the cross-track position is p(y)open, which is a zero-mean normal

distribution whose variance is Σy(t). For notational simplicity, we will only explicitly

indicate the time dependence of the parameters where it is necessary to do so.

p(y)open =
1√

2πΣy

exp

(
− y2

2Σy

)
(3.85)

This PDF is compared with a histogram from the Monte Carlo simulation for

System 2 in Figure 3-12.
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Figure 3-12: p(y)open for System 2 (Figure 3-11), evaluated at t = 5. The histogram
represents a 10,000-point Monte Carlo simulation.

3.7.5 First Constraint Encounter

Consider a constraint that is only active after t = t0: that is, ∀t < t0, d(t) = ∞.

Therefore p(y)t<t0 = p(y)open from (3.85). At t = t0, the constraint becomes active;

at this moment, there is a finite probability that y(t0) ≥ d(t0), which violates the

constraint. This failure probability is 1 minus the probability of success Pa(t0). The
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probability of success is the CDF of (3.85) evaluated at y(t0) = d0, where d0 ≡ d(t0):

Pa(t0) ≡ n0 = P (y(t0) < d0)

=

∫ d0

−∞
p(y)opendy

∣∣∣∣
t=t0

=
1

2

(
1 + erf

(
d0√

2Σy(t0)

))
. (3.86)

At t0, the distribution of particles that did not violate the constraint remains

unchanged; however, their PDF is rescaled by the normalization factor 1/n0 so that

its integral is 1.

p(y)t=t0 =


1

n0

√
2πΣy

exp
(
− y2

2Σy

)
for y < d0

0 otherwise
(3.87)

This distribution is plotted in Figure 3-13 for System 2 with d0 = 0.1. In this

example, the probability of not violating the constraint is Pa(t0) = n0 = 0.828.
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Figure 3-13: p(y)t=t0 for System 2 at t0 = 5 with d0 = 0.1. The success probability is
Pa(t0) = 0.828. The result is validated with a 10,000-point Monte Carlo simulation.
The PDF just before t0, p(y)open, is the dashed blue line.
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3.7.6 A Gate: An Infinitesimal-Duration Constraint

Consider the situation in which d(t) has the following profile:

d(t) =


∞ for t < t0

d0 for t = t0

∞ for t > t0

(3.88)

In this case, the constraint can be thought of as a gate with an infinitesimal duration.

An example of this situation is shown in Figures 3-14 and 3-15.
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Figure 3-14: 100 Monte Carlo trajectories of System 2 encountering a gate with
d0 = 0.1 and an infinitesimal width (thick black line) at t0 = 5. The dark trajectories
hit the gate, while the others pass by successfully. The red curves show the measured
mean and standard deviation of 10,000 successful trajectories.

For this constraint, Pa(t) is a step function reducing from 1 to n0 at t = t0. We

are interested in how the PDF of the successful particles (3.87) evolves a short time

after passing the gate. The y dynamics are:

ẏ = Cẋ = CAx + CGw ≡ δ (3.89)
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Figure 3-15: The same data as Figure 3-14, plotted as a histogram to illustrate the
diffusion of the trajectories past d0 after t0.

The linear approximation to the value of y(t) for t = t0 + ∆t when ∆t is small is:

y(t0 + ∆t) = CeA∆tx(t0) + CGw∆t

≈ C(I + A∆t)x(t0) + CGw∆t

= y(t0) + CAx(t0)∆t+ CGw∆t (3.90)

where w∆t ∼ N(0,W∆t) is a Wiener process. For notational convenience, we define

γ ≡ y(t0 + ∆t), δt ≡ CAx(t0)∆t + CGw∆t, and y ≡ y(t0). With these definitions,

(3.90) can be rewritten as follows:

γ = y + δt (3.91)

The new variable γ is the linear prediction of the output ∆t seconds after suc-

cessfully passing the gate. We are interested in computing the PDF for γ, as that

distribution is the key to understanding the particle absorption rate for a continuous

constraint. First we define a new state vector z = [y, δt]
T . The mean value of the
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new state is z̄ = 0 when d0 =∞ and the variance is Σz, which is derived below:

z =

 Cx

CAx∆t+ CGw∆t

 (3.92)

Σz = E[zzT ] =

 CΣCT CΣATCT∆t

CAΣCT∆t CAΣATCT∆t2 + CGWGTCT∆t


≡

 Σy ρt
√

ΣyΣδt

ρt
√

ΣyΣδt Σδt

 (3.93)

where Σδt ≡ CAΣATCT∆t2 + CGWGTCT∆t

and ρt =
CΣATCT∆t√

ΣyΣδt

The correlation coefficient between the output y and the deviation after ∆t sec-

onds, δt, is ρt. Next we can make the following definitions:

Σδx ≡ CAΣATCT (3.94)

and Σδw ≡ CGWGTCT (3.95)

so Σδt = Σδx∆t
2 + Σδw∆t (3.96)

Σδρ ≡ CΣATCT (3.97)

so ρt =
Σδρ∆t√

ΣyΣδt

(3.98)

For systems with feedback, Σδx 6= 0. For first-order systems such as Brownian

motion, Σδw 6= 0, while for higher-order systems Σδw = 0. This distinction is impor-

tant in the particle absorption analysis. The three system parameters Σδx, Σδw and

Σδρ may change through time, but they can be predicted from the solution to (3.79).

To evaluate the PDF for γ, we need to know the joint distribution p(y, δt)t=t0 . To

calculate this PDF we first need to know the joint probability distribution between y
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and δt when d0 =∞, p(y, δt)open:

p(y, δt)open =
1

2π
√

ΣyΣδt

√
1− ρt2

exp

(
− 1

2(1− ρt2)

(
y2

Σy

+
δt

2

Σδt

− 2ρtyδt√
ΣyΣδt

))

=
1

2π
√

ΣyΣδt

√
1− ρt2

exp

−
(
y − ρtδt

√
Σy/Σδt

)2

2Σy(1− ρt2)
− δt

2

2Σδt


=

1

2π
√

ΣyΣδt

√
1− ρt2

exp

(
− δt

2

2Σδt

)
exp

−
(
y − ρtδt

√
Σy/Σδt

)2

2Σy(1− ρt2)


(3.99)

Equation (3.99) could be rearranged to isolate y instead of δt, but isolating δt

makes the following analysis easier. When d0 6= ∞, this distribution is truncated to

y < d0 with the normalization constant n0.

p(y, δt)t=t0 =


1

n0·2π
√

ΣyΣδt
√

1−ρt2
exp

(
− δt

2

2Σδt

)
exp

(
−
“
y−ρtδt

√
Σy/Σδt

”2

2Σy(1−ρt2)

)
for y < d0

0 otherwise

(3.100)

From the joint PDF (3.100), we can compute the marginal distribution for δt by

integrating (3.100) over y. Because p(y, δt)t=t0 is truncated to y < d0, we only need

to integrate up to d0.

p(δt)t=t0 =

∫ d0

−∞
p(y, δt)dy

=
1

2n0

√
2πΣδt

exp

(
− δt

2

2Σδt

)(
1 + erf

(
d0 − ρtδt

√
Σy/Σδt√

2Σy(1− ρt2)

))
(3.101)

The PDF for δt is plotted in Figure 3-16 for System 1 with ∆t = 0.1 seconds and

ρt = −0.218. The PDF is nearly a zero-mean normal distribution despite the signif-

icant correlation between the states, so for simplicity we assume that δt is normally

distributed. This is a necessary assumption to complete the derivation of the PDF
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for γ.

p(δt)t=t0 ≈
1

n0

√
2πΣδt

exp

(
− δt

2

2Σδt

)
(3.102)
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Figure 3-16: p(δt)t=t0 for System 1 with d0 = 0.1. The correlation coefficient is
ρt = −0.218. The result is validated with a 10,000-point Monte Carlo simulation.
The PDF just before t0, p(δt)open, is the dashed blue line.

Using our knowledge of the distributions of y(t0) (3.87) and δ(t0) (3.102), we can

now evaluate the probability that γ = y + δt is less than some arbitrary value c,

that is, we would like to compute the CDF P (γ < c). The domain D defined by the

inequality γ < c is equivalent to the inequality y < c − δt. P (γ < c) is evaluated by

integrating (3.100) over D.

P (γ < c) =

∫
D:δt<c−y

p(y, δt)dydδt =

∫ ∞
−∞

∫ c−δt

−∞
p(y, δt)dydδt (3.103)

It is actually easier to deal with the truncation of the normal distribution due to

the gate (3.100) in the limits of integration, rather than in the integrand; in other

words, integrating 1
n0
p(y, δt)open over the domain y < d0 is equivalent to integrating

p(y, δt) over the whole domain. Therefore, the upper limit of integration for y in

(3.103) is the minimum of c− δt and d0. The integral can be broken into two parts,

A and B:

P (γ < c) =

∫ c−d0

−∞

∫ d0

−∞

1

n0

p(y, δt)opendydδt︸ ︷︷ ︸
A: if c−δt>d0 → δt<c−d0

+

∫ ∞
c−d0

∫ c−δt

−∞

1

n0

p(y, δt)opendydδt︸ ︷︷ ︸
B: if c−δt<d0 → δt>c−d0

(3.104)
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We are interested in finding the PDF for γ, which is defined as follows:

p(γ = c) =
∂

∂c
P (γ < c) =

∂

∂c
P (γ < c)A +

∂

∂c
P (γ < c)B

≡ p(γ = c)A + p(γ = c)B (3.105)

We consider the two parts of (3.105) separately, recalling the rules about taking

the derivative of an integral with limits (an extension of the first fundamental theorem

of calculus):

If F (x) =

∫ b(x)

a(x)

f(x, z)dz

then
d

dx
F (x) = f(x, b(x))

db

dx
− f(x, a(x))

da

dx
+

∫ b(x)

a(x)

∂

∂x
f(x, z)dz

(3.106)

First we consider the A integral.

P (γ < c)A =

∫ c−d0

−∞

∫ d0

−∞

1

n0

p(y, δt)opendydδt

=

∫ c−d0

−∞

∫ d0

−∞

1

n0 · 2π
√

ΣyΣδt

√
1− ρt2

exp

(
− δt

2

2Σδt

)

× exp

−
(
y − ρtδt

√
Σy/Σδt

)2

2Σy(1− ρt2)

 dydδt

=

∫ c−d0

−∞

1

2n0

√
2πΣδt

exp

(
− δt

2

2Σδt

)(
1 + erf

(
d0 − ρtδt

√
Σy/Σδt√

2Σy(1− ρt2)

))
dδt

(3.107)

In this case the integrand is not a function of c, so we use the unmodified first

fundamental theorem of calculus to evaluate p(γ = c)A:

p(γ = c)A =
1

2n0

√
2πΣδt

exp

(
−(c− d0)2

2Σδt

)(
1 + erf

(
d0 − (c− d0)ρt

√
Σy/Σδt√

2Σy(1− ρt2)

))
(3.108)
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Next we consider the B integral.

P (γ < c)B =

∫ ∞
c−d0

∫ c−δt

−∞

1

n0

p(y, δt)opendydδt

=

∫ ∞
c−d0

∫ c−δt

−∞

1

n0 · 2π
√

ΣyΣδt

√
1− ρt2

exp

(
− δt

2

2Σδt

)

× exp

−
(
y − ρtδt

√
Σy/Σδt

)2

2Σy(1− ρt2)

 dydδt

=

∫ ∞
c−d0

1

2n0

√
2πΣδt

exp

(
− δt

2

2Σδt

)1 + erf

c− δt
(

1 + ρt
√

Σy/Σδt

)
√

2Σy(1− ρt2)

 dδt

(3.109)

In this case the integrand is a function of c, so we use (3.106) to evaluate p(γ = c)B.

p(γ = c)B = f(c,∞)
�
�
��7

0
d∞
dc
− f(c, c− d0)

�
��

�
��*

1
d(c− d0)

dc
+

∫ ∞
c−d0

∂

∂c
f(c, δt)dδt

= − 1

2n0

√
2πΣδt

exp

(
−(c− d0)2

2Σδt

)1 + erf

c− (c− d0)
(

1 + ρt
√

Σy/Σδt

)
√

2Σy(1− ρt2)


+

∫ ∞
c−d0

1

n0

√
2πΣδt

exp

(
− δt

2

2Σδt

)
1√

2πΣy(1− ρt2)

× exp

−
(
c− δt

(
1 + ρt

√
Σy/Σδt

))2

2Σy(1− ρt2)

 dδt

(3.110)

Now we note that p(γ = c)A and the first term of p(γ = c)B cancel each other

out. That leaves us with the second term of p(γ = c)B, which can be simplified to

the following, with r ≡ 1 + ρt
√

Σy/Σδt.

p(γ = c) =

∫ ∞
c−d0

1

n0|r|
1√

2πΣδt

exp

(
− δt

2

2Σδt

)
× 1√

2πΣy(1− ρt2)/r2
exp

(
− (δt − c/r)2

2Σy(1− ρt2)/r2

)
dδt (3.111)
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To further simplify (3.111), we note that the product of two Gaussians is propor-

tional to another Gaussian:

N(a,A)×N(b, B) ⇐⇒ 1√
2πA

exp

(
−(x− a)2

2A

)
· 1√

2πB
exp

(
−(x− b)2

2B

)
=

1

2π
√
AB

exp

(
−
(
x− Ba+Ab

A+B

)2

2 AB
A+B

)
exp

(
− (a− b)2

2(A+B)

)
(3.112)

We apply this property to our problem with a = 0, A = Σδt, b = c/r and

B = Σy(1−ρt2)/r2. We also introduce a new quantity Σγ ≡ Σδtr
2+Σy(1−ρt2). Using

these substitutions, we can write (3.111) as a single Gaussian distribution involving

the variable of integration δt. Then it is a simple step to evaluate the integral.

p(γ = c) =

∫ ∞
c−d0

1

n0|r| · 2π
√

ΣδtΣy(1− ρt2)/r2
exp

(
− (c/r)2

2 (Σδt + Σy(1− ρt2)/r2)

)

× exp

−
(
δt −

Σδtc/r

Σδt+Σy(1−ρt2)/r2

)2

2 ΣδtΣy(1−ρt2)/r2

Σδt+Σy(1−ρt2)/r2

 dδ

=

∫ ∞
c−d0

1

n0 · 2π
√

ΣδtΣy(1− ρt2)
exp

(
− c2

2Σγ

)
exp

(
− (δt − crΣδt/Σγ)

2

2ΣδtΣy(1− ρt2)/Σγ

)
dδt

=
1

2n0

√
2πΣγ

exp

(
− c2

2Σγ

)(
1− erf

(
c− d0 − crΣδt/Σγ√
2ΣδtΣy(1− ρt2)/Σγ

))
(3.113)

Next we clean up (3.113) and replace c with γ to arrive at the final result.

p(γ) =
1

2n0

√
2πΣγ

exp

(
− γ2

2Σγ

)(
1− erf

(
γ (1− rΣδt/Σγ)− d0√

2ΣδtΣy(1− ρt2)/Σγ

))
(3.114)
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Finally, we can simplify the expression for Σγ:

Σγ = Σδtr
2 + Σy(1− ρt2)

= Σδt + 2ρt
√

ΣyΣδt + Σy

= Σy + (Σδw + 2Σδρ)∆t+ Σδx∆t
2 (3.115)

The PDF for γ (3.114) is plotted in Figure 3-17 for System 1, ∆t = 0.1 seconds

after passing the gate. The PDF is verified by a Monte Carlo simulation of 10,000

trajectories. The area of the PDF that exceeds the constraint increases as the dis-

tribution is siphoned from the original truncated normal distribution; the amount of

area lost to the left of the constraint always equals the amount of area gained to the

right of the constraint.
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Figure 3-17: p(γ) after ∆t = 0.1 seconds for System 1 with d0 = 0.1. The result is
validated with a 10,000-point Monte Carlo simulation of y(t0 + ∆t). The PDF at t0,
p(y)t=t0 , is the dashed blue line.

3.7.7 Wall Diffusion

We now know how to compute the PDF for the trajectories a short time ∆t after

passing a gate, which is a constraint that only acts for a moment in time. Next

we extend this result to a continuous constraint known as a wall. After ∆t, the

trajectories that violate the constraint d(t + ∆t) are absorbed into the wall. At any
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time t, the probability that the vehicle has not yet hit the wall is Pa(t). A short time

later, at t+ ∆t, the survival probability is Pa(t+ ∆t).

Pa(t+ ∆t) = Pa(t)× P (y(t+ ∆t) < d(t+ ∆t))

= Pa(t)× P (γ(∆t) < d(t+ ∆t))

We are assuming that the distribution at any time is a truncated normal distribu-

tion. This assumption is required for the derivation of p(γ) in Section 3.7.6. As time

goes on, and more trajectories are absorbed by the wall, this assumption may falter.

Nonetheless, it is a necessary assumption for this analysis.

The survival rate (the opposite of the collision rate) is Ṗa:

Ṗa = lim
∆t→0

Pa(t+ ∆t)− Pa(t)
∆t

= Pa lim
∆t→0

P (γ(∆t) < d(t+ ∆t))− 1

∆t

= −Pa lim
∆t→0

P (γ(∆t) ≥ d(t+ ∆t))

∆t

≡ −CPa (3.116)

For clarity we now define F (t,∆t) = P (γ(∆t) ≥ d(t + ∆t)). When ∆t = 0,

this expression is the probability that the particle is exceeding the constraint at t, so

F (t, 0) = 0. Using the definition of the derivative, we can define C as follows:

C = lim
∆t→0

F (t,∆t)− F (t, 0)

∆t

=
d

d∆t
F (t,∆t)

∣∣∣∣
∆t=0

(3.117)

The constant C is the diffusion rate of the probability distribution past the con-

straint at t, so it is evaluated at ∆t = 0. For clarity we will not explicitly state that

the evaluation occurs at ∆t = 0, nor will we write the dependence of the parameters
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on t, until it is necessary. Defining dt = d(t+ ∆t), we have:

C =
d

d∆t

∫ ∞
dt

p(γ = c) dc

=
d

d∆t

∫ ∞
dt

1

2n0

√
2πΣγ

exp

(
− c2

2Σγ

)(
1− erf

(
c(1− rΣδt/Σγ)− d0√

2ΣδtΣy(1− ρt2)/Σγ

))
dc

=
d

d∆t

∫ ∞
dt

f(∆t, c)dc (3.118)

where f(∆t, c) = p(γ(∆t) = c)

Using the definitions (3.96) and (3.98), we can rewrite r and some terms from

(3.118) to highlight the dependence on ∆t; this will be useful in understanding the

limiting behavior of the equations.

r = 1 + ρt

√
Σy/Σδt

= 1 +
Σδρ∆t

Σδt

rΣδt = Σδx∆t
2 + (Σδw + Σδρ)∆t

Σδt(1− ρt2) = Σδt

(
1− Σδρ

2∆t2

ΣyΣδt

)
= Σδx∆t

2 + Σδw∆t− Σδρ
2∆t2/Σy

and recall Σγ = Σy + (Σδw + 2Σδρ)∆t+ Σδx∆t
2

Equation (3.118) can be evaluated using the method described in (3.106).

C = −f(∆t, dt)
ddt
d∆t

+

∫ ∞
dt

d

d∆t
f(∆t, c)dc

≡ C1 + C2 (3.119)

The first term of (3.119) is easily evaluated at ∆t = 0. We note that when ∆t→ 0,
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then rΣδt/Σγ → 0 and Σy/Σγ → 1.

C1 = −f(∆t, dt)
ddt
d∆t

∣∣∣∣
∆t=0

= − ḋ

2n0

√
2πΣy

exp

(
− d0

2

2Σy

)(
1− erf

(
dt − d0√

2Σδt(1− ρt2)

))∣∣∣∣∣
∆t=0

= − ḋ

2n0

√
2πΣy

exp

(
− d0

2

2Σy

)1− erf

 ḋ∆t√
2
(
(Σδx − Σδρ

2/Σy)∆t2 + Σδw∆t
)
∣∣∣∣∣∣

∆t=0

= − ḋ

2n0

√
2πΣy

exp

(
− d0

2

2Σy

)1− erf

 ḋ√
2
(
Σδx − Σδρ

2/Σy + Σδw/∆t
)
∣∣∣∣∣∣

∆t=0

=


− ḋ

2n0

√
2πΣy

exp
(
− d0

2

2Σy

)(
1− erf

(
ḋq

2(Σδx−Σδρ
2/Σy)

))
for Σδw = 0

− ḋ

2n0

√
2πΣy

exp
(
− d0

2

2Σy

)
otherwise

(3.120)

(3.121)

Next we examine the second term in (3.119), using the rule for the derivative of

a product.

C2 =

∫ ∞
dt

d

d∆t
f(∆t, c)dc

∣∣∣∣
∆t=0

=

∫ ∞
dt

d

d∆t

(
1

2n0

√
2πΣγ

exp

(
− c2

2Σγ

))
×

(
1− erf

(
c(1− rΣδt/Σγ)− d0√

2ΣδtΣy(1− ρt2)/Σγ

))
dc

∣∣∣∣∣
∆t=0

−
∫ ∞
dt

1

2n0

√
2πΣγ

exp

(
− c2

2Σγ

)
× d

d∆t
erf

(
c(1− rΣδt/Σγ)− d0√

2ΣδtΣy(1− ρt2)/Σγ

)
dc

∣∣∣∣∣
∆t=0

(3.122)

We call the first integral C2a and the second integral C2b. To evaluate the first

integral, we first look at the derivative of a normal distribution with respect to its

variance:

d

dA

(
1√
2πA

exp

(
− x

2

2A

))
=

1

2A
√

2πA
exp

(
− x

2

2A

)(
x2

A
− 1

)
(3.123)
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Next, the derivative of Σγ with respect to ∆t is:

dΣγ

d∆t
= Σδw + 2Σδρ + 2Σδx∆t (3.124)

Using (3.123) and (3.124), we can write C2a as follows:

C2a =

∫ ∞
dt

1

4n0Σγ

√
2πΣγ

exp

(
− c2

2Σγ

)(
c2

Σγ

− 1

)
(Σδw + 2Σδρ + 2Σδx∆t)

×

(
1− erf

(
c(1− rΣδt/Σγ)− d0√

2ΣδtΣy(1− ρt2)/Σγ

))
dc

∣∣∣∣∣
∆t=0

(3.125)

Because we have already taken the derivative with respect to ∆t, we can now

evaluate (3.125) at ∆t = 0.

C2a =

∫ ∞
d0

Σδw + 2Σδρ

4n0Σy

√
2πΣy

exp

(
− c2

2Σy

)(
c2

Σy

− 1

)(
1− erf

(
c− d0

0+

))
dc (3.126)

The last term of (3.126) is equal to 1 when c = d0 and 0 whenever c > d0. Because

the integral of a function whose value is nonzero at only one point is zero, we know

that C2a = 0.

We now turn to the second integral in (3.122), C2b. We shift the limits of inte-

gration by introducing a new variable c′ = c − d0. It is now possible to make the

first-order approximation Σγ ≈ Σy; this is an acceptable assumption when evaluating

the derivative with respect to ∆t at ∆t = 0.

C2b = −
∫ ∞

0

1

2n0

√
2πΣy

exp

(
−(c′ + d0)2

2Σy

)
× d

d∆t
erf

(
c′ − (c′ + d0)rΣδt/Σy√

2Σδt(1− ρt2)

)
dc′

∣∣∣∣∣
∆t=0

= −
∫ ∞

0

1

2n0

√
2πΣy

exp

(
−(c′ + d0)2

2Σy

)
× d

dz

(
erf

(
z√
2

))
dz

d∆t
dc′

∣∣∣∣∣
∆t=0

= −
∫ ∞

0

1

n0

√
2πΣy

exp

(
−(c′ + d0)2

2Σy

)
× 1√

2π
exp

(
−z

2

2

)
dz

d∆t
dc′

∣∣∣∣∣
∆t=0

(3.127)

117



In (3.127), we have introduced the following change of variables:

z =
c′ − (c′ + d0)rΣδt/Σy√

Σδt(1− ρt2)
(3.128)

≡ Az√
Bz

Az and Bz can be expanded to explicitly show the time dependence:

Az = c′ − (c′ + d0)
(
(Σδw + Σδρ)∆t+ Σδx∆t

2
)
/Σy

Bz = Σδw∆t+ (Σδx − Σδρ
2/Σy)∆t

2

with:

Ȧz = −(c′ + d0) ((Σδw + Σδρ) + 2Σδx∆t) /Σy

= Az/∆t− c′/∆t− (c′ + d0)Σδx∆t/Σy

Ḃz = Σδw + 2(Σδx − Σδρ
2/Σy)∆t

= 2Bz/∆t− Σδw

Note that when ∆t → 0, Az → c′ and Bz → 0. That means that z = ∞ when

∆t = 0 and c′ 6= 0, but we need to be more careful as c′ approaches zero. The

derivative of z with respect to ∆t is:

dz

d∆t
=

Ȧz√
Bz

− AzḂz

2Bz
3/2

=
Az/∆t− c′/∆t− (c′ + d0)Σδx∆t/Σy√

Bz

− 2AzBz/∆t− AzΣδw

2Bz

√
Bz

= −c
′/∆t+ (c′ + d0)Σδx∆t/Σy√

Bz

+
AzΣδw

2Bz

√
Bz

=
− (c′/∆t+ (c′ + d0)Σδx∆t/Σy)

√
Bz + 1

2
AzΣδw/

√
Bz

Bz

(3.129)

We are now forced to consider (3.129) in two separate cases: when Σδw = 0 (higher-

order systems, with respect to w) and when it is nonzero (first-order systems). In

both cases we focus on the limit when ∆t is small, because we will eventually evaluate
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the result at ∆t = 0. We take the first case first.

dz

d∆t

∣∣∣∣
Σδw=0

≈ −
(c′/∆t)

√
(Σδx − Σδρ

2/Σy)∆t2

Bz

= − c′

Bz

√
Σδx − Σδρ

2/Σy

≡ − c′

Bz

√
Σc (3.130)

In the second case, the ∆t2 terms go to zero faster than the ∆t terms, so Az → c′

and Bz → Σδw∆t.

dz

d∆t

∣∣∣∣
Σδw 6=0

≈
−(c′/∆t)

√
Σδw∆t+ 1

2
c′Σδw/

√
Σδw∆t

Bz

= −
1
2
c′
√

Σδw/
√

∆t

Bz

(3.131)

Next we take note of the following identity.

∫
x√
2πA

exp

(
−(x− a)2

2A

)
dx = − A√

2πA
exp

(
−(x− a)2

2A

)
+
a

2
erf
(
x− a

√
2A
)

so

∫ ∞
0

c′

Bz

exp

(
−(c′)2

2Bz

)
dc′ = 1 (3.132)

The integral in (3.132) approaches a Dirac delta function centered at 0, D(c′), as

∆t→ 0 (causing Bz → 0). With this substitution, we can write C2b as:

C2b =


∫∞

0
1

n0

√
2πΣy

exp
(
− (c′+d0)2

2Σy

) √
Σc√
2π
D(c′) dc′ for Σδw = 0∫∞

0
1

n0

√
2πΣy

exp
(
− (c′+d0)2

2Σy

) √
Σδw

2
√

2π∆t
D(c′) dc′

∣∣∣∣
∆t=0

otherwise
(3.133)

Using the sifting property of the Dirac delta function, the integrals in (3.133) are

equal to the value of the integrand evaluated at c′ = 0.

C2b =


1

n0

√
2πΣy

exp
(
− d0

2

2Σy

) √
Σc√
2π

for Σδw = 0

1

n0

√
2πΣy

exp
(
− d0

2

2Σy

) √
Σδw

2
√

2π∆t

∣∣∣∣
∆t=0

otherwise
(3.134)
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The final value for C is the sum of C1, C2a (which is 0) and C2b.

C =


1

n0

√
2πΣy

exp
(
− d0

2

2Σy

) [√
Σc
2π
− ḋ

2

(
1− erf

(
ḋ√
Σc

))]
for Σδw = 0

1

n0

√
2πΣy

exp
(
− d0

2

2Σy

) [ √
Σδw

2
√

2π∆t
− ḋ

2

]
otherwise

(3.135)

Recall that Σc = Σδx−Σδρ
2/Σy as defined in (3.130). Clearly when Σδw 6= 0, which

is the case when the disturbance directly affects the output channel, the solution for

C is invalid because it involves the fraction 1/
√

∆t evaluated at ∆t → 0. As such,

this method only applies to the higher-order systems in which the disturbance does

not directly affect the output. The cause of this issue is that in the Wiener process,

the state variance scales linearly with time, rather than quadratically; as ∆t → 0,

the standard deviation of the noise diminishes as a square root function, which as an

infinite slope at the origin.

For higher-order systems (Σδw = 0) the value of C from (3.135) is used in (3.116)

to evaluate the collision probability as a function of time. C itself is a function of

time, due to its dependence on Σ(t) and the wall distance d(t). However, both of

those quantities can be computed analytically and (3.116) can be integrated through

time very quickly. Figure 3-18 shows a batch of trajectories moving past a sinusoidal

constraint. The predicted and measured collision probabilities are shown in Figure

3-19. The prediction is accurate for a significant portion of the wall traversal. The

reason for the growing error is the violation of the assumption that the PDF outside

of the wall is a truncated normal distribution; as trajectories diffuse into the wall, the

distribution of the surviving trajectories distorts away from a Gaussian. Nonetheless,

this analytic prediction of the collision probability is a useful tool for estimating the

risk associated with a motion plan.

3.7.8 Handling Multiple Obstacles with an Optimal Sample

Time

For a general motion planning problem, there may be multiple obstacles that encroach

on the reference path, and the distances to those obstacles are not likely described by
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Figure 3-18: 100 Monte Carlo trajectories of System 2 encountering a sinusoidal
constraint at t0 = 5. The dark trajectories violate the constraint, while the others
do not. The red curves show the measured mean and standard deviation of 10,000
successful trajectories.
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Figure 3-19: The predicted (dashed blue) and measured (red) collision probability for
the example shown in Figure 3-18. The trends are accurate throughout the simula-
tion, although some error eventually builds up as the normal distribution assumption
breaks down.
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analytic functions. To deal with this issue, we instead sample the obstacle locations

every ∆tobs seconds throughout the motion plan and combine the effects of all of the

obstacles found in each sample. That time period is the sample rate for which the

method described below matches the analytic solution presented above for a fixed

wall distance. Because the optimal sample rate depends on the wall distance, it is

calculated for a wall distance d0 equal to twice the cross-track error standard deviation

when in the b trim. Motion plans that bring the vehicle closer than that distance to

the obstacles would likely be rejected anyway, and obstacles farther than that distance

have very small effects on the collision probability.

Recall what happens to the probability distribution just after passing a gate. The

normal distribution is truncated at y = d; the fraction of the distribution that is

truncated is the collision probability, Phit. Afterwards, the remaining distribution

spreads out past y = d on the other side of the gate until it eventually forms a new

normal distribution.

The variance prediction algorithm from Section 3.6.4 only works with normal

distributions. The truncated distribution at the gate is not normal; however, we can

approximate it as a normal distribution whose mean and variance are the same. The

truncated distribution pd(y) is not strictly a probability density function because its

total area is Pnohit < 1.

pd(y) =


1√

2πV
exp

(
− (y−ȳ)2

2V

)
for y ≤ d

0 otherwise
(3.136)

The mean value ȳd and variance Vd of this distribution are calculated as follows.

ȳd =

∫ ∞
−∞

pd(y)y dy

=

∫ d

−∞
p(y)y dy

= Pnohit ȳ − p(d)V (3.137)
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Vd =

∫ ∞
−∞

pd(y)y2 dy

=

∫ d

−∞
p(y)y2 dy

= Pnohit (V + ȳ2)− p(d)V (d+ ȳ) (3.138)

The normal approximation to the truncated distribution, pd,n(y), is shown below

and plotted in Figure 3-20.

pd,n(y) =
1√

2πVd
exp

(
−(y − ȳd)2

2Vd

)
(3.139)

−0.4 −0.2 0 0.2 0.4
0

1

2

3

4

Cross−track Position (m)

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

Distribution
Normal Approx.

Figure 3-20: The probability distribution when the vehicle passes the gate, and the
normal approximation using the same mean and variance.

When the vehicle passes an obstacle with a non-zero width, the collision proba-

bility increases with time (Figure 3-21). The obstacle can be represented as a series

of gates with a spacing ∆tobsU . After passing each gate, the collision probability is

computed using (3.86). Then the resulting distribution approximated as a normal

distribution using (3.137-3.139). The new values for the mean error and the error

variance are replaced in the appropriate matrices: ȳd → ē0(5) and Vd → Σ0(5, 5).

The off-diagonal terms in the fifth row and column are also scaled by
√
Vd/V . Then

the mean error and error variance prediction algorithms from Section 3.6 are run from

one gate to the next.

Finally, if the probability of passing each gate k is Pnohit,k, then the overall collision
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Figure 3-21: 100 trajectories from a 10,000-point Monte Carlo simulation of a path-
following task near an obstacle. The trajectories that hit the obstacle are drawn as
black lines. The red curves show the mean and standard deviation of the Monte Carlo
trajectories.

probability for the obstacle is:

Phit = 1−
∏
k

Pnohit,k (3.140)

The optimal obstacle sample time ∆tobs is the time for which the diffusion into a

wall as predicted by the particle absorption solution matches the diffusion as modeled

by two gates spaced ∆tobs seconds apart. First the diffusion rate C is calculated using

Σy = V , ȳ = 0, and d0 = 2
√
V . Assuming the mean and variance of the distribution

do not change significantly after passing the first gate, the probability of remaining

collision-free at the second gate is:

Pa,gates =
1

2

(
1 + erf

d0 − ȳd√
2Vd

)
(3.141)

Meanwhile, the survival probability after ∆t seconds using the particle absorption

solution is equal to e−C∆tobs . We can equate this value with Pa,gates and solve for
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∆tobs:

∆tobs = − 1

C
log

(
1

2

(
1 + erf

d0 − ȳd√
2Vd

))
(3.142)

For the system shown in Figure 3-21, ∆tobs = 1.87 seconds. The equivalent gates

are shown in Figure 3-22 along with the predicted mean and standard deviation of

the trajectories using the sampled obstacle approach. The error statistics using the

sampled approach match the statistics from a 10,000-point Monte Carlo simulation

very well. The collision probability for various gate spacings is shown in Figure

3-23. While the optimal gate spacing does not perfectly match the Monte Carlo

collision probability, it is a convenient way to approximate the diffusion rate using

only the system parameters. The optimal gate spacing does not strongly depend on

the distance to the obstacle d.

Figure 3-22: Probability density for the vehicle through time, as measured from a
10,000-point Monte Carlo simulation of a path-following task near an obstacle. The
red curves show the mean and standard deviation from the Monte Carlo simulation,
and the blue dashed curves show the mean and variance using the optimal gate
spacing.

When there are multiple obstacles around the reference path, the effect of each

obstacle must be taken into consideration at each sample time. Consider an obsta-
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Figure 3-23: Collision probability for the simulation in Figure 3-21. The analytic
solution approximates the collision probability best when the obstacle sample time is
1.87 seconds, which corresponds to a gate spacing of 0.467 meters. If the gate spacing
is too close, then the predicted collision probability it too high, and if it is too loose
than the predicted collision probability is too low.

cle whose nearest point is d meters away at an angle θ from the vehicle (in global

coordinates). A rotation matrix for the line to the obstacle is:

Jd =

 I 0

0 J(θ)

 (3.143)

The mean error vector in the direction of the obstacle is ēd = Jd
T ē and the vari-

ance in that direction is Σd = Jd
TΣJd. The equivalent mean error from the earlier

example is ȳ = ēd(4) and the equivalent error variance is V = Σd(4, 4). The collision

probability Pnohit, the approximate mean error after the obstacle ȳd, and the approx-

imate error variance after the obstacle Vd are computed from (3.137-3.138). The new

values are replaced in the appropriate matrices: ȳd → ēd(4) and Vd → Σd(4, 4). The

off-diagonal terms in the fourth row and column are also scaled by
√
Vd/V . Next the

mean error and variance matrices are rotated back to global coordinates, Jdēd → ē

and JdΣdJd
T → Σ. Finally, the error evolution algorithm from the previous section

is run for ∆x/U seconds until the collision probabilities are computed again.

If there are Nobs obstacles and there are NT time points ∆tobs apart, then the
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overall collision probability is:

Phit = 1−
NT∏
j=1

Nobs∏
k=1

(1− Pnohit,j,k) (3.144)

where Pnohit,j,k is the probability of passing the kth obstacle at the jth time point.

The overall procedure for computing the collision probability for a motion plan is

listed in Algorithm 7.

Algorithm 7 Procedure for computing the collision probability for a motion plan.

1: Calculate the diffusion rate C for the steady-state error statistics using a forward
trim, with an effective obstacle distance equal to twice the standard deviation of
the cross-track error (3.82).

2: Using C, compute the optimal sample time ∆tobs (3.142).
3: Discretize time throughout the motion plan tj using ∆tobs, resulting in NT time

points.
4: for j = 1 : NT do
5: Compute the mean state error e(tj) and the variance Σ(tj).
6: for each obstacle k do
7: Calculate the distance d and the angle θ to the nearest point on the kth

obstacle.
8: Calculate the mean and variance of the state in the θ direction, ȳ = ēd(4)

and V = Σd(4, 4), respectively, using ēd = Jd
T ē and Σd = Jd

TΣJd with Jd
defined in (3.143).

9: Compute the probability that the vehicle clears the kth obstacle at tj,
Pnohit,j,k, using d, ȳ, and V .

10: Compute the posterior mean ȳd and variance Vd using (3.137-3.138).
11: Update the rotated mean and variance matrices ȳd → ēd(4) and Vd →

Σd(4, 4), and scale the off-diagonal terms of the fourth row and column by√
Vd/V .

12: Update the mean and variance matrices Jdēd → ē and JdΣdJd
T → Σ.

13: end for
14: end for
15: Evaluate the overall collision probability Phit using (3.144).
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3.8 Motion Planning with the A* Search Algo-

rithm

In this chapter we have developed a motion planning framework and described how to

predict the state error statistics (Algorithm 5) and the collision probability (Algorithm

7) for motion plans given stochastic disturbances. The final step is to find the optimal

motion plan within that framework.

Motion plans can be generated using an expanding search algorithm such as the

RRT algorithm [49] or the expanding A* search algorithm. The maneuvers included

in the maneuver libraryM are the trim maneuvers, which hold the vehicle in a trim

trajectory for a fixed duration. For example, M may be all of the trims in the trim

library T , held for 5 seconds each. The maneuvers m in M are evaluated using

(3.20).

In this section we present an example of a motion planning task. The mission

is to drive to the green circle in Figure 3-24 while avoiding the obstacles. Potential

waypoints are automatically generated off the corners of the obstacles, with an X

and Y offset equal to 1.5 times the width of the vehicle. With that offset, there is

a full vehicle width between the obstacle and the edge of a vehicle positioned at the

waypoint.

We use the expanding A* search algorithm to find the optimal motion plan. While

the planning domain may be slightly more limited using the A* algorithm than an

RRT with random speed control setpoints and trim durations, A* is deterministic

and optimal within its domain. The A* algorithm requires a cost function g that is

used to compare different plans, and a heuristic function h that is a prediction of the

cost from the end of the plan to the goal. These two functions are described below.

3.8.1 Cost Function

We are interested in finding plans that are efficient, meaning that they get to the goal

quickly, yet safe, meaning that the probability of colliding with an obstacle along the
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Figure 3-24: The planning space for a motion planning task. The mission is to drive
to the goal point, indicated with a green square. The black circles are waypoints
that may be used by the planner; they are automatically placed off the corners of the
obstacles.

way is low. The cost function includes two components: the plan duration T and the

collision probability Phit.

Plan Duration

The total duration of the plan is calculated as follows. If the duration of maneuver i

is ti and there are |p| maneuvers in the plan, then the duration of the plan is T :

T =

|p|∑
i=1

ti (3.145)

If the cost function includes T alone, then the planner will select the time-optimal

plan. This plan will be guaranteed to be collision-free in the absence of all uncertainty

and disturbances. However, while the plan will not intersect with obstacles, it may

come dangerously close.

It may be desirable to encourage the planner to use waypoints. If a waypoint is

15 meters straight ahead of the vehicle, then the vehicle could either drive directly

to the waypoint (one planning step, w) or it could use three 5-meter forward trims
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(three planning steps, bbb). Using the waypoint increases the speed of the planning

algorithm in this case. In addition, waypoints may be placed farther away from the

obstacles in the free regions of the space; a path using the waypoint may no longer

be time-optimal, but it may be safer. There is no difference in physical cost between

driving to a waypoint and simply driving forward for the same length of time. If the

effective cost of driving to a waypoint is scaled by a factor cw < 1, then, all other

factors being equal, the planner will choose to drive to a waypoint rather than using

a forward trim. The modified duration is:

T =

|p|∑
i=1

 cwti if mi = w

ti otherwise

 (3.146)

The modified duration (3.146) is identical to (3.145) when cw = 1.

Collision Probability

The collision probability Phit is calculated in Section 3.7. As a new maneuver is added

to the motion plan, the gate collision probabilities only need to be calculated for the

new leg, as opposed to the whole plan.

Combined Cost

The plan duration T (3.146) and the collision probability Phit could be combined in

a number of different ways. For example, the cost could be a linear combination of

the two values, as shown below and in Figure 3-25.

g = T +KhitPhit (3.147)

In (3.147), the constant Khit scales the contribution of the collision probability; it

is the additive time cost associated with a collision. However, this form of the cost

function may not be desirable for two reasons. First, Khit is a parameter that must

be tuned; a certain amount of intuition is necessary to find an appropriate value for

the parameter. Second, if the vehicle is nearly guaranteed to hit an obstacle (for
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Figure 3-25: Cost function g (3.147), a linear combination of T and Phit, with Khit =
20.

example, the plan takes the vehicle through a corridor whose width is barely wider

than the vehicle itself), then the plan cost is only increased by a finite amount (Khit)

over a plan of identical duration with Phit = 0. This allows the planner to choose a

very undesirable plan in certain situations.

An alternative formulation for g is based on the assumption that the vehicle must

keep trying to execute the plan until it can do so without hitting any obstacles. If

the vehicle continues to the end of the plan each time, despite the collision, then the

expected time to complete the mission is:

g =
T

1− Phit
(3.148)

This cost function (3.148) has the advantages that there are no tunable parameters

and it exhibits nonlinear behavior, as shown in Figure 3-26. Plans with a high collision

probability are strongly discouraged, and g →∞ as Phit → 1. Note that in both cases

the units of the cost function are time (seconds).
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Figure 3-26: Cost function g (3.148): nonlinear combination of T and Phit.

3.8.2 Heuristic Function

In order for the A* search algorithm to return the optimal plan from the motion

planning framework (the plan with the lowest cost that ends at the goal), the heuristic

function h must not overestimate the cost to get from the end of any plan to the goal.

The search process takes less time (fewer plans evaluated) if h is very close to the

actual cost to the goal, as opposed to a trivial heuristic such as h = 0.

A reasonable heuristic is the time it would take to drive straight to the goal, as

the crow flies. This can be computed as the diagonal distance to the goal divided by

the nominal forward speed of the vehicle. For example, if the goal is 10 meters away

and the vehicle can drive at 0.25 m/sec, then h = 40 seconds.

However, the diagonal distance is not appropriate if there is an obstacle in the way,

as the vehicle cannot drive through the obstacle. If there is an obstacle between the

vehicle and the goal location, then the shortest path to the goal connects to obstacle

corners with straight line segments. If a network graph connects the obstacle corners

with the goal and the vehicle, then a better heuristic is the shortest path through the

graph from the vehicle to the goal, divided by the forward speed of the vehicle.

Because the vehicle cannot drive exactly to the obstacle corners, the obstacles are
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first expanded by half of the vehicle’s width; the corners of these expanded obstacles

are the nodes of the obstacle graph. The goal position is also added as a node.

Straight edges are added between all of the nodes; edges that intersect with the

expanded obstacles are discarded. The remaining set of nodes and edges forms the

obstacle graph D (Figure 3-27). Dijkstra’s algorithm [18] is run on this graph to find

the minimum cost from every node n to the goal, Cn. This step is performed quickly

offline before the planner runs. Online, when the planner is evaluating the predicted

cost of a plan p, each node n of D is extended to the end of the plan with a straight

line segment. The cost of each of these new edges cn is the length of the edge divided

by the forward speed of the vehicle. This cost is∞ if the edge intersects an expanded

obstacle. Finally, the heuristic is the minimum cost from the end of the plan to the

goal, which is computed as follows:

h = min
n∈D

(Cn + cn) (3.149)

Figure 3-27 shows the obstacle graph and the extension to the vehicle, along

with the minimum-cost path through the graph. The obstacle graph for the example

planning problem is shown in Figure 3-28.

Start

Goal

Figure 3-27: Obstacle graph D used to compute the A* heuristic h. The obstacles
are expanded by half of the vehicle width, and the graph nodes include the corners
of these expanded obstacles. The green path is the minimum-cost route through the
graph; the cost of this path is h.
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Figure 3-28: Obstacle graph for the example with cw = 0.9. The green path is the
minimum-cost route used for the heuristic.

If waypoints are used and cw < 1, then the shortest path to the goal may include

waypoints instead of obstacle corners. The cost used in the obstacle graph D is scaled

by cw for the legs that end at waypoints. In Figure 3-28, the waypoint cost factor is

cw = 0.9, which is not small enough to make the shortest path use the waypoints. In

Figure 3-29, cw is reduced to 0.5; in this case, she shortest path through the graph

includes two of the waypoints.

3.8.3 Search Procedure

The expanding A* search algorithm finds the plan with the minimum cost g that ends

at the goal (within a tolerance ε). The plans in the search queue are sorted by the

predicted total cost f = g + h. The plan with the smallest f is expanded by adding

all maneuvers and all waypoints that do not result in collisions.

The search procedure is listed in Algorithm 8. It differs from the basic A* algo-

rithm (Algorithm 2) in that it generates the search tree on the fly and it sometimes

adds multiple maneuvers at once, as when driving to a waypoint.

The search tree using Algorithm 8 is shown in Figure 3-30 along with the optimal

plan eidawcwca. The vehicle backs away from the wall, turns in place, then uses two
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Algorithm 8 A* Algorithm for motion planning.

1: Define the goal set G = {X ∈ R6 : |x− xgoal| < ε}.
2: Load the obstacle file.
3: Load the trim library T and use it to construct the maneuver library M.
4: Create a library of waypoints W around the obstacles, with one at the goal.
5: Create a network graph D around the obstacles. Use Dijkstra’s algorithm to find

the minimum collision-free distance from each node of the graph to the goal.
6: Create a plan p containing only the initial state x0.
7: Initialize the search queue Q with p.
8: while |Q| > 0 do
9: Remove the first plan from the queue: p← Q(0).

10: if x(p) ∈ G then
11: return p with success.
12: end if
13: for each maneuver m in M do
14: Add m to p: p′ ← p+m.
15: if p′ is collision-free then
16: Compute the cost g(p′).
17: Compute the predicted cost-to-go h(p′) by extending D to the current

vehicle position and using Dijkstra’s algorithm.
18: The predicted total cost of p′ is f(p′) = g(p′) + h(p′).
19: Insert p′ into Q sorted by f(p′).
20: end if
21: end for
22: for each waypoint w ∈ W do
23: Calculate the appropriate trim mt to align the vehicle with w.
24: Add mt to p: p′ ← p+mt.
25: if p′ is collision-free then
26: Calculate the maneuver mw that ends at w.
27: Add mw to p′: p′ ← p′ +mw.
28: if p′ is collision-free then
29: Compute the cost g(p′).
30: Compute the predicted cost-to-go h(p′) by extending D to the current

vehicle position and using Dijkstra’s algorithm.
31: The predicted total cost of p′ is f(p′) = g(p′) + h(p′).
32: Insert p′ into Q sorted by f(p′).
33: end if
34: end if
35: end for
36: end while
37: return with failure.
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Figure 3-29: Obstacle graph for the example with cw = 0.5. The minimum-cost path
through the graph, shown in green, uses two of the waypoints.

waypoints to get around the obstacle before driving toward the goal. An extra node

e is added to the plan to stop the vehicle. This plan was found after 33 iterations of

the A* algorithm in 0.632 seconds on a 2.33 MHz Intel Core 2 Duo processor.

Figure 3-30: A* search tree (purple) and the optimal plan eidawcwca (black).

While the plan as drawn in Figure 3-30 is not smooth, the vehicle actually follows

a smooth path. The nominal vehicle trajectory (evaluated from r and ē) is shown in

Figure 3-31 along with curves showing one standard deviation of cross-track position

136



error. Note how the error grows when driving in reverse or turning in place (no

position feedback) and shrinks in the straight segments (position feedback enabled).

Figure 3-31: The optimal plan returned by the planner (thick black) and the nominal
vehicle trajectory (thick blue). The thin blue lines show one standard deviation of
cross-track position error.

The plan shown in Figure 3-31 was simulated with no disturbances. The resulting

position at several times during the plan is shown in Figure 3-32.

A dramatic example of the effect of the collision probability on the planner’s

behavior is shown in Figure 3-33. In this example, the fastest route to the goal

(taking 28 seconds) is a straight path between the obstacles. Because the passage is

so narrow, the collision probability is 99.5%. The alternative plan edbbcbcw, shown

in the figure with the corresponding search tree, drives around the obstacles with

a collision probability of 1.5%. The duration of this plan is 40.3 seconds, but the

planner has determined that the extra time is worth it to ensure the success of the

mission.

3.9 Experimental Results

Several experiments were performed in the Towing Tank at the Massachusetts Insti-

tute of Technology using an underactuated autonomous surface vessel. The following
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Figure 3-32: The vehicle position at several different times during the plan. These
positions, determined from a simulation of the execution of the plan, match the
predicted trajectory (the thick blue line) which incorporates the mean error ē.

Figure 3-33: The planner chooses to drive around the obstacles instead of driving
between them, increasing the plan duration by 44% but reducing the collision prob-
ability from 99.5% to 1.5%.
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subsections describe the vehicle and the experiment setup.

3.9.1 Underactuated Surface Vessel

The vehicle used in the experiment is a 1.25-meter autonomous model of an icebreak-

ing ship (Figure 3-34). The vessel is powered by a single azimuthing thruster under

the stern which can generate a thrust vector in any direction in the horizontal plane.

The details of the vessel are provided in Appendix A. A state space model for the

vehicle dynamics, including the process noise due to the waves described in Section

3.9.3, was derived from a least-squares fit to input-output data from a series of simple

system identification tests. The resulting model is included in the Appendix, Section

A.6. The controller is a linear quadratic regulator designed around each control set-

point.

Figure 3-34: The 1.25-meter underactuated surface vessel used in the experiment.

3.9.2 Motion Plan

The planner (Algorithm 8) was used to find a path through the environment shown

in Figure 3-35. The nominal forward speed is U = 0.15 m/sec and the nominal yaw

rate is R = 9◦/sec. There was no discounted cost for waypoints, so cw = 1. The

optimal plan c(cw)c(aw) uses two 5-second trim maneuvers c and two waypoint
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maneuvers cw and aw. The duration of the plan is 32.36 seconds and the collision

probability is 2.2%. This plan was found after 28 iterations of the search algorithm

in 1.33 seconds on a 2.33 MHz Intel Core 2 Duo processor. If the planner does not

consider the collision probability in the cost function, then the shortest motion plan

drives straight between the two islands with a duration of 31.67 seconds and a collision

probability of 11.4%; this plan is 2.1% shorter than the optimal plan but the vessel

is over 5 times as likely to hit an obstacle. The optimal plan and the search tree are

shown in Figure 3-35. The search tree is strongly directed toward the goal due to the

A* heuristic function h.

3.9.3 Experiments

The optimal plan c(cw)c(aw) was executed by the autonomous surface vessel shown

in Figure 3-34 while a wavemaker generated 2.4-Hz waves with a 2-cm wave height

and a wavelength of 27 cm moving from left to right in Figure 3-35. The trajecto-

ries from five separate executions of the plan are plotted in the figure. For the most

part, the trajectories remain within one standard deviation of the reference trajec-

tory. Differences in the mean error can be attributed to modeling error and a slight

unmodeled drift from left to right due to the net effects of the waves. Figure 3-36

shows the vehicle in the tank near the end of the motion plan.

3.10 Summary

In this chapter we have developed a robust motion planning algorithm for planar

holonomic vehicles. The motion plans generated by the algorithm are robust to ex-

ternal stochastic disturbances because they include the predicted collision probability

in the cost function. Despite the stochastic nature of the actual vehicle trajectories,

we do not use Monte Carlo simulations to estimate the cost function. Rather, we have

developed analytic predictions of the path-following error statistics and the resulting

collision probability. These predictions can be evaluated very quickly for each motion

plan so that the entire motion planning problem can be solved in just a few seconds.
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The predicted error statistics and the predicted collision probability are based

on an estimate of the vehicle parameters. The performance of the vehicle during

the execution of the motion plan depends on the quality of the parameter estimates;

the vehicle will behave as expected if the parameters are accurate, but there may

be additional path-following errors if the parameter estimates are incorrect. The

following two chapters describe how to learn the parameters online and how to predict

the effects of that model learning on the path-following performance. Then the same

planning algorithm will be used (Algorithm 8) but the cost function will include the

effects of model uncertainty in addition to the stochastic disturbances. We will then

see that this planner automatically chooses motion plans that actively reduce the

model uncertainty to improve the overall mission performance.
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start

goal

waves

Figure 3-35: The vehicle drives from the initial configuration, as pictured, to the
green square. The search tree is shown in gray (top) and the optimal plan is shown
in black. The waypoints considered by the planner are shown as large pink circles.
The predicted mean and standard deviation for the path-following error are shown
as dashed blue lines. Five experimental trajectories are shown in green in the lower
figure.
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Figure 3-36: The vehicle near the end of the motion plan. The wavemaker can be
seen behind the vehicle.
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Chapter 4

Model Learning

In Chapter 3 we discussed how to generate motion plans that are robust to stochastic

environmental disturbances. However, external disturbances are not the only poten-

tial source of path-following error. Because the state feedback controller is designed

around an assumed model of the vehicle’s dynamics and kinematics, the performance

of the controller is related to the accuracy of the model. The system model may be de-

rived mathematically, measured experimentally, learned online, or obtained through

some combination of those methods. A mathematical model may be inaccurate if the

assumptions upon which it is based are incorrect. An experimentally-derived model is

subject to measurement error, and it may be inconvenient or expensive to perform the

many system identification tests that are necessary to develop the model. Another

problem is that the true vehicle model may change over time, either abruptly, due

to a configuration change or damage, or gradually, due to use and wear. After the

true model changes, the mathematical assumptions need to be reevaluated or more

system identification experiments need to be performed.

The alternative to trying to establish an accurate model ahead of time is to learn

the model online. Such a learning algorithm can adapt to changing parameter values

to become more accurate over time as more learning data is collected. In fact, it

is possible to predict how the model parameter uncertainty will change throughout

a motion plan due to the learning algorithm. That information is useful when con-

sidering model uncertainty in the planner’s cost function, which will be discussed in
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Chapter 5.

The dynamic model of the vehicle presented in Chapter 3 has a rigid structure

defined by a number of parameters. In this chapter we simplify the dynamic model

by using the linearization of the dynamics around ν = 0, as shown in (3.6), to reduce

the number of system parameters. Within this model structure, the simplest learning

algorithm is least squares regression. While basic least squares regression is straight-

forward, some care needs to be taken to apply it to the multiple-input, multiple-output

dynamic model for the planar holonomic vehicle. Other complications arise when the

regression is performed in several batches (one batch per maneuver in the motion

plan) and when the values of some of the parameters in the model are fixed (that

is, they are assumed to be correct and they are not affected by the learning data).

We fix some parameter values to focus the learning on other parameters. The least

squares parameter estimation algorithm is derived in Section 4.1 with all of these

factors taken into account.

As the model improves due to the learning algorithm, the path-following error

improves as well. This model improvement must be taken into account if the model

uncertainty is to be incorporated into the planner’s cost function, as described in the

next chapter. While it is impossible to predict how the parameter values themselves

will change throughout the learning process, it is possible to predict how the covari-

ance matrix of the parameter estimates changes as a function of the input data to the

learning algorithm. Section 4.2 discusses how to use this prediction in active learning

strategies to quickly and accurately identify the system parameters.

Due to the stochastic nature of the external disturbances and, consequently, the

vehicle trajectory, the input data to the learning algorithm, Φ, is also stochastic.

The parameter variance prediction is more complicated when the learning data is

stochastic, as it involves the expected value of (ΦΦT )−1, where Φ has correlations

through time. In Section 4.3 we develop an approximation to this expected value

for a simplified system, and the solution is applied to the original vehicle model in

Section 4.4.

The parameter covariance prediction is based on several assumptions: the process
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and sensor noise levels are known, the initial parameter variance (initial confidence) is

known, and the true parameter values do not change. If any of these assumptions are

violated, then the predicted parameter variance may differ from the actual parameter

variance as measured across all possible noise sequences. Therefore a posterior correc-

tion is needed to properly set the initial parameter confidence for the next planning

task. For example, if the true parameter value changes during the mission, then the

parameter confidence should be reduced at the end of the mission so that the param-

eter estimates will converge quickly to the new true values during the next mission.

This posterior parameter variance estimate is derived in Section 4.5.2.

Predicting the expected information gain from different types of maneuvers is the

first step in creating a planner that optimally balances model learning with goal-

seeking behavior without any human input. The next chapter will translate the

expected parameter variance evolution into an expected collision cost, thereby com-

pleting the integrated planning and learning algorithm.

4.1 Least Squares Parameter Estimation

In this section we describe the least squares regression algorithm for learning the

parameters of the dynamic model of the vehicle. The full model is partitioned into

three separate models, one for each output u̇, v̇ and ṙ. Within each partitioned model,

some of the parameters may be fixed while others are free to be adjusted by the

regression algorithm. Furthermore, the regression takes place in several batches, as a

compromise between the full least squares regression and the recursive least squares

algorithm. Using the entire data set at once is the simplest approach, but it means

that the parameters are not updated until after the mission is over. The recursive

least squares algorithm results in the fastest parameter updates, but predictions of

the learning rate are more difficult with that approach. Updating the parameters

after each maneuver allows the parameters to become more accurate throughout

the mission while still allowing for simple parameter convergence predictions. These

extensions to least squares regression mean that the update equations become very
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complicated and quite a lot of accounting is necessary to keep track of the various

partitioning matrices and pieces of learning data. However, the final result is a flexible

tool for learning some or all of the parameters in one or more stages, with or without

initial guesses for the parameter values.

4.1.1 Parameter Vector System Model Representation

A general linear model for a single output y has the form:

y = β1φ1 + β2φ2 + · · ·+ βmφm + w

= βTφ + w (4.1)

where m is the number of parameters in the system and w is uncorrelated random

noise, which we assume is sampled from a zero-mean Gaussian distribution. We can

see that our model of the vehicle dynamics (3.4) has this structure if we incorporate

sensor noise ws.

yu = u̇+ wsu = a11u+ b1τx + fu + wu + wsu

yv = v̇ + wsv = a22v + a23r + b2τy + fv + wv + wsv (4.2)

yr = ṙ + wsr = a32v + a33r + b3τy + wr + wsr

The terms fu and fv are the components of the wind force in body-fixed coordi-

nates. However, we seek to learn fU and fV , the wind components in global-frame

coordinates. Note that the model in (4.2) is a continuous-time model whose output is

an acceleration. In practice the acceleration will be measured using a finite-difference

approach. An equivalent discrete-time model could be constructed with the same

number of parameters, but we choose the continuous-time model structure for com-

patibility with the models used in Chapter 3.

We build a learning data vector φ which includes the input data used in the
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regression, ν and τ .

φ =


ν

τ

1

 (4.3)

The model parameters in (4.2) are stored in a parameter vector β:

β =
[
a11 b1 a22 a23 b2 a32 a33 b3 fU fV

]T
(4.4)

with 
a11

b1

fu

 = Cβu β


a22

a23

b2

fv

 = Cβv β


a32

a33

b3

 = Cβr β (4.5)

The partitioning matrices Cβu, Cβv and Cβr extract the parameters associated

with the surge, sway and yaw dynamics, respectively. These matrices also rotate

the global wind parameter fU and fV to their body-reference equivalents fu and fv

according to the vehicle heading ψ.

Cβu =


1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 cosψ sinψ



Cβv =


0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 − sinψ cosψ

 (4.6)

Cβr =


0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0


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Next we can define a set of selection matrices for the φ vector:
u

τx

1

 =


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

φ ≡ Cφuφ


v

r

τy

1

 =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

φ ≡ Cφvφ (4.7)


v

r

τy

 =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

φ ≡ Cφrφ

Using the partitions of β in (4.5) and φ in (4.7), we can write (4.2) in a more

compact form:

yu =
[
a11 b1 fu

]
u

τx

1

+ wu + wsu = βTCβu
TCφuφ + wu + wsu

yv =
[
a22 a23 b2 fv

]

v

r

τy

1

+ wv + wsv = βTCβv
TCφvφ + wv + wsv (4.8)

yr =
[
a32 a33 b3

]
v

r

τy

+ wr + wsr = βTCβr
TCφrφ + wr + wsr

Note the parallel between (4.8) and the general model (4.1).
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4.1.2 Basic Linear Regression

For the general regression task of finding the best β̂ that fits (4.1), the output data is

stored in a 1×N vector Y and the input data is stored in a m×N matrix Φ where

N is the number of data samples and m is the length of φ.

Φ =
[

φ1 . . . φN

]
(4.9)

Y =
[
y1 . . . yN

]
(4.10)

w =
[
w1 . . . wN

]
(4.11)

The full output vector can be written in terms of the parameter vector and the

input data as follows:

Y = βTΦ + w (4.12)

If we have an estimate for the parameter vector β̂, then the predicted output data

given that estimate is:

Ŷ = β̂TΦ (4.13)

In least squares regression, the optimal parameter estimate β̂ is the one that

minimizes the sum of the squared estimation error (2.3). The sum of the squared

error between the predicted output and the actual output is (Ŷ−Y)(Ŷ−Y)T . The

expected value of this quantity is minimized when its derivative with respect to β̂ is

zero.

0 =
∂

∂β̂
E
[
(Ŷ −Y)(Ŷ −Y)T

]
=

∂

∂β̂

(
β̂TΦΦT β̂ − β̂TΦYT −YΦT β̂ + E[YYT ]

)
= −2YΦT + 2β̂TΦΦT

β̂ =
(
ΦΦT

)−1
ΦYT (4.14)

Equation (4.14) is the least-squares approximation of β given the input data Φ and
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the output data Y. For convenience we define an information matrix, R = ΦΦT . The

trace of this positive-definite matrix increases whenever the algorithm is presented

with new data φ.

Using the partitioning matrices (4.6) and (4.7), we can write the following:

β̂u = Cβuβ̂ =
(
CφuΦΦTCφu

T
)−1

CφuΦYu
T

β̂v = Cβvβ̂ =
(
CφvΦΦTCφv

T
)−1

CφvΦYv
T (4.15)

β̂r = Cβrβ̂ =
(
CφrΦΦTCφr

T
)−1

CφrΦYr
T

Introducing the information matrices Ru = CφuΦΦTCφu
T , Rv = CφvΦΦTCφv

T

and Rr = CφrΦΦTCφr
T , the parameter estimation problem is divided into three

groups:

β̂u = Ru
−1CφuΦYu

T

β̂v = Rv
−1CφvΦYv

T (4.16)

β̂r = Rr
−1CφrΦYr

T

The estimate vectors β̂u and β̂v contain the body-centered wind estimates fu and

fv, respectively. Finally, the full parameter estimate (containing estimates for fU and

fV ) is assembled as follows:

β̂ = Cβu
T β̂u + Cβv

T β̂v + Cβr
T β̂r (4.17)

4.1.3 Learning a Subset of Parameters

Let us temporarily return to the general regression problem (4.1) and (4.14). If some

of the parameters in β are already known with an acceptable degree of confidence and

we wish to learn the other parameters, then we must partition (4.1) into the known

part and the unknown part. We define two selection matrices Cfixed and Cfree to

extract the fixed parameters and the free parameters (those which we wish to learn)
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from β.

βfixed = Cfixed β̄ (4.18)

βfree = Cfree β (4.19)

The number of rows in Cfixed is mfixed, the number of fixed parameters. The

number of rows in Cfree is mfree, which is the number of free parameters. Naturally

mfixed + mfree = m. Each row of Cfixed and Cfree contains all zeros except for a

single value of one corresponding to an element of β. The fixed parameter vector β̄

has m values, but only the mfixed elements extracted by Cfixed are used; the other

elements can be set to any value, such as zero.

Using these selection matrices (4.18-4.19), the original model (4.1) becomes:

y = β̄TCfixed
TCfixedφ + βTCfree

TCfreeφ + w

≡ β̄T Ifixedφ + βT Ifreeφ + w

y − β̄T Ifixedφ = βT Ifreeφ + w (4.20)

In the equations above, Ifixed and Ifree are m × m matrices with ones on the

diagonal corresponding to the fixed and free parameters, respectively. Note that

Ifixed + Ifree = Im×m. We can define Y′ as a row vector containing the left side of

(4.20) evaluated at each time point: Y′ = Y − β̄T IfixedΦ. Now the full problem

(4.12) is written as follows:

Y′ = βT IfreeΦ + w (4.21)

Repeating the derivation of the least squares parameter estimate (4.14) and ap-

plying it to the partitioned problem, we have:

β̂free,u = Ru
−1Cfree,uCφuΦ(Yu

′)T

β̂free,v = Rv
−1Cfree,vCφvΦ(Yv

′)T (4.22)

β̂free,r = Rr
−1Cfree,rCφrΦ(Yr

′)T
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where

Ru = Cfree,uCφuΦΦTCφu
TCfree,u

T

Rv = Cfree,vCφvΦΦTCφv
TCfree,v

T

Rr = Cfree,rCφrΦΦTCφr
TCfree,r

T

and

Yu
′ = Yu − β̄TCβu

T Ifixed,uCφuΦ

Yv
′ = Yv − β̄TCβv

T Ifixed,vCφvΦ

Yr
′ = Yr − β̄TCβr

T Ifixed,rCφrΦ

(4.23)

Note that some of these matrices may be of zero size, depending on the size of

Cfree for each channel. The full parameter estimate vector, including the fixed terms,

is then assembled as shown below. In this case Ifixed is a square matrix with ones on

the diagonal corresponding to the fixed terms (those that are not being learned).

β̂ = Cβu
TCfree,u

T β̂free,u+Cβv
TCfree,v

T β̂free,v+Cβr
TCfree,r

T β̂free,r+Ifixedβ̄ (4.24)

4.1.4 Batch Learning and Regularization

We now consider the case in which learning takes place in multiple stages. There are

two reasons that this analysis is important. First, it is possible to get an intermediate

parameter estimate before all of the data is collected. The extreme version of this

is the recursive least squares algorithm in which the parameter estimate is updated

after each data sample arrives. In our application we update the parameter estimate

at the end of each maneuver in the motion plan, which likely contains multiple data

samples. Second, the same algorithm for batch learning can be used to incorporate

regularization into the learning process. Regularization refers to an initial confidence

in some a priori parameter estimate, which may be obtained from a mathematical

model, previous experiments, or any other source. If the confidence in the a priori

estimate is large then the new data is given less weight than if there is low confidence

in the a priori estimate or if no a priori data is available at all.

First, consider the case in which learning takes place in just two stages with the

general model (4.1). In the first stage, N0 data points are accumulated in Φ0 and

Y0. The parameter estimate resulting from the first stage is β0 using (4.14). In

the second stage, N1 data points are accumulated in Φ1 and Y1. The entire data
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set is therefore Φ = [Φ0 Φ1] and Y = [Y0 Y1]. It can be easily shown that the

information matrix for the entire data set is R = R0 + R1. It is useful to be able to

evaluate the parameter estimate due to the entire data set without having to store

the input/output data from the first stage. To do so, we use the Woodbury matrix

identity:

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (4.25)

We apply (4.25) twice to the general least squares parameter estimate equation

(4.14). In the first application (the third line below), A = R0, U = Φ1, V = Φ1
T ,

and C = IN1×N1 .

β̂ = R−1ΦYT

= (R0 + Φ1Φ1
T )−1

(
Φ0Y0

T + Φ1Y1
T
)

=
(
R0
−1 −R0

−1Φ1(I + Φ1
TR0

−1Φ1)−1Φ1
TR0

−1
) (

Φ0Y0
T + Φ1Y1

T
)

= β̂0 + R0
−1Φ1Y1

T −R0
−1Φ1(I + Φ1

TR0
−1Φ1)−1

(
Φ1

T β̂0 + Φ1
TR0

−1Φ1Y1
T
)

(4.26)

Here we note that Φ1
T β̂0 = ŶT

1 , and we can continue to simplify (4.26).

β̂ = β̂0 + R0
−1Φ1Y1

T −R0
−1Φ1(I + Φ1

TR0
−1Φ1)−1

(
ŶT

1 + Φ1
TR0

−1Φ1Y1
T
)

= β̂0 + R0
−1Φ1Y1

T

−R0
−1Φ1(I + Φ1

TR0
−1Φ1)−1

(
(I + Φ1

TR0
−1Φ1)Y1

T + (Ŷ1 −Y1)T
)

= β̂0 +((((
(((R0

−1Φ1Y1
T −(((((

((
R0
−1Φ1Y1

T −R0
−1Φ1(I + Φ1

TR0
−1Φ1)−1(Ŷ1 −Y1)T

= β̂0 + R0
−1Φ1(I + Φ1

TR0
−1Φ1)−1(Y1 − Ŷ1)T (4.27)

Equation (4.27) is the recursive least squares algorithm when N1 = 1. However,

because (4.27) requires the inversion of an N1×N1 matrix, this form is not desirable

when N1 is large. Therefore we apply the Woodbury matrix identity a second time
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(the second line below), with A = I, U = Φ1
T , V = Φ1, and C = R0

−1.

β̂ = β̂0 + R0
−1Φ1(I + Φ1

TR0
−1Φ1)−1(Y1 − Ŷ1)T

= β̂0 + R0
−1Φ1

(
I−Φ1

T (R0 + Φ1Φ1
T )−1Φ1

)
(Y1 − Ŷ1)T

= β̂0 + R0
−1
(
I−R1(R0 + R1)−1

)
Φ1(Y1 − Ŷ1)T (4.28)

Equation (4.28) calculates the same parameter estimate as if the entire dataset

was used, but it only requires the m×m information matrix R0 and the parameter

estimate β̂0 from the first stage rather than the entire input-output data Φ0 and

Y0. Furthermore, (4.28) only requires the inversion of an m ×m matrix. Equation

(4.28) can be applied recursively each time a new batch of data arrives. When applied

to the first batch of data, β̂0 represents the a priori parameter estimate and R0 is

proportional to the initial confidence of the a priori estimate, as discussed in Section

4.4.

For the partitioned system for the planar holonomic vehicle model, the initial

parameter estimates are partitioned as follows:

β̂free,u,0 = Cfree,uCβuβ̂0

β̂free,v,0 = Cfree,vCβvβ̂0 (4.29)

β̂free,r,0 = Cfree,rCβrβ̂0

The update equations are:

β̂free,u = β̂free,u,0 + Ru,0
−1
(
I−Ru,1(Ru,0 + Ru,1)−1

)
Cfree,uCφuΦ1 (Yu,1

′ − Ŷu,1)T

β̂free,v = β̂free,v,0 + Rv,0
−1
(
I−Rv,1(Rv,0 + Rv,1)−1

)
Cfree,vCφvΦ1 (Yv,1

′ − Ŷv,1)T

β̂free,r = β̂free,r,0 + Rr,0
−1
(
I−Rr,1(Rr,0 + Rr,1)−1

)
Cfree,rCφrΦ1 (Yr,1

′ − Ŷr,1)T

(4.30)
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with each R and Y′ defined in (4.23) and

Ŷu,1 = β̂free,u,0
TCfree,uCφuΦ1

Ŷv,1 = β̂free,v,0
TCfree,vCφvΦ1 (4.31)

Ŷr,1 = β̂free,r,0
TCfree,rCφrΦ1

The full parameter estimate vector is assembled as shown in (4.24). Note that

because Cβu and Cβv are functions of the heading angle ψ, the learning batches must

be small enough that ψ does not change appreciably throughout the batch. This is

only an issue when the wind parameters are free (that is, they are being learned).

The update equations shown in (4.30) are used in the implementation of the least

squares algorithm while the vehicle is executing a motion plan. For the planner to

take model uncertainty into account while choosing the optimal motion plan, it needs

to be able to predict how the parameters are likely to improve for each candidate

motion plan considered by the planner. The next section describes how to predict

the parameter convergence for each motion plan.

4.2 Parameter Convergence

In this section we explore the mean and covariance of the parameter estimates that

are generated using the least squares learning algorithm (4.30). These statistics are

taken across all possible sequences of noise w (4.11).

4.2.1 Mean and Covariance of the Parameter Estimate Vec-

tor

The expected value of the parameter vector is equal to the true value if the noise

is uncorrelated with the input data, which we assume is true. This can be proven

from the general regression solution by substituting (4.12) into (4.14) and taking the
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expectation across all w.

E[β̂] = E
[
R−1Φ(ΦTβ + wT )

]
= R−1Rβ + R−1E[ΦwT ]

= β (4.32)

when E[ΦwT ] = 0

The covariance matrix P of the parameter estimate is derived below. Note that

when w is a stationary process, then E[wTw] = W IN×N where W is the noise

variance.

P = E
[
(β̂ − β)(β̂ − β)T

]
= E

[
R−1ΦwTwΦTR−1

]
= WE

[
R−1RR−1

]
= WE

[
R−1

]
(4.33)

For the partitioned system for the planar holonomic vehicle, the partitioned pa-

rameter covariance for the free parameters is:

Pu = WuE
[
Ru
−1
]

Pv = Wv E
[
Rv
−1
]

(4.34)

Pr = Wr E
[
Rr
−1
]

with the expected value of each inverse information matrix computed in Section 4.3.

The noise variance is the sum of the variance of the process noise and the variance

of the sensor noise: Wu = var(wu) + var(wsu), with a similar result for the v and r

channels.
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4.2.2 Active Learning

If it is possible to predict the parameter convergence rate, then we can design motion

plans for the purpose of reducing parameter uncertainty. This is the general goal of

active learning: in particular, for most active learning problems the goal is to learn the

parameters (equivalently, reduce the parameter uncertainty) as quickly as possible.

The convergence of the parameter uncertainty, which corresponds to the reduction

of P, is a function of the learning data Φ. For different data sets Φ, the magnitude

of R = ΦΦT will be different, and consequently P will be different. For the fastest

parameter convergence, we can try to design Φ so that P will be reduced as much

as possible. Note that the expected parameter convergence does not depend on the

output data Y. It can be easily shown that the mean squared error of the parameter

vector is equal to the trace of P:

E
[
‖β̂‖2

]
= Tr(P) ∝ Tr(R−1) (4.35)

Given a data set Φ and the corresponding R, a new sample φ augments R by

φφT . If we have the freedom to choose φ, then we would like to choose the φ that

minimizes Tr((R + φφT )−1). Using the Woodbury matrix identity (4.25), this is

equivalent to:

Tr
(
(R + φφT )−1

)
= Tr

(
R−1 − 1

1 + φTR−1φ
R−1φφTR−1

)
= Tr

(
R−1

)
− φTR−1R−1φ

1 + φTR−1φ
(4.36)

The sample that minimizes the mean squared parameter error the most is the one

that maximizes the second term in (4.36). The maximizing sample has an infinite

length and is proportional to the eigenvector of R−1 corresponding to the largest

eigenvalue. The largest eigenvalue of R−1 corresponds to the smallest eigenvalue of

R, so this policy means that one must choose the mode of the input space that has

been excited the least, and excite it as much as possible within the constraints of the

system.
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In practice, when the data φ(t) is generated by a dynamic system, it is generally

not possible to manipulate φ directly at every sample time. Instead, changes in φ

are brought about by manipulating the control input τ . In this situation it is more

helpful to be able to test the effects of different φ samples arising from different

control sequences τ and select the control sequence that reduces the mean squared

parameter error the most, rather than solving for the particular φ that minimizes

(4.36).

In our application, this task is complicated by three factors. First, we are not nec-

essarily interested in minimizing the mean squared parameter error Tr(P); depending

on the constraints in the environment and the planner’s cost function, we may only

be interested in minimizing certain modes of P. Second, we are specifying a policy

for τ in the form of a reference trajectory and a set of controller gains, rather than

an explicit control sequence. Third, the vector φ is not a deterministic function of

τ because it is affected by process noise. Based on these three factors, we need to

be able to predict the expected value of the full covariance matrix, E[P] ∝ E[R−1],

given a particular reference trajectory and a particular set of controller gains. The

expected parameter covariance matrix is incorporated into the planner’s cost function

through its effect on the collision probability; this is described in Chapter 5.

4.2.3 Parameter Convergence Predictions

The expected value of the parameter covariance matrix P can be predicted if we

can predict the expected value of the inverse of the information matrix, E[R−1].

Before evaluating this quantity for the planar holonomic vehicle described in (4.2),

we consider correlated learning data that has been generated by a simple discrete-time

state space system. The following section describes the simple state space system and

the resulting correlated prediction of E[R−1]. Subsequently we will use that result to

find the correlated prediction of that matrix for the holonomic vehicle system.
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4.3 Predicting E[R−1] for a Simple Correlated Sys-

tem

Computing the predicted parameter covariance from (4.33) is straightforward when

the input data to the learning algorithm Φ is known deterministically. In practice,

however, Φ represents a stochastic dataset, because it contains ν(t) and τ (t), which

are themselves the output of a system driven by stochastic noise wν . Consequently,

the data is both stochastic and correlated through time; both of these factors make

the partitioned covariance matrices in (4.34) very difficult to estimate analytically

for the planar holonomic vehicle. To solve this problem we create a similar simple

discrete-time system. The simple system is multidimensional and correlated through

time, just like the planar holonomic vehicle. With this system we can compute a

correlated prediction of E[R−1]. A summary of the solution is provided in Section

4.3.6. In Section 4.4 we will relate this solution back to the planar holonomic vehicle.

4.3.1 Discrete-Time System

Consider the simple m-dimensional discrete-time system shown below.

φi+1 = aφi + b + wi (4.37)

The state φi, the constant exogenous input b, and the noise vector wi are all

m × 1 vectors. The noise is sampled from a zero-mean multinormal distribution

whose covariance matrix is W = E[wiwi
T ]. The noise samples are uncorrelated in

time. The m×m matrix a is a constant linear filter on φi. The filter is not required

to be stable, so the eigenvalues may be outside of the unit circle.

4.3.2 Mean and Covariance

The evolution of the mean state φ̄(ti) can be computed analytically under certain

conditions, or it can be found by recursively evaluating the sum in (4.37) with wi = 0.

161



The covariance matrix Σ(ti) can also be found with an analytic approach under certain

conditions when m = 1, and through a recursive summation for any m.

When starting from the initial condition φ0 = 0, the evolution equation (4.37)

can be expressed as an arithmetic sum:

φi =
i−1∑
k=0

akb +
i−1∑
k=0

akwi−k−1 (4.38)

The sums in (4.38) have the following properties. The particular case for m = 1

is listed as well.

N−1∑
k=0

ak = (I− a)−1(I− aN) =
1− aN

1− a
when m = 1 (4.39)

N∑
k=1

ak = (I− a)−1(I− aN)− (I− aN) =
1− aN

1− a
− (1− aN) when m = 1

∞∑
k=0

ak = (I− a)−1 =
1

1− a
when m = 1

Recalling that E[wi] = 0, we can easily evaluate the expected value of φi:

φ̄i = E[φi] =
i−1∑
k=0

akb (4.40)

= (I− a)−1(I− ai)b (4.41)

The covariance matrix for φi is:

Σi = E[(φi − φ̄i)(φi − φ̄i)
T ] = E

[
i−1∑
k=0

akwi−k−1

i−1∑
k=0

wT
i−k−1(ak)T

]

=
i−1∑
k=0

akW(ak)T (4.42)

=
W

1− a2

(
1− a2i

)
when m = 1 (4.43)

An important quantity used later is the covariance matrix between different sam-
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ples φi and φj. The covariance is defined below:

cov(φi,φj) = E[φiφj
T ]− E[φi]E[φj]

T

= E

[(
φ̄i +

i−1∑
k1=0

ak1wi−k1−1

)(
φ̄T
j +

j−1∑
k2=0

wT
j−k2−1(ak2)T

)]
− φ̄iφ̄

T
j

(4.44)

The first terms in the multiplication combine to φ̄iφ̄
T
j , and the cross terms reduce

to zero in the expectation because E[wi] = 0. For the remaining term we assume,

without a loss of generality, that i > j (which is allowed because the covariance is a

symmetric function). The multiplied sums are only nonzero in the expectation when

k1 = k2 + i− j. Because i > j, the resulting combined sum is only taken over j:

cov(φi,φj) =

j−1∑
k2=0

ak2+i−jW(ak2)T

= ai−j
j−1∑
k2=0

ak2W(ak2)T

= ai−jΣj (4.45)

Relaxing the i > j assumption, the covariance is:

Vij ≡ cov(φi,φj) =

 ai−jΣj when i ≥ j

Σi(a
j−i)T when i < j

(4.46)

=
Wa|i−j|

1− a2

(
1− a2 min(i,j)

)
when m = 1 (4.47)

As we expect, Vii = Σi. In the scalar case (m = 1), we can define the correlation

coefficient between the samples φi and φj:

corr(φi, φj) =
cov(φi, φj)√

ΣiΣj

(4.48)
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4.3.3 χ2 Distribution and the Wishart Distribution

The information matrix used in the least squares learning algorithm is a summation

of the square of the data vector over all of the time points.

R = ΦΦT =
N∑
k=1

φiφi
T (4.49)

When m = 1, φ̄i = 0, Σi is constant, and there is no correlation between samples

(cov(φi, φj) = 0 for i 6= j, which is equivalent to a = 0), then R represents a χ2

distribution. The multi-parameter version, when m > 1, is known as the Wishart

distribution [60]. When φ̄i 6= 0, R represents a non-central χ2 distribution or (for

m > 1) a non-central Wishart distribution. When φ̄i and/or Σi are not constant, then

R represents a time-varying non-central χ2 distribution or a time-varying non-central

Wishart distribution.

It is easy to derive the expected value of these distributions due to the linearity

of the expectation operator:

E[R] = E

[
N∑
i=1

φiφi
T

]

=
N∑
i=1

E[φiφi
T ]

=
N∑
i=1

(
Σi + φ̄iφ̄

T
i

)
(4.50)

= N(Σ + φ̄φ̄T ) when φ̄i and Σi are constant (4.51)

Figure 4-1 shows uncorrelated white noise (m = 1, φ̄ = 0, Σ is constant) and the

corresponding information R from a Monte Carlo simulation. The variance of R is

plotted in the figure as well; the analytic solution is derived in the following pages,

with the final result shown in (4.71).

The expected value of R as derived in (4.50) and (4.51) is valid even when the

samples are correlated in time (cov(φi,φj) 6= 0 for i 6= j, which is equivalent to

a 6= 0), although in that case R does not meet the definition of the χ2 or Wishart
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Figure 4-1: Uncorrelated white noise (left) and the information R (right) from a
batch of 10,000 Monte Carlo simulations. 100 representative trajectories are shown,
along with the mean and standard deviation as calculated from the data (red) and
predicted from the analytic model (blue dashed).

distribution.

4.3.4 Inverse χ2 and Inverse Wishart Distributions

For the parameter convergence predictions we are interested in E[R−1] rather than

E[R]. If R meets all of the requirements for a χ2 distribution (scalar, zero-mean,

constant variance, and uncorrelated), then R−1 represents an inverse χ2 distribu-

tion. Similarly if R represents a Wishart distribution, then R−1 represents an inverse

Wishart distribution. One can derive (at length) the expected value of the inverse

Wishart distribution [60]:

E[R−1] =
1

N −m− 1
Σ−1

=
N

N −m− 1
E[R]−1 (4.52)

The inverse χ2 distribution is a special case of the inverse Wishart distribution

in which m = 1, so the expected value of the inverse χ2 distribution is E[R−1] =

Σ−1/(N − 2).
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4.3.5 Inverse Non-central χ2 and Wishart Distributions

In the scalar, non-central, uncorrelated case (which is steady by definition), we can

use a Taylor series approximation to derive E[R−1]. R is decomposed into two parts,

R̄ = Nφ̄φ̄T and R̃ =
∑N

i=1 φ̃iφ̃
T
i . If we assume that R̃/R̄ < 1, then we can make the

following approximation:

E[R−1] = E

[
1

R̄ + R̃

]
≈ E

[
1

R̄

(
1− R̃

R̄

)]

=
1

R̄
− E[R̃]

R̄2
(4.53)

The multidimensional version of (4.53) is E[R−1] ≈ R̄−1− R̄−1E[R̃]R̄−1, but it is

not numerically stable because R̄ does not have full rank for the Wishart distribution.

Empirically, the inverse non-central Wishart distribution has the same expected value

as the inverse central Wishart distribution using the formulation in the second line

of (4.52).

4.3.6 Summary of the Solution to E[R−1]

Here we present the final result for E[R−1] for a multidimensional system with cor-

relations. The remainder of this section is devoted to the derivation of this result.

Because the m ×m matrix R−1 is symmetric, it can be represented by a vector

f(R) whose length is m(m+ 1)/2. For example, for a system with m = 2, E[R−1] is

formed as follows:

E[R−1] =

 E[f(R)1] E[f(R)2]

E[f(R)2] E[f(R)3]

 (4.54)

The expected value of each element in (4.54) is a function of the covariance between
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each of the elements of E[R]. For example, for a system with m = 2, E[f(R)k] is:

E[f(R)k] = f(E[R])k +
1

2
(var(R11)Hk,11 + var(R12)Hk,22 + var(R22)Hk,33) (4.55)

+ cov(R11, R12)Hk,12 + cov(R11, R22)Hk,13 + cov(R12, R22)Hk,23

where, for example, R12 is the element in the first row and second column of E[R],

and Hk is a Hessian matrix defined in Section 4.3.8 and Equations (4.80-4.82). For

m 6= 2, E[f(R)k] has the same form as (4.55) with summations over the variances

and covariances of the elements of E[R].

The variances and covariances can be generalized to a covariance cov(Ra, Rb)

where Ra and Rb are the various elements of R extracted by unit vectors I1...4, each

specific to the locations of Ra and Rb within R: Ra = I1
TRI2 and Rb = I3

TRI4. The

covariance for each combination of Ra and Rb is evaluated with the following sum:

cov(Ra, Rb) =
N∑
i=1

(
I1
T φ̄iφ̄

T
i I3I2

TΓ0,iI4 + I1
T φ̄iφ̄

T
i I4I2

TΓ0,iI3

+ I2
T φ̄iφ̄

T
i I3I1

TΓ0,iI4 + I2
T φ̄iφ̄

T
i I4I1

TΓ0,iI3

+ I1
TΓ1,iΣiI4 + I1

TΓ2,iΣiI3 + I3
TΓ3,iΣiI2 + I4

TΓ4,iΣiI2

− I1
TΣiI3I2

TΣiI4 − I1
TΣiI4I2

TΣiI3

)
(4.56)

where Γ0...4,i are listed below.

Γ0,i = (I− a)−1(I− ai)Σi + Σi(I− (ai)T )(I− a)−T −Σi

Γ1,i = dlyap(a, a, ΣiI3I2
T − aiΣiI3I2

Tai)

Γ2,i = dlyap(a, a, ΣiI4I2
T − aiΣiI4I2

Tai) (4.57)

Γ3,i = dlyap(a, a, ΣiI1I4
T − aiΣiI1I4

Tai)

Γ4,i = dlyap(a, a, ΣiI1I3
T − aiΣiI1I3

Tai)

The overall procedure is listed in Algorithm 9. Section 4.3.7 provides the details

of the derivation for a scalar (m = 1) system, and Section 4.3.8 provides the full
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derivation for a multiparameter system.

Algorithm 9 Procedure for computing E[R−1].

1: for i = 1 : N do
2: Compute the three-dimensional Hessian matrix H (Section 4.3.8).
3: for each combination of a and b do
4: Add the new contribution to cov(Ra, Rb) using the state statistics at ti (4.56-

4.57).
5: end for
6: end for
7: Evaluate E[f(R)k] for each element k (4.55).
8: Form E[R−1] using each element E[f(R)k] (4.54).

4.3.7 Central Limit Theorem for a Scalar System with Cor-

relation

The learning data for the planar holonomic vehicle, and for the simplified system

model (4.37), is correlated through time. This correlation does not affect E[R], but

it does corrupt the prediction of E[R−1] using the inverse Wishart distribution (4.52).

However, if we can predict the mean and variance of R, then we can use the central

limit theorem to approximate R as a normally distributed random variable. Next it

is a simple process to find the mean of the inverse of the distribution using the Taylor

series expansion of R−1 when m = 1; the process is more difficult when m > 1. In

this section we focus on the scalar (m = 1) case. We define the inverse function f(R):

f(R) = R−1 f ′ = −R−2 f ′′(R) = 2R−3 (4.58)

The Taylor series for f(R) about the mean R̄ ≡ E[R] is:

R−1 ≈ f(R̄) + f ′(R̄)(R− R̄) +
1

2
f ′′(R̄)(R− R̄)2

= R̄−1 − R̄−2(R− R̄) + R̄−3(R− R̄)2

E[R−1] = R̄−1 − R̄−2(E[R]− R̄) + R̄−3E
[
(R− R̄)2

]
= E[R]−1

(
1 + E[R]−2 var(R)

)
(4.59)
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We already have an expression for E[R] (4.50), so we need to find an expression

for var(R) in order to approximate E[R−1]. From the definition, var(R) is:

var(R) = E[R2]− E[R]2

= E

( N∑
i=1

φi
2

)2
− E[R]2

=
N∑
i=1

N∑
j=1

E
[
φi

2φj
2
]
− E[R]2 (4.60)

where E[R]2 =
N∑
i=1

N∑
j=1

(Σi + φ̄2
i )(Σj + φ̄2

j) (4.61)

Each term of the expectation in (4.60) can be expanded to reveal its mean and

finite sum:

E[φi
2φj

2] = E

[(
φ̄i +

i−1∑
k1=0

ak1wi−k1−1

)(
φ̄i +

i−1∑
k2=0

ak2wi−k2−1

)
(
φ̄j +

j−1∑
k3=0

ak3wj−k3−1

)(
φ̄j +

j−1∑
k4=0

ak4wj−k4−1

)]
= E

[
φ̄2
i φ̄

2
j + φ̄2

iS3S4 + S1S2φ̄
2
j + 4φ̄iφ̄jS1S3 + S1S2S3S4

]
(4.62)

In (4.62), Sn refers to the summation corresponding to the index kn. Cross-terms

that evaluate to zero in the expectation have been omitted for clarity. The remaining

terms are computed below. Recall that Vij = cov(φi, φj).

E[S1S2] = Σi

E[S3S4] = Σj (4.63)

E[S1S3] = Vij

For the term E[S1S2S3S4] in (4.62), we must consider four different cases depend-

ing on how the indices combine. First note the following properties of a normally
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distributed random variable w:

E[wmwnwpwq] =


E[wm

4] = 3W 2 if m = n = p = q

E[wm
2]E[wp

2] = W 2 if m = n and p = q and m 6= p

0 otherwise

(4.64)

Using (4.64), the four different cases for E[S1S2S3S4] are listed below.

• 12,34: k1 = k2, k3 = k4, k1 6= k3 + i − j. Both complete sums are computed,

then the particular sum for which k1 = k3 + i− j is subtracted out. In the first

line we assume i > j, but this is relaxed in the second line.

E[S1S2S3S4] =
i−1∑
k1=0

a2k1W ×
j−1∑
k3=0

a2k3W − ai−j
j−1∑
k3=0

a4k3W 2

= ΣiΣj −
a2|i−j|W 2

1− a4
(1− a4min(i,j))

• 13,24: k1 = k3 + i − j, k2 = k4 + i − j, k1 6= k2. Both complete sums are

computed, then the particular sum for which k1 = k2 (equivalently k3 = k4) is

subtracted out.

E[S1S2S3S4] = ai−j
j−1∑
k3=0

a2k3W × ai−j
j−1∑
k4=0

a2k4W − ai−j
j−1∑
k3=0

a4k3W 2

= Vij
2 − a2|i−j|W 2

1− a4
(1− a4min(i,j))

• 14,23: k1 = k4 + i − j, k2 = k3 + i − j, k1 6= k2. Both complete sums are

computed, then the particular sum for which k1 = k2 (equivalently k3 = k4) is

subtracted out.

E[S1S2S3S4] = ai−j
j−1∑
k4=0

a2k4W × ai−j
j−1∑
k3=0

a2k3W − ai−j
j−1∑
k4=0

a4k4W 2

= Vij
2 − a2|i−j|W 2

1− a4
(1− a4min(i,j))
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• 1234: k1 = k2, k3 = k4, k1 = k3 + i− j. A single sum is computed for which all

four indices refer to the same noise sample.

E[S1S2S3S4] = 3W 2

j−1∑
k3=0

a4k3+2(i−j)

=
3W 2a2|i−j|

1− a4

(
1− a4min(i,j)

)

Combining all of the terms, we arrive at:

E[φi
2φj

2] = φ̄2
i φ̄

2
j + φ̄2

iΣj + φ̄2
jΣi + 4φ̄iφ̄jVij + ΣiΣj + 2Vij

2α

= (Σi + φ̄2
i )(Σj + φ̄2

j) + 4φ̄iφ̄jVij + 2Vij
2 (4.65)

Next we plug (4.65) into (4.60) to solve for var(R).

var(R) =
N∑
i=1

N∑
j=1

E[φi
2φj

2]− E[R]2

=
N∑
i=1

N∑
j=1

(
4φ̄iφ̄jVij + 2Vij

2
)

+((((
((((E[R]2 − E[R]2

=
N∑
i=1

N∑
j=1

(
4φ̄iφ̄j a

|i−j|Σmin(i,j) + 2 a2|i−j|Σmin(i,j)
2
)

(4.66)

We can evaluate the double sum in (4.66) for i ≥ j (with a new index k1 = i− j),

then for j ≥ i (with a new index k2 = j − i), then to avoid double-counting the
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diagonal we subtract one sum for i = j.

var(R) =
N∑
i=1

i−1∑
k1=0

(
4φ̄iφ̄i−k1a

k1Σi−k1 + 2a2k1Σi−k1
2
)

+
N∑
j=1

j−1∑
k2=0

(
4φ̄j−k2φ̄ja

k2Σj−k2 + 2a2k2Σj−k2
2
)

−
N∑
i=1

(
4φ̄2

iΣi + 2Σi
2
)

≈ 2
N∑
i=1

i−1∑
k1=0

(
4φ̄2

iΣia
k1 + 2Σi

2a2k1
)
−

N∑
i=1

(
4φ̄2

iΣi + 2Σi
2
)

(4.67)

The approximation on the last line of (4.67) is valid if Σi does not change quickly

with respect to the time constant of the filter a. Next we use the summation rule

shown in (4.39) to evaluate the inner sum.

var(R) = 2
N∑
i=1

(
4φ̄2

iΣi
1− ai

1− a
+ 2Σi

2 1− a2i

1− a2

)
−

N∑
i=1

(
4φ̄2

iΣi + 2Σi
2
)

=
N∑
i=1

(
8φ̄2

iΣi

(
1− ai

1− a
− 1

2

)
+ 4Σi

2

(
1− a2i

1− a2
− 1

2

))
(4.68)

When the mean and variance are steady, then φ̄i = φ̄ and Σi = Σ. In that case

we use the summation rules again to evaluate the variance of R:

var(R) =
8φ̄2Σ

1− a

(
N − 1− aN

1− a
+ (1− aN)−N 1− a

2

)
+

4Σ2

1− a2

(
N − 1− a2N

1− a2
+ (1− a2N)−N 1− a2

2

)
(4.69)

When N is large, (4.69) reduces to:

var(R)N�1 = 8φ̄2ΣN

(
1

1− a
− 1

2

)
+ 4Σ2N

(
1

1− a2
− 1

2

)
(4.70)

Note that when there is no correlation between states (a = 0), the variance (4.69)
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reduces to:

var(R)a=0 = 4φ̄2ΣN + 2Σ2N (4.71)

The zero-mean (central) version of (4.71), 2Σ2N , corresponds to the variance of

the χ2 distribution. The Taylor series approximation for E[R−1] (4.59) using this

value is shown below.

E[R−1] = E[R]−1
(
1 + E[R]−2 var(R)

)
= E[R]−1

(
1 +

2NΣ2

N2Σ2

)
= E[R]−1

(
1 +

2

N

)
(4.72)

From (4.52), the exact expected value of the inverse χ2 distribution is E[R−1] =

E[R]−1 N
N−2

. The Taylor series of this expression is:

E[R−1] = E[R]−1 N

N − 2

= E[R]−1 1

1− 2/N

= E[R]−1

(
1 +

2

N
+

4

N2
+

8

N3
+ · · ·

)
(4.73)

Recall that the central limit theorem approach (4.72) uses the first two terms of

the Taylor series expansion of the inverse function. As we might expect, that result

matches the first two terms of the Taylor series expansion of the exact solution (4.73).

A comparison of these results is shown in Figure 4-2.

The power of the central limit theorem approach is that it applies to the non-

central case and correlated systems. The first important result is an approximation

of the inverse non-central χ2 distribution. If the square of the mean is much larger

than the variance, φ̄2 � Σ, then E[R] ≈ Nφ̄2 and the expected value of the inverse
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Figure 4-2: E[R−1] for uncorrelated white noise (Figure 4-1) using the exact expected
value of the inverse χ2 distribution (equation 4.52, magenta dash-dot) and the central
limit theorem approach (Equation 4.72, blue dashed). 100 representative Monte Carlo
results for R−1 are shown, and the expected value of all 10,000 Monte Carlo results
is shown as a red curve.

of R is:

E[R−1] = E[R]−1

(
1 +

4φ̄2ΣN + 2Σ2N

φ̄4N2

)

= E[R]−1

1 +
�
��

�
��
�*� 1

4Σ

φ̄2N
+

2Σ2

φ̄4N


≈ E[R]−1 (4.74)

Equation (4.74) indicates that when the mean is significantly larger than the

standard deviation of the input data, then the zeroth-order approximation of the

inverse is valid.

Figure 4-3 shows the advantage of using the central limit theorem approach for

a system with correlation. In this example the data is zero-mean and steady with

a = 0.95. The central limit approach with the variance of R calculated from (4.69)

converges to the true result after a dozen sample points, while the uncorrelated pre-

diction (4.52) still has not converged after 100 sample points.
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Figure 4-3: E[R−1] for a steady zero-mean correlated system with a = 0.95 using
the uncorrelated prediction from the inverse χ2 distribution (equation 4.52, magenta
dash-dot) and the central limit theorem approach (Equation 4.69, blue dashed). The
correlated prediction converges after a dozen sample points. 100 representative Monte
Carlo results for R−1 are shown, and the expected value of all 10,000 Monte Carlo
results is shown as a red curve.

Figure 4-4 shows the data and information evolution for a correlated system with

a = 0.95 and a time-varying mean and variance. The correlated and uncorrelated

predictions are shown in Figure 4-5.

4.3.8 Central Limit Theorem for a Multiparameter System

To extend the result from Section 4.3.7 to multiparameter systems (m > 1), it is

necessary to find an equivalent Taylor series approximation for R−1 around E[R] ≡ R̄.

However, the Taylor series is not defined for matrices. To get around this problem,

the matrix R can be reformed as a vector (simplified by the fact that R is symmetric)

and then we can compute the Taylor series of this vector before reforming the matrix.

This process is demonstrated for the case when R is a 2× 2 matrix, but the concept

can be extended to m = 3 or higher as well.
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Figure 4-4: 100 trajectories from a correlated system with a = 0.95 (left) and the
information R (right). The mean and standard deviation from a 10,000-point Monte
Carlo simulation are shown (red), along with the mean and standard deviation as
predicted from the analytic model (blue dashed).
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Figure 4-5: E[R−1] for the data shown in Figure 4-4 using the uncorrelated prediction
from the inverse χ2 distribution (Equation 4.52, magenta dash-dot) and the central
limit theorem approach (equation 4.69, blue dashed). 100 representative Monte Carlo
results for R−1 are shown, and the expected value of all 10,000 Monte Carlo results
is shown as a red curve.
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First we reform the matrix R as a vector r whose length is m(m+ 1)/2.

R =

 R11 R12

R12 R22

 r =


R11

R12

R22

 (4.75)

Next we note the inverse of a 2× 2 matrix:

R−1 =

 R11 R12

R12 R22

−1

=
1

|R|

 R22 −R12

−R12 R11

 where |R| = R11R22 −R12
2

(4.76)

If r is the vector form of R, then we define a new function f(r) to be the vector

form of R−1. Using (4.76), we can write f(r) as follows:

f(r) =
1

|R|


R22

−R12

R11

 =
1

R11R22 −R12
2


R22

−R12

R11

 (4.77)

For each element k of f(r) we can write the first three terms of the Taylor series

approximation around r̄. Note that each term in this equation is a scalar.

f(r)k ≈ f(r̄)k +
∂f(r)k
∂r

∣∣∣∣
r̄

(r− r̄) +
1

2
(r− r̄)T

∂2f(r)k
∂r2

∣∣∣∣
r̄

(r− r̄) (4.78)

In (4.78), ∂f(r)k
∂r

∣∣∣
r̄

is the gradient of f(r)k evaluated at r = r̄ and ∂2f(r)k
∂r2

∣∣∣
r̄

is the

Hessian of f(r)k evaluated at r = r̄. The gradient vector for each element k can be

summarized in the Jacobian matrix, shown below, in which ∂f(r)k
∂r

∣∣∣
r̄

is the kth row of

the matrix and all of the matrix elements are taken from R̄.

∂f(r)

∂r

∣∣∣∣
r̄

=
1

|R|2


−R22

2 2R12R22 −R12
2

R12R22 −R11R22 −R12
2 R11R12

−R12
2 2R11R12 −R11

2

 (4.79)

The Hessian of f(r) must be computed separately for each element k of f(r). The
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Hessians for the three elements are:

H1 =
∂2f(r)1

∂r2

∣∣∣∣
r̄

=
1

|R|3


2R22

3 −4R12R22
2 2R12

2R22

−4R12R22
2 2R22C2 −2R12C1

2R12
2R22 −2R12C1 2R12

2R11

 (4.80)

H2 =
∂2f(r)2

∂r2

∣∣∣∣
r̄

=
1

|R|3


−2R12R22

2 R22C2 −R12C1

R22C2 −2R12(3R11R22 +R12
2) R11C2

−R12C1 R11C2 −2R12R11
2


(4.81)

H3 =
∂2f(r)3

∂r2

∣∣∣∣
r̄

=
1

|R|3


2R12

2R22 −2R12C1 2R11R12
2

−2R12C1 2R11C2 −4R11
2R12

2R11R12
2 −4R11

2R12 2R11
3

 (4.82)

where C1 = R12
2 + R11R22 and C2 = 3R12

2 + R11R22. The full Hessian is a three-

dimensional matrix with dimensions 3× 3× 3 for m = 2. Note the symmetry of the

Hessian across all three dimensions. For m > 2 it is easier to compute the Hessian

matrices numerically using a finite difference approach with very small perturbations

of each element from the mean value.

As in the scalar case, the next step is to take the expected value of the Taylor

series (4.78) to evaluate E[R−1]. In the expectation, the second term of (4.78) is zero

because E[r] = E[r̄] = r̄, leaving the first and third terms. For each element k:

E[f(r)k] = f(r̄)k + E

[
1

2
(r− r̄)THk(r− r̄)

]
(4.83)

where we recall that the elements in each Hk are taken from R̄. In the following

equation, the notation Hk,jl refers to the j’th row and l’th column of the k’th Hessian

matrix. For example, H3,13 = 2R11R12
2. Plugging the matrix elements of Hk into
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(4.83) results in the following equation for each element k:

E[f(r)k] = f(r̄)k +
1

2
E
[
R̃2

11Hk,11 + R̃2
12Hk,22 + R̃2

22Hk,33

+ 2R̃11R̃12Hk,12 + 2R̃11R̃22Hk,13 + 2R̃12R̃22Hk,23

]
= f(r̄)k +

1

2
(var(R11)Hk,11 + var(R12)Hk,22 + var(R22)Hk,33) (4.84)

+ cov(R11, R12)Hk,12 + cov(R11, R22)Hk,13 + cov(R12, R22)Hk,23

The variances and covariances in (4.84) can be generalized to the covariance

cov(Ra, Rb) in which Ra and Rb are the various combinations of R11, R12, and R22.

The matrix elements Ra and Rb can be extracted from the full R matrix using two

2 × 1 column vectors each: Ra = I1
TRI2 and Rb = I3

TRI4. The column vectors

have a value of 1 at the appropriate location corresponding to the row or column of

Ra or Rb and zeros everywhere else. For example, if Ra = R12 and Rb = R22 then

I1 = [1 0]T , I2 = [0 1]T , I3 = [0 1]T and I4 = [0 1]T . From the definition of the

covariance, cov(Ra, Rb) is:

cov(Ra, Rb) = E [RaRb]− E[Ra]E[Rb]

= E
[
I1
TRI2I3

TRI4

]
− I1

TE[R]I2I3
TE[R]I4

= E

[
I1
T

N∑
i=1

φiφi
T I2I3

T
N∑
j=1

φjφj
T I4

]
− I1

TE[R]I2I3
TE[R]I4

=
N∑
i=1

N∑
j=1

E
[
I1
Tφiφi

T I2I3
Tφjφj

T I4

]
− I1

TE[R]I2I3
TE[R]I4

(4.85)
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The argument of the summation in (4.85) is:

E

[
I1
T

(
φ̄i +

i−1∑
k1=0

ak1wi−k1−1

)(
φ̄T
i +

i−1∑
k2=0

wi−k2−1
T (ak2)T

)
I2

× I3
T

(
φ̄j +

j−1∑
k3=0

ak3wj−k3−1

)(
φ̄T
j +

j−1∑
k4=0

wj−k4−1
T (ak4)T

)
I4

]
= E

[
I1
T (φ̄i + S1)(φ̄i + S2)T I2I3

T (φ̄j + S3)(φ̄j + S4)T I4

]
= I1

T φ̄iφ̄
T
i I2I3

T φ̄jφ̄
T
j I4 + I1

T φ̄iφ̄
T
i I2I3

TE[S3S4
T ]I4 + I1

TE[S1S2
T ]I2I3

T φ̄jφ̄
T
j I4

+ E[I1
T φ̄iS2

T I2I3
T φ̄jS4

T I4] + E[I1
T φ̄iS2

T I2I3
TS3φ̄

T
j I4]

+ E[I1
TS1φ̄

T
i I2I3

T φ̄jS4
T I4] + E[I1

TS1φ̄
T
i I2I3

TS3φ̄
T
j I4]

+E
[
I1
TS1S2

T I2I3
TS3S4

T I4

]
(4.86)

Each term above can be though of as the product of four scalars In
TSn, so those

four scalars can be rearranged within each term. The fourth, fifth, sixth, and seventh

terms in (4.86) can be simplified as follows:

E[I1
T φ̄iS2

T I2I3
T φ̄jS4

T I4] = E[I1
T φ̄iφ̄

T
j I3I2

TS2S4
T I4] = I1

T φ̄iφ̄
T
j I3I2

TVijI4

E[I1
T φ̄iS2

T I2I3
TS3φ̄

T
j I4] = E[I1

T φ̄iφ̄
T
j I4I2

TS2S3
T I3] = I1

T φ̄iφ̄
T
j I4I2

TVijI3

E[I1
TS1φ̄

T
i I2I3

T φ̄jS4
T I4] = E[I2

T φ̄iφ̄
T
j I3I1

TS1S4
T I4] = I2

T φ̄iφ̄
T
j I3I1

TVijI4

E[I1
TS1φ̄

T
i I2I3

TS3φ̄
T
j I4] = E[I2

T φ̄iφ̄
T
j I4I1

TS1S3
T I3] = I2

T φ̄iφ̄
T
j I4I1

TVijI3

(4.87)

Following the scalar derivation, we consider the eighth term in (4.86) by looking

at the various combinations of sums. We ignore the fourth moment contributions

because they cancel out in the end.

• 12,34: k1 = k2, k3 = k4:

E[I1
TS1S2

T I2][I3
TS3S4

T I4] = I1
TΣiI2I3

TΣjI4
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• 13,24: k1 = k3 + i− j, k2 = k4 + i− j:

E[I1
TS1S3

T I3][I2
TS2S4

T I4] = I1
TVijI3I2

TVijI4

• 14,23: k1 = k4 + i− j, k2 = k3 + i− j:

E[I1
TS1S4

T I4][I2
TS2S3

T I3] = I1
TVijI4I2

TVijI3

By combining the first three terms from (4.86) with the first equation above, we

can rewrite the expected value as follows:

E[· · · ] = I1
T (Σi + φ̄iφ̄

T
i )I2I3

T (Σj + φ̄jφ̄
T
j )I4 + I1

T φ̄iφ̄
T
j I3I2

TVijI4

+ I1
T φ̄iφ̄

T
j I4I2

TVijI3 + I2
T φ̄iφ̄

T
j I3I1

TVijI4 + I2
T φ̄iφ̄

T
j I4I1

TVijI3

+ I1
TVijI3I2

TVijI4 + I1
TVijI4I2

TVijI3 (4.88)

The first term in (4.88) cancels out withE[Ra]E[Rb] in the summation for cov(Ra, Rb)

(4.85), so the covariance is:

cov(Ra, Rb) =
N∑
i=1

N∑
j=1

(
I1
T φ̄iφ̄

T
j I3I2

TVijI4 + I1
T φ̄iφ̄

T
j I4I2

TVijI3

+ I2
T φ̄iφ̄

T
j I3I1

TVijI4 + I2
T φ̄iφ̄

T
j I4I1

TVijI3

+ I1
TVijI3I2

TVijI4 + I1
TVijI4I2

TVijI3

)
(4.89)

As in the scalar case, we evaluate the double sum for i ≥ j (with a new index

k1 = i− j) and for j ≥ i (with a new index k2 = j − i) then we subtract one sum for
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i = j. We assume that φ̄ and Σ change slowly in time, as we did in the scalar case.

cov(Ra, Rb) =
N∑
i=1

i−1∑
k1=0

(
I1
T φ̄iφ̄

T
i I3I2

Tak1ΣiI4 + I1
T φ̄iφ̄

T
i I4I2

Tak1ΣiI3

+ I2
T φ̄iφ̄

T
i I3I1

Tak1ΣiI4 + I2
T φ̄iφ̄

T
i I4I1

Tak1ΣiI3

+ I1
Tak1ΣiI3I2

Tak1ΣiI4 + I1
Tak1ΣiI4I2

Tak1ΣiI3

)
+

N∑
j=1

j−1∑
k2=0

(
I1
T φ̄jφ̄

T
j I3I2

TΣj(a
k2)T I4 + I1

T φ̄jφ̄
T
j I4I2

TΣj(a
k2)T I3

+ I2
T φ̄jφ̄

T
j I3I1

TΣj(a
k2)T I4 + I2

T φ̄jφ̄
T
j I4I1

TΣj(a
k2)T I3

+ I1
TΣj(a

k2)T I3I2
TΣj(a

k2)T I4 + I1
TΣj(a

k2)T I4I2
TΣj(a

k2)T I3

)
−

N∑
i=1

(
I1
T φ̄iφ̄

T
i I3I2

TΣiI4 + I1
T φ̄iφ̄

T
i I4I2

TΣiI3

+ I2
T φ̄iφ̄

T
i I3I1

TΣiI4 + I2
T φ̄iφ̄

T
i I4I1

TΣiI3

+ I1
TΣiI3I2

TΣiI4 + I1
TΣiI4I2

TΣiI3

)
(4.90)

Each of the first four terms from each sum multiplies (akΣi+Σi(a
k)T−Σi). Using

the summation rule (4.39), this quantity is written as Γ0,i:

Γ0,i ≡
i−1∑
k=0

(akΣi + Σi(a
k)T −Σi) = (I− a)−1(I− ai)Σi + Σi(I− (ai)T )(I− a)−T −Σi

(4.91)

The last two terms in the second double sum of (4.90) can be arranged to have

the same format as the first sum:

I1
TΣi(a

k)T I3I2
TΣi(a

k)T I4 = I3
TakΣiI1I4

TakΣiI2

I1
TΣi(a

k)T I4I2
TΣi(a

k)T I3 = I4
TakΣiI1I3

TakΣiI2

We can then compute four more Γ matrices by solving the non-symmetric version

of the discrete-time Lyapunov equation, shown below as a MATLAB function. The

numerical procedure for evaluating the discrete-time Lyapunov equation is described
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in Section B.2.

Γ1,i =
i−1∑
k=0

akΣiI3I2
Tak = dlyap(a, a, ΣiI3I2

T − aiΣiI3I2
Tai) (4.92)

Γ2,i =
i−1∑
k=0

akΣiI4I2
Tak = dlyap(a, a, ΣiI4I2

T − aiΣiI4I2
Tai) (4.93)

Γ3,i =
i−1∑
k=0

akΣiI1I4
Tak = dlyap(a, a, ΣiI1I4

T − aiΣiI1I4
Tai) (4.94)

Γ4,i =
i−1∑
k=0

akΣiI1I3
Tak = dlyap(a, a, ΣiI1I3

T − aiΣiI1I3
Tai) (4.95)

Using the Γ matrices, the final result for the covariance is:

cov(Ra, Rb) =
N∑
i=1

(
I1
T φ̄iφ̄

T
i I3I2

TΓ0,iI4 + I1
T φ̄iφ̄

T
i I4I2

TΓ0,iI3

+ I2
T φ̄iφ̄

T
i I3I1

TΓ0,iI4 + I2
T φ̄iφ̄

T
i I4I1

TΓ0,iI3

+ I1
TΓ1,iΣiI4 + I1

TΓ2,iΣiI3 + I3
TΓ3,iΣiI2 + I4

TΓ4,iΣiI2

− I1
TΣiI3I2

TΣiI4 − I1
TΣiI4I2

TΣiI3

)
(4.96)

Using (4.96) we can compute all of the variances and covariances in the equation

for E[f(r)k] (4.84). The last step is to re-form E[R−1] from E[f(r)]:

E[R−1] =

 E[f(r)1] E[f(r)2]

E[f(r)2] E[f(r)3]

 (4.97)

Figure 4-6 shows the convergence of the various elements of the E[R−1] matrix

for an m = 2 system with a zero mean and a steady variance. The prediction

using the correlated approach described above converges to the true values faster

than the prediction using the uncorrelated inverse Wishart distribution, although the

uncorrelated prediction eventually converges as well as N → ∞. Figure 4-7 shows a

similar plot for a correlated, time-varying, non-central m = 3 system.
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Figure 4-6: The various elements E[R−1] for a correlated, steady, central m = 2
system. The red curves show the result of a 10,000-point Monte Carlo simulation. The
magenta dash-dot curves show the uncorrelated prediction from the inverse Wishart
distribution, and the blue dashed curves show the correlated prediction from (4.97).
The correlated prediction converges to the true values faster than the uncorrelated
prediction.
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Figure 4-7: Left: The various elements E[R−1] for a correlated, time-varying, non-
central m = 3 system. Right: The trace of E[R−1]. The correlated prediction
(blue dashed) tracks the Monte Carlo evolution (red) better than the uncorrelated
prediction from the inverse Wishart distribution (magenta dash-dot), especially for
the off-diagonal terms in the left plot.
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4.4 Applying the Correlated Prediction of E[R−1]

to the Parameter Convergence Problem

In the previous section we derived the prediction of E[R−1] when the learning data φ

is generated by a discrete-time state space model with process noise. In this section

we transform the model for the planar holonomic vehicle to match that problem.

To prevent singularities, we only consider the first five elements of φ, excluding the

last element (with a value of 1) used by the wind parameters. First, we write the

remaining vector of learning data in terms of the reference-local error vector e0.

φντ =

 ν

τ

 =

 I 03×3

−Kν −Kη0


︸ ︷︷ ︸

Cφe

e0 +

 I

−b̂(inv)â

νr︸ ︷︷ ︸
Bφe

(4.98)

We note that the mean and variance of φντ can be computed from the statistics

of e0, as shown below.

φ̄ντ = Cφeē0 + Bφe (4.99)

cov(φντ ) = CφeΣ0Cφe
T (4.100)

By solving for e0 in (4.98) using the pseudoinverse, we have the following approx-

imate result:

e0 ≈ Cφe
∗(φντ −Bφe). (4.101)

Next we differentiate (4.98) with respect to time and plug in the approximate

relation (4.101) to arrive at a differential equation for φντ .

φ̇ντ = Cφeė0

= CφeA0e0

≈ CφeA0Cφe
∗︸ ︷︷ ︸

Aφ

φντ −CφeA0Cφe
∗Bφe︸ ︷︷ ︸

Bφ

(4.102)
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For the partitioned system, we need to extract the data for the free parameters in

surge, sway and yaw. For the free surge parameters, we need to pre-multiply φντ by

Cfφu which is a version of Cfree,uCφu truncated to exclude the last element of φ.

φντfree,u = Cfφuφντ

φ̇ντfree,u ≈ CfφuAφφντ −CfφuBφ

≈ CfφuAφCfφu
∗︸ ︷︷ ︸

Aφu

φντfree,u −CfφuBφ︸ ︷︷ ︸
Bφu

(4.103)

Equation (4.103) is the continuous-time version of (4.37), so the equivalent discrete-

time filter matrix is a = exp(Aφu∆t). The equivalent mean data value is φ̄i =

Cfφu φ̄ντ (ti), and the equivalent data variance is Σi = Cfφu cov(φντ (ti))Cfφu
T . Re-

call that φ̄ντ and cov(φντ ) are defined in (4.99) and (4.100). Using these values for

a, φ̄i and Σi, we can evaluate the correlated prediction for E[Ru
−1]. The predictions

for E[Rv
−1] and E[Rr

−1] are calculated in a similar manner using the corresponding

matrices for v and r.

Computing E[Ru], which is required in the derivation of E[Ru
−1], is straightfor-

ward. First we compute E[R] for the full φ vector, then we can partition it as needed

for E[Ru], E[Rv] and E[Rr] as described below.

E[R] = E
[
ΦΦT

]
= E

[
N∑
j=1

φjφj
T

]

=
N∑
j=1

E
[
φjφj

T
]

=
N∑
j=1

(
cov(φj) + φ̄jφ̄

T
j

)
(4.104)

In practice the mean error ē0 and error variance Σ0 need not be evaluated at every

time that the learning data arrives. A more appropriate sample time is tobs, when

those values are computed for the collision probability prediction. E[R] is evaluated
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every tobs seconds and also at the end of each maneuver using the trapezoidal rule.

If there is an a priori parameter estimate β̂0 with an initial covariance matrix P0,

then an equivalent initial information matrix can be formed for each channel. For

the surge channel, P0,u = Cfree,uCβuP0Cβu
TCfree,u

T . The equivalent a priori infor-

mation matrix is WuP0
−1. The matrices E[Ru], E[Rv] and E[Rr] can be computed

from the full expected information matrix and the a priori information.

E[Ru] = Cfree,uCφuE[R]Cφu
TCfree,u

T +WuP0,u
−1

E[Rv] = Cfree,vCφvrE[R]Cφvr
TCfree,v

T +WvP0,v
−1 (4.105)

E[Rr] = Cfree,rCφvrE[R]Cφvr
TCfree,r

T +WrP0,r
−1

At the same time points when E[R] is updated, each value of cov(Ra, Rb) is up-

dated based on (4.96) for use in the correlated prediction of E[R−1] for each channel.

Finally, the parameter convergence prediction is PN = WE[R−1], applied to each

channel.

An example of the parameter convergence prediction is shown in Figure 4-8. The

plan ebbbawaw brings the vehicle around an obstacle using one intermediate waypoint.

During this plan we seek to learn the values of the surge damping a11, the yaw damping

a33, and the yaw input gain b3. The a priori parameter values are equal to the true

values, and the a priori parameter variances are 0.01, 1, and 0.0016, respectively. The

learning data is collected at a rate of 1 Hz. The first part of the plan is straight, so we

expect very little parameter convergence for the yaw parameters in that region. The

process noise covariance is Wν = diag([2× 10−5, 2× 10−5, 3× 10−3]) and the sensor

noise covariance is Ws = diag([0.001, 0.001, 0.1]). The parameter convergence is

plotted in Figure 4-8 using the correlated prediction, the uncorrelated inverse Wishart

prediction, and the statistics from 10,000 Monte Carlo simulations. The correlated

prediction matches the Monte Carlo variance better than the uncorrelated prediction,

especially when the number of sample points is low. The yaw parameters do not start

to converge until the vehicle begins the a trim.

While Algorithm 9 and the extensions in this section can be used to predict the
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Figure 4-8: The parameter converge predictions for three model parameters while
executing the motion plan shown above. The correlated prediction (blue dashed)
matches the statistics from 10,000 Monte Carlo simulations (red) better than the
uncorrelated inverse Wishart prediction (magenta dash-dot), especially early in the
motion plan. Note that the yaw parameters do not begin to converge until the vehicle
begins the turn around the obstacle.
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parameter covariance evolution for any motion plan, the actual parameter uncertainty

may follow a different evolution if the assumed noise models are incorrect or the

true parameter values change unexpectedly. In other words, these predictions are

open-loop. To add robustness to the overall approach, it is necessary to adjust the

parameter covariance estimates after the learning data has been collected during the

plan execution. This posterior adjustment is discussed in the next section.

4.5 Posterior Parameter Covariance Estimates

The parameter convergence predictions developed in Section 4.4 are used during the

planning process to evaluate the collision probability associated with model uncer-

tainty (discussed further in Chapter 5). The Monte Carlo results in Figure 4-8 show

the variance of the various learned parameters that would be observed across many

executions of the same motion plan if all of the assumptions about the sensor noise,

process noise and a priori data were correct.

However, it is not advisable to use the final parameter convergence prediction

PN as the a priori parameter covariance for the next mission. The true posterior

parameter covariance may be different from the prediction if the process noise variance

or the sensor noise variance is different than expected. Model structure errors can

also add bias to the posterior parameter covariance.

The more significant issue is when the true parameter value changes before or

during a mission. In that case the expected parameter covariance may be small,

causing significant regularization of the data, while the true parameter is far from

the a priori value. When the true parameter changes we would like the a priori

parameter variance P0 to be increased to reflect a corresponding lack of confidence

in the a priori parameter vector β̂0.

Fortunately, parameter error contributes to an easily measurable quantity, the

prediction error. The true and expected prediction error are derived below.
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4.5.1 Prediction Error

Consider the following plant.

Y = βTΦ + w (4.106)

Without regularization, the parameter estimate after N samples is:

β̂N = R1
−1ΦYT (for implementation) (4.107)

= R1
−1Φ(ΦTβ + wT )

= β + R1
−1ΦwT (for analysis) (4.108)

where R1 = ΦΦT . We may have an initial estimate of the noise variance σ̂2
w, pa-

rameter vector β̂0, and parameter variance P̂0,prior. Using this (possibly incorrect)

a priori data, the equivalent initial information matrix is R0 = σ̂2
wP̂0,prior

−1
and the

parameter estimate is:

β̂N = β̂0 + R0
−1
(
I−R1(R0 + R1)−1

)
Φ
(
Y − β̂T

0 Φ
)T

= β̂0 + R0
−1
(
I−R1(R0 + R1)−1

) (
ΦYT −R1β̂0

)
= (I−G)β̂0 + GR1

−1ΦYT (for implementation) (4.109)

= (I−G)β̂0 + GR1
−1Φ(ΦTβ + wT )

= (I−G)β̂0 + Gβ + GR1
−1ΦwT (for analysis) (4.110)

where G = R0
−1 (I−R1(R0 + R1)−1) R1. It can be seen that G → 0 as R1 → 0

and G → I as R1 � R0, which is the case of no regularization. Next we can define

the initial and final parameter error.

β̃0 = β̂0 − β (4.111)

β̃N = β̂N − β

= (I−G)β̃0 + GR1
−1ΦwT (4.112)

The expected value of the parameter error is zero when no regularization is used
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(G = I) and it is equal to the initial parameter error when no data is collected

(G = 0).

The prediction error is the vector of errors between the measured outputs and the

outputs predicted by the final parameter estimate β̂N .

Ỹ = β̂T
NΦ−Y (for implementation) (4.113)

= β̂T
NΦ− βTΦ−w

= β̃T
NΦ−w (for analysis) (4.114)

For a particular value of parameter error β̃N and a particular sequence of input

data Φ (essentially, for a particular motion plan) the expected value of the prediction

error is E[Ỹ] = β̃T
NΦ. The variance of the prediction error, σ̂2

y is derived below.

σ̂2
y

∣∣
β̃N

=
1

N
E

[(
Ỹ − E[Ỹ]

)(
Ỹ − E[Ỹ]

)T]
=

1

N
E
[
wwT

]
= W = σw

2 (4.115)

Accepting a slight abuse of terminology, the mean squared prediction error is

1
N

ỸỸT . The expected value of the mean squared prediction error is derived below.

We use the properties that Tr(a) = a when a is a scalar and Tr(AB) = Tr(BA).

1

N
E
[
ỸỸT

]
=

1

N
E
[
β̃T
NΦΦT β̃N + β̃T

NΦwT + wΦT β̃N + wwT
]

=
1

N
Tr
(
ΦTE

[
β̃N β̃T

N

]
Φ
)

+ W (4.116)

4.5.2 Posterior Parameter Covariance Adjustment

We define the posterior parameter covariance as Ppost = E
[
β̃N β̃T

N

]
. Because this

quantity is inside a trace function in (4.116), we cannot solve for it exactly; how-

ever, we can solve for a scaling factor between this quantity and the final parameter

convergence prediction PN , which was derived in Section 4.4. We define this scaling

factor as α:

Ppost = αPN (4.117)
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The next step is to plug (4.117) into (4.116) to solve for α using the measured

mean squared prediction error 1
N

ỸỸT .

E
[
ỸỸT

]
= αTr

(
ΦTPNΦ]

)
+NW

α̂ =
ỸỸT −NW

Tr (ΦTPNΦ])
(4.118)

The scaling factor α̂ must be lower-bounded by zero to prevent the posterior

parameter covariance from becoming negative. However, to prevent overconfidence

due to a particularly noise-free dataset, we instead lower-bound α̂ by 1 so that Ppost

will never be smaller than PN .

Assuming the sensor and process noise levels are well known, there are two rea-

sons for α̂ to be different from unity: initial overconfidence (the a priori parameter

covariance is too small) or changing true parameter values (the value of β learned

in the previous mission has since changed). To check the sensitivity of α̂ to these

effects, a set of Monte Carlo simulations were run. With m = 2, N = 10, Φ as a

random (but fixed) matrix, and β as a random (but fixed) vector, the least squares

learning algorithm was run 1,000 times and the mean value of α̂ was computed. The

initial parameter guess β̂0 was sampled from an initial distribution centered around

β̂0 with a covariance matrix P0. The a priori parameter covariance E[P0] was scaled

by a factor of 0.1, 1, and 10, and the a priori parameter vector β̂0 was scaled by a

factor of 0.1, 1, and 10 with respect to the true parameter value. The mean value of

α̂ across the 1,000 trials is shown in Table 4.1.

Table 4.1: The effect of changing the a priori parameter values (rows) and a priori
parameter covariance (columns) on the posterior parameter covariance factor α̂.

P0 scaling
0.1 1 10

β̂0 scaling

0.1 24.946 1.578 1.172
1 5.362 1.440 1.183
10 2178.6 57.556 1.533

It can be seen in the table that α̂ increases the posterior parameter covariance over
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the prediction when the initial confidence is too high (left column) but it preserves

the predicted covariance when the confidence is appropriate or too low (middle and

right columns). Similarly it increases when the true parameter value changes (top and

bottom rows). The smallest element in the table corresponds to a changed parameter

value but a confidence that is too low, so in that case the predicted value of PN is

appropriate.

This posterior adjustment can handle incorrect estimates of the noise levels, as

well. If there is more noise in the system than expected, then α̂ will increase the final

parameter variance to account for the added parameter uncertainty.

4.6 Summary

In this chapter we have developed a least squares learning algorithm for the planar

holonomic vehicle’s parameter values. The learning algorithm is designed to be run

in several batches, with each batch corresponding to a maneuver in the motion plan.

In this way, the parameter estimates are updated at the end of each maneuver.

The parameter covariance predictions derived in this chapter (Algorithm 9 and

Equation 4.34) are used in the next chapter to evaluate the collision risk associated

with parameter uncertainty for each motion plan. The collision risk will be lower

after the parameter values have converged to the true values, so being able to predict

the parameter convergence ahead of time is very important. The posterior parameter

covariance corrections add feedback to the learning process on a larger mission-to-

mission scale.

The planning process from Chapter 3 and the learning algorithm from this chapter

are brought together in Chapter 5 to create a complete integrated motion planning

and model learning algorithm for autonomous mobile robots.
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Chapter 5

Integrated Motion Planning and

Model Learning

Throughout this thesis we have developed the ingredients necessary for an integrated

motion planning and model learning algorithm. In Chapter 3 we developed a robust

cost-based motion planner that uses a prediction of the collision probability to find

plans that are safe and efficient (Algorithm 8). In Chapter 4 we described a model

learning algorithm that is used to generate parameter estimates while the vehicle

executes a motion plan. Additionally, we derived predictions of the parameter co-

variance throughout a motion plan, which can be used to compare the uncertainty

evolution across different plans (Algorithm 9 with Equation 4.34). In this chapter we

map the parameter covariance evolution back into the collision probability prediction

so that the effect that different motion plans have on the learning rate can be seen in

the planner’s cost function. The result of this link is that the planning and learning

problems are unified in a single framework, and the robust motion planner explores

the state space, as necessary, to find optimal motion plans.

This chapter begins with a high-level view of the integrated motion planning and

model learning algorithm. Then we present a simple example using a 2D grid-based

mobile robot simulation to see the effects of the integrated strategy. For the planar

holonomic vehicle, the mapping from parameter uncertainty to collision probability

is performed using Hermite quadrature, which is described in Section 5.3. The full
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algorithm is listed in Section 5.4 along with notes about implementation details.

Finally, simulations and experimental results are presented in Section 5.5.

5.1 Overview

This section provides an overview of the integrated motion planning and model learn-

ing algorithm. First we recall the exploration vs. exploitation problem discussed in

Chapter 2, then we describe how the motion planner and parameter convergence

predictions are combined in the same framework.

5.1.1 Exploration vs. Exploitation

If a mobile robot performs online learning while executing a motion plan, then the

input data used by the learning algorithm is a function of the motion plan. For

example, a motion plan that drives the vehicle in a straight line generates much less

turning-related data than a motion plan that drives the vehicle in a circle; this can be

seen in Figure 4-8. Overall, a learning algorithm has a faster convergence rate when

the input data provided to it has a high signal-to-noise ratio. When learning model

parameters, the signals are state variables. In this context, large signals correspond

to highly excited states. For example, the surge thrust gain is best learned when the

surge control input is large. For fast overall parameter convergence the best policy

excites all of the states used by the learning algorithm, essentially exploring the state

space for novel data. However, this policy will likely delay the vehicle from its mission.

Meanwhile, executing the time-optimal plan can be considered exploitation of the

existing model parameters. However, the vehicle’s path-following performance de-

pends on the quality of its controller, and large path-following errors may lead to

collisions if there are obstacles near the reference path. The optimal controller is

designed based on the model parameters of the vehicle; as the parameter estimates

improve, so does the path-following performance. This is especially true for the feed-

forward part of the controller in which the estimated vehicle dynamics are canceled

out in the open loop. Thus pure exploitation has a cost as well.
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5.1.2 Integrated Strategy

To maximize the overall mission performance, we must find a balance between explor-

ing the state space and exploiting the existing model information to reach the goal.

It is possible to find this balance within the motion planning framework described in

Chapter 3. Merging learning and planning requires two key steps:

1. Predict the model uncertainty evolution for each candidate plan – Using the

predictions from Chapter 4, estimate the parameter covariance at each stage of

the motion plan.

2. Predict the tangible cost associated with each candidate plan, given the predicted

model uncertainty evolution – The tangible cost is the combined cost used by

the motion planning algorithm, which includes both the plan duration and the

collision probability (3.148).

The first step was studied in Chapter 4; for a given motion plan, noise model, and

a priori data, we can predict how much the parameter values will have converged

due to the least squares learning algorithm. Those predictions are used in the second

step to estimate the collision probability due to the parameter variance. The cost

function used by the motion planner includes this collision probability estimate, so

the planner incorporates the learning estimates into the planning process. The key

insight is that the optimal plan within this framework will automatically incorporate

active learning strategies as necessary.

Figure 5-1 shows how the parameter convergence predictions are woven into the

planning framework. Note that parameter convergence does not appear explicitly in

the cost function. The robot is not intrinsically motivated, as in [46]; the planner

does not seek to explicitly minimize the parameter variance, but rather minimize

the detrimental effects that a high parameter variance would have on the collision

probability.

The following section shows how this integrated planning and learning strategy

works in a very simple, illustrative example.
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Compute prediction error and adjust 
posterior covariance estimates

Execute motion plan while running 
online parameter estimation algorithm

Load a priori parameter 
estimates and covariance

Predict the parameter convergence 
during the maneuver and update the 
parameter covariance for the next 
maneuver

Maneuver 1

For each maneuver:

Maneuver 2

Last maneuver

Total duration Total collision probability

. .
 .

Cost function

For each motion plan:

Select optimal motion plan

Motion planner

For each mission:

Compute the collision proba-
bility for the maneuver due to 
external disturbances and 
modeling error

Maneuver duration Compute the state error statistics 
during the maneuver

Figure 5-1: The integrated motion planning and model learning framework. Param-
eter convergence does appear explicitly in the planner’s cost function, but rather
implicitly through the predicted collision probability for each candidate plan.
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5.2 Simple 2D Example

In this section we apply the integrated motion planning and model learning algorithm

described above to a simple mobile robot model to show how the planner uses active

learning to reduce the predicted cost of motion plans. Consider a mobile robot moving

on a 2D Cartesian grid from a start point to a goal point. Some grid points are

occupied by obstacles. The robot has a perfect map of the environment and perfect

knowledge of its position on the map. The A* search algorithm is used to find a

collision-free path connecting adjacent grid points (no diagonals) between the start

point and the goal point. The robot moves between grid points using an impulse

whose strength must be learned by the robot. One model parameter is the appropriate

impulse strength in the X direction (East/West), and the other model parameter is

the appropriate impulse strength in the Y direction (North/South). Least squares

regression is used to learn the two model parameters during the execution of the

motion plan. There are no external disturbances, so path-following performance is

solely a function of the model uncertainty. Furthermore, we assume that the X

and Y motions of the robot are uncoupled. The assumptions used in this example

are very restrictive, but they reduce the mathematical complexity of the parameter

convergence and collision probability predictions.

5.2.1 Plant Description and Control Law

The robot state is its position vector xk = [Xk, Yk]
T at the time index tk. The control

input vector is τk = [τx,k, τy,k]
T . The amount of motion resulting from the control

input is a function of the scalar gains bx and by, which form the diagonal of a 2 × 2

matrix B. The system model is shown below. Xk+1

Yk+1

 =

 Xk

Yk

+

 bx 0

0 by

 τx,k

τy,k


xk+1 = xk + Bτk (5.1)

A motion plan defines the reference position at each time index, rk = [rx,k, ry,k]
T .
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The reference positions are integers, but the actual robot positions are real numbers.

The position error is ek = xk − rk. The motion plan can be specified by the cardinal

directions North (N), South (S), East (E) and West (W). An example motion plan

EEENNNWSWN is shown in Figure 5-2.
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Figure 5-2: The mobile robot (indicated by a red circle) in the grid world and the
motion plan EEENNNWSWN.

Equation (5.1) can be solved exactly to find the control action τk that moves the

robot from the current state xk to the next reference state rk+1.

τk = B−1(rk+1 − xk) (5.2)

However, if the control gains are not known exactly, then the best estimate B̂ =

diag([b̂x, b̂y]) must be used instead of B. The resulting control law can be written

either in terms of the current state xk or the position error ek.

τk = B̂−1(rk+1 − xk)

= B̂−1(rk+1 − (rk + ek))

= B̂−1(rk+1 − rk)− B̂−1ek (5.3)
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Equation (5.3) shows the separation of the feedforward term, which is a function

of the change in the reference position, and the feedback term, which is a function of

the current position error. The evolution of the error is derived below.

ek+1 = xk+1 − rk+1

= xk + BB̂−1(rk+1 − xk)− rk+1

= (I−BB̂−1)(xk − rk+1)

= (I−BB̂−1)(ek − (rk+1 − rk)) (5.4)

5.2.2 Least Squares Learning Algorithm

Least squares regression is used to learn the parameter values bx and by. The estimates

used in the control law (5.3) at tk are b̂x,k and b̂y,k. At each timestep the input data

to the learning algorithm is τk and the output is yk ≡ xk − xk−1. This vector

is measured with additive zero-mean uncorrelated Gaussian noise yx,k and yy,k; the

variance of each noise sample is W . Because the X and Y channels are uncoupled,

we can perform the learning for each channel separately. For notational convenience

the x and y subscripts will be removed in this analysis. The linear system for each

channel is:

yk = b τk−1 + wk for k > 0 (5.5)

N samples are collected during the learning process. The inputs τk are stored in

a 1 × N vector Φ, and the outputs yk are stored in the 1 × N vector Y. The noise

values are stored in the 1×N vector w.

Φ = [ τ0 . . . τN−1 ]

Y = [ y1 . . . yN ] (5.6)

w = [w1 . . . wN ]
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Using the notation in (5.6), the system can be written as follows:

Y = bΦ + w. (5.7)

The least squares estimate for b is:

b̂N = R−1ΦYT where R = ΦΦT . (5.8)

Following the analysis in Chapter 4, we know that E[b̂N ] = 0 and E[P ] =

WE[R−1] where E[P ] is the expected parameter variance. If we have an a priori

estimate of the parameter value b̂0 with a covariance P0, then the equivalent a priori

information is R0 = W/P0 and the regularized parameter estimate is:

b̂N = b̂0 +R0
−1(1−R1(R0 +R1)−1)Φ(Z− Ẑ)T (5.9)

where Ẑ = b̂0Φ.

5.2.3 Predicting the Parameter Convergence

To simplify the analysis of the parameter convergence, we use the zeroth-order approx-

imation E[P ] ≈ WE[R]−1. The expected information E[R] is computed as follows:

E[R] = E

[
N−1∑
k=0

τk
2 +R0

]

=
N−1∑
k=0

E[τk
2] +R0

=
N−1∑
k=1

(
τ̄ 2
k + var(τk)

)
+R0 (5.10)

202



where τ̄k = (rk+1 − rk)/b and var(τk) = E[(τk − τ̄k)2] is computed below.

τk =
1

b̂k
(rk+1 − xk)

≈

(
1

b
− b̂k − b

b2

)
(rk+1 − rk)

τk − τ̄k = − b̂k − b
b2

(rk+1 − rk)

E[(τk − τ̄k)2] =
1

b2
(rk+1 − rk)2E[Pk] (5.11)

Combining the effect of the mean and the variance, we have:

E[τk
2] = τ̄ 2

k (1 + E[Pk]). (5.12)

The expected parameter variance at each step is computed using the following

recursive relation, starting from the a priori parameter variance P0.

E[PN ] = W

(
N−1∑
k=0

τ̄ 2
k (1 + E[Pk]) +

W

P0

)−1

(5.13)

Because τ̄k is only a function of the reference path, the parameter variance evolu-

tion can be computed for each motion plan considered by the planner. The param-

eter variance prediction depends on the true parameter value b which is not known

perfectly during the planning process. The best approximation we can use before

collecting any data is the a priori parameter value b̂0.

The diagonal matrix Pk is formed by the two expected parameter variances E[Px,k]

and E[Py,k]. The parameter variance evolution was evaluated for the motion plan

shown in Figure 5-2 with P0 = 0.1 × I and W = 0.01. In this example the true

parameter values are bx = 1 and by = −1. The predicted parameter variance for

each channel is plotted in Figure 5-3. A 10,000-point Monte Carlo simulation was

run using a priori parameter estimates sampled from a normal distribution centered

around the true parameter values with a variance P0: B̂0 ∼ N(B,P0). The variance

of the resulting batch of parameter estimates at each time point is plotted in Figure
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5-3. Note that the b̂y variance does not reduce until the reference position changes in

the Y direction. When the reference does not change, there is no added information,

so no learning takes place. Similarly, when the X reference stops changing, the b̂x

variance stops diminishing.
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Figure 5-3: Predicted parameter variance evolution (dashed) and the result of a
10,000-point Monte Carlo simulation (solid) for the motion plan shown in Figure 5-2.

5.2.4 Predicting the Collision Probability

The probability of the robot hitting an obstacle is a function of the path-following

error variance, which is in turn a function of the parameter variance. Using the same

approximation as in (5.11), the error is:

ek =

(
1− b

b̂k−1

)
(ek−1 − (rk − rk−1))

≈ b̂k−1 − b
b

(ek−1 − (rk − rk−1)) (5.14)

The mean error is 0, so the error variance is Vk = E[ek
2]. The recursive definition
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of Vk is derived below.

E[ek
2] = E

[
(b̂k−1 − b)2

b2

(
ek−1

2 − 2ek−1(rk − rk−1) + (rk − rk−1)2
)]

Vk =
E[Pk−1]

b2
Vk−1 + E[Pk−1]τ̄k−1

2 (5.15)

Using the error variance prediction we compute the probability that the robot

will collide with each obstacle at each point in time. Due to the zero-mean Gaussian

noise assumption, the robot’s position is normally distributed around the reference

position at each time index tk. The position variance for each channel Vx,k and Vy,k

is computed using (5.15). The distance between the edge of the robot at tk and the

nearest edge of the j’th obstacle is dkj and the angle of the shortest connecting line

is θkj. The error variance in the θkj direction is:

Vkj = cos2(θkj)Vx,k + sin2(θkj)Vy,k (5.16)

If we define the position error along the θkj axis as xθ, then the probability density

function for xθ is:

p(xθ) =
1√

2πVkj
exp

(
− xθ

2

2Vkj

)
(5.17)

The integral of (5.17) from the edge of the obstacle to infinity is the probability

that the robot is intersecting with the obstacle:

Phit,kj =
1

2
− 1

2
erf

(
dkj√
2Vkj

)
(5.18)

The robot can only survive to the end of the motion plan if it successfully avoids

each obstacle at each time point, so the overall collision probability is:

Phit = 1−
N∏
k=0

# obs∏
j=1

(1− Phit,kj). (5.19)
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5.2.5 Planning Algorithm

The A* planning algorithm is used to find the optimal collision-free path from the

start position to the goal position. We use the same plan cost as in Chapter 3:

g =
T

1− Phit
(5.20)

where the plan duration T is simply the plan length N . The plan cost does not

explicitly include the expected parameter variance E[PN ]; the cost is a more subtle

function of the learning process. Note that typical planners for grid worlds do not

apply to this problem because the plan cost at each location depends on the path

used to get there; the search space is actually a tree structure rather than a grid.

The heuristic function used by the planner, h, is the same as in the original motion

planning problem (3.149) using a visibility graph connecting the obstacle corners. In

this case, however, the robot’s reference path can only move between adjacent grid

points so the Manhattan distance is used as the cost of each graph edge.

The search procedure is shown in Algorithm 10. The planner branches out from

the search tree nodes by concatenation an action a from the set {N, S, E, W}, starting

with a node at the initial position. Branches are discarded if they intersect with

an obstacle. For each new plan the cost is computed using the predicted parameter

variance and the predicted error variance, and the plan is inserted into the search

queue sorted by the predicted total cost f = g + h. As long as a free path to the

goal exists (which can be verified using the heuristic’s network graph from the start

location), then the algorithm returns the optimal plan.

5.2.6 Simulation Results

The planner shown in Algorithm 10 was run on two different maps to show how

the integrated planner optimally balances exploration of the state space with goal-

seeking behavior. The first example is shown in Figure 5-4. The robot, indicated by

the red circle, must drive to the red square. The shortest path is to drive straight

into the hallway and up to the goal: EEEEEENNN. However, with that motion plan
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Algorithm 10 Expanding A* Motion Planning Algorithm for the Simple 2D Exam-
ple.

1: Load the obstacle map and the goal position.
2: Construct the obstacle graph D.
3: Load the a priori parameter estimates B̂0 and the initial variance P0.
4: Initialize the search queue Q with a plan containing only the start position.
5: while Q is not empty do
6: Remove the first plan from the queue, p← Q(0).
7: if p ends at the goal then
8: return p with success.
9: end if

10: for each action a ∈ {N, S, E, W} do
11: Add the action to p: p′ ← p+ a.
12: if p′ is nominally collision-free then
13: Compute the cost g(p′).
14: Compute the predicted cost-to-go h(p′).
15: Insert p′ into Q sorted by f(p′) = g(p′) + h(p′).
16: end if
17: end for
18: end while
19: return with failure.

the first time the robot learns about the Y parameter is when the robot first drives

North in the hallway, where path errors have a high probability of resulting in a

collision. With the initial parameter estimate B̂0 = B and an initial parameter

variance P0 = 2I with W = 0.3, the planner chooses the plan ESENEEEENNN as shown

in the figure. This plan was found after 2,372 iterations of the A* algorithm, which

took 0.653 seconds on a 2.33 MHz Intel Core 2 Duo processor. The predicted collision

probability for this motion plan is 16.6%. The collision probability measured from

a set of 10,000 Monte Carlo simulations is 21.9%. The difference can be attributed

to the various approximations used in the predictions of E[Pk] and Vk. By contrast

the predicted collision probability for the shortest plan EEEEEENNN is 33.1% and the

measured collision probability is 34.5%.

The a priori parameter estimates are actually correct in the first example, but the

low confidence (high initial variance) of those parameters causes the planner to choose

actions that improve the confidence in the parameters before entering the constrained

region of the space. It is more realistic to assume that the a priori parameter estimates
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Figure 5-4: The vehicle chooses to practice the North/South motion before entering
the hallway to improve the parameter convergence and reduce path errors later in the
plan. The ellipses show one standard deviation of predicted position error at each
step of the plan, and the dotted lines show 10 representative Monte Carlo simulations.

are wrong. While this affects the values of the resulting parameter convergence and

error variance predictions, it does not affect the trends, that is, the shape of the

curves in Figure 5-3 is the same even if the scale is not exactly correct. Continuing

this logic, the planner will choose motion plans that explore the action space as long

as the initial parameter variance is large.

To investigate the potential effects of incorrect a priori parameter values, the

same example was run with b̂x,0 = 2 and b̂y,0 = −0.5, which are 200% and 50% of the

true values, respectively. The planner returned the same motion plan ESENEEEENNN

with a predicted collision probability of 14.8% and a measured collision probability of

23.5%. In this case the prediction is farther from the measured value, but the planner

still chose actions to learn the correct parameter values.

A second example is shown in Figure 5-5. Using correct a priori parameters and

P0 = I with W = 0.1, the optimal plan WSNEEENNEESS was found after 0.345 seconds

in 1,044 iterations. The predicted collision probability is 20.5% and the measured

collision probability from a 10,000-point Monte Carlo simulation is 33.6%. When the
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incorrect a priori parameters are used (the same as in the previous example), the

planner chooses the similar plan SNWEEENNEESS. In this case the predicted collision

probability is 18.9% and the measured collision probability is 36.0%.
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Figure 5-5: The vehicle backs away from the hallway before entering to improve the
parameter convergence and reduce path errors later in the plan. The ellipses show
one standard deviation of predicted position error at each step of the plan, and the
dotted lines show 10 representative Monte Carlo simulations.

5.2.7 Analysis

In both examples, the planner chooses motion plans that expose the robot to actions

that will be needed later in the constrained region of the space. These actions are

practiced in the open regions of the space where large position errors can be tolerated.

Practicing the actions has the most impact when the initial parameter variance is

large; in that case it takes very few maneuvers to reduce the parameter variance and

position error variance. As the information R increases, the effect of each subsequent

action on the parameter error is reduced. Therefore the integrated planning and

learning algorithm is ideally suited for situations in which the robot is starting from a

clean slate (very little a priori knowledge) or the robot senses a configuration change
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and chooses to reduce its confidence (increase the parameter variance) to quickly learn

the new parameter values.

5.2.8 Conditions for Practicing

Consider a motion plan p0 that is the shortest path from the start position to the

goal position. The duration is of this plan is T0 and the collision probability is Phit,0,

resulting in a plan cost g0 = T0/(1 − Phit,0). An alternative plan p1 cannot have a

shorter duration: T1 ≥ T0. We are interested in the conditions on p1 that make it

more optimal than p0, that is, g1 < g0.

T1

1− Phit,1
<

T0

1− Phit,0

Phit,1 < 1− T1

T0

(1− Phit,0)

< 1− T1

T0

+
T1

T0

Phit,0

<

(
1 +

∆T

T0

)
Phit,0 −

∆T

T0

(5.21)

Next we can examine the two extreme cases of (5.21).

• When the shortest path has a very high collision probability (Phit,0 → 1) then

any additional duration ∆t will be acceptable as long as Phit,1 < Phit,0.

• When the shortest path has a low collision probability (Phit,0 → 0) then the

collision probability must be reduced by ∆T/T0 for the planner to choose p1 over

p0. Because Phit,1 has a lower-bound of 0, p1 will never be chosen if ∆T/T0 >

Phit,0.

Consider the very simple example shown in Figure 5-6 with P0 = I and W = 0.1.

One of the shortest paths is p0 = EEEEN (T0 = 5) which drives parallel to the wall

before moving up to the goal. The collision probability for this plan is Phit,0 = 42.1%.

The main contribution to the collision probability is in the last step, when the robot

approaches within d = 0.2 meters of the wall. The planner returns the optimal
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path p1 = SENEEEN (∆T = 2) shown in the figure with a collision probability of

Phit,1 = 14.3%.
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Figure 5-6: A very simple planning problem to study the conditions for using a
practicing maneuver as shown.

Without practicing, the expected Y parameter variance is E[Py,0] = P0. From

(5.15), the Y variance after the first North action in the hallway is Vy = P0/b
2.

Ignoring all other sources of collision probability, which we assume to be negligible,

Phit,0 is then:

Phit,0 =
1

2
− 1

2
erf

(
d|b|√
2P0

)
(no practicing) (5.22)

The shortest possible practicing maneuver in this example is a single movement

South and a single movement North, or vice versa. (The actions need not be adjacent

in the motion plan, as shown in Figure 5-4.) From (5.13), the resulting parameter
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variance after each step is:

E[Py,1] = W

(
1

b2
(1 + P0) +

W

P0

)−1

E[Py,2] = W

(
1

b2
(1 + P0) +

1

b2
(1 + E[Py,1]) +

W

P0

)−1

= W

(
2

b2
+
P0

b2
+
W

P0

+
W

1 + P0 + b2W/P0

)−1

(5.23)

and from (5.15) the Y variance is:

Vy = E[Py,2]
1

b2

= W

(
2 + P0 +

b2W

P0

+
b2W

1 + P0 +W/P0

)−1

(5.24)

Finally, the collision probability is:

Phit,1 =
1

2
− 1

2
erf

(
d√
2W

√
2 + P0 +

b2W

P0

+
b2W

1 + P0 +W/P0

)
(practicing) (5.25)

Combining 5.21 with 5.22 and 5.25, we arrive at the following inequality. When

this inequality is satisfied, the vehicle will execute a practicing maneuver:

erf

(
d√
2W

√
2 + P0 +

b2W

P0

+
b2W

1 + P0 +W/P0

)
−
(

1 +
∆T

T0

)
erf

(
d|b|√
2P0

)
−∆T

T0

> 0

(5.26)

We can numerically evaluate the combinations of P0 and W that will result in a

practicing behavior. These combinations form the white region of Figure 5-7. Note

that the values used in the example, P0 = 1 and W = 0.1, fall into this region.

212



Figure 5-7: The white region represents the combinations of P0 and W that will result
in the practicing behavior shown in Figure 5-6. In the dark regions the shortest path
EEEEN is the optimal path.

5.3 Predicting the Effects of Model Uncertainty

with Hermite Quadrature

In Chapter 4 we derived the parameter covariance evolution for a motion plan for a

planar holonomic vehicle. To implement the integrated planning and model learning

algorithm described in Section 5.1 we also need to be able to predict the increased

collision probability due to model uncertainty. For the simple 2D robot, the error

variance is a direct function of the parameter variance; as the Gaussian nature of the

error variance is preserved, the collision probability is a simple calculation from the

error variance. These calculations are not simple for the planar holonomic vehicle for

several reasons:

• Disturbances are a continuous random process, while parameter uncertainty

acts as a random but steady effect on each path leg.

• The controller is a linear quadratic regulator designed around the model pa-
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rameter estimates after each maneuver. The controller gains can be linearized

around small parameter errors, but the effects of those controller gains on the

error variance are not analytically computable.

• If the controller is designed around an estimated system that is very different

from the true system, then the controller may be unstable when applied to the

true system. With Gaussian process and sensor noise models, this situation

cannot be ignored.

As in Chapters 3 and 4, we seek analytic predictions of the collision probabil-

ity given the parameter covariance evolution. This process can be considered to be

a function with a normally distributed parameter vector. We are seeking the ex-

pected output of that function. This solution can be approximated using numerical

quadrature. With numerical quadrature, an integral is approximated by sampling

the integrand at specific points and combining the results with a weighting function.

Hermite quadrature is a version of numerical quadrature using a Gaussian kernel. As

shown below, Hermite quadrature can be used to approximate the expected value

of a function with a normally distributed input. Subsequently we will apply this

quadrature rule to the planning and learning problem. See [16] for a useful summary

of numerical quadrature techniques.

5.3.1 Hermite Quadrature Integration

The Hermite quadrature rule states that the integral of a function g(x) multiplied by

a Gaussian function is approximately equal to the weighted sum of the function eval-

uated at specific points. As the number of evaluation points increases, the accuracy

of the approximation improves.

∫ ∞
−∞

e−x
2

g(x) dx =
∞∑
j=1

wj g(xj)

≈
nH∑
j=1

wj g(xj) (5.27)
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Hermite quadrature uses a Gaussian kernel, while other quadrature rules use dif-

ferent kernels. Next we recall the definition of the expected value of a function g(x)

of a random variable x whose probability density function is f(x):

E[g(x)] =

∫ ∞
−∞

g(x)f(x) dx. (5.28)

When x is sampled from a normalized Gaussian distribution, x ∼ N(0, 1) and

f(x) = e−x
2
, then (5.27) and (5.28) can be combined:

E[g(x)] ≈
nH∑
j=1

wj g(xj). (5.29)

The quadrature point locations and weights are computed using the following

procedure. First, a nH × nH matrix H is constructed as shown below.

H =



0
√

1 0 · · · 0 0
√

1 0
√

2 · · · 0 0

0
√

2 0 · · · 0 0
...

...
...

. . . 0 0

0 0 0 0 0
√
nH − 1

0 0 0 0
√
nH − 1 0


(5.30)

Next we define V and D as the eigenvalue decomposition of H, where D is a

diagonal matrix of eigenvalues and V is the corresponding matrix of eigenvectors.

The eigenvalues of H are the quadrature point locations and the weights are the

square of the first element of each eigenvector: for the j’th point, xj = Djj and

wj = V1j
2.

The extension of (5.29) to the case where x is sampled from a multinormal dis-

tribution x ∼ N(0, I) is straightforward using the tensor product. If there are nH

quadrature points in each of m dimensions, then there are NH = nH
m quadrature

points overall. The point locations in the m-dimensional space are defined by the

scalar point locations along each dimension, and the point weights are the product
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of the component weights. The point locations form a m × NH matrix xH and the

weights form a NH × 1 vector wH.

The vectors in xH correspond to the multinormal distribution N(0, I), but the

parameters themselves follow the distribution β ∼ N(β̄,P). The following procedure

is used to transform a particular point xj into its corresponding parameter vector

βj. First we define VP and DP as the eigenvalue decomposition of P, where DP is a

diagonal matrix containing the eigenvalues of P. Next we compute βj as follows:

βj = VP

√
DP xj + β̄. (5.31)

The output we are interested in is the collision probability, Phit. To find the

expected collision probability due to the model uncertainty, we need to know the

collision probability associated with each quadrature point xj (or equivalently βj)

in the parameter space. The collision probability for each quadrature point can be

predicted analytically if we can express the mean error and the error variance as a

function of the parameter error for that quadrature point. This problem is studied

below.

5.3.2 Error Distribution Predictions for Systems with Model

Error

In Section 3.6 we considered the evolution of the mean and variance of the state error

when executing a maneuver. In that section, the only effects that contributed to

state error were process noise disturbances, underactuation, and transients when the

speed control setpoint changed. We can also include the effects of model error if the

true dynamic model {a(ν),b} and the estimated model {â(ν), b̂} are known. In this

case the LQR controller is designed around the estimated plant, and the feedforward

matrix Kr(ν) in (3.68) becomes:

Kr(ν) =
[

Kν−b̂(inv)â(ν) Kη

]
. (5.32)

216



Propagating this change, the steady forcing term (3.72) becomes:

d(νr) ≡

 (a(νr)−bb̂(inv)â(νr)
)

νr

0

 (5.33)

The subsequent calculation of ē(t) and Σ(t) proceeds as normal in Section 3.6.

The parameter error has a strong affect on the mean state error due to the feedforward

term, and it has a weak effect on the error variance due to the design of the LQR

controller. Next we present an example to show how these predictions are used.

5.3.3 Two-Parameter Example

Consider the following simple 2-parameter system, which represents a double inte-

grator with damping. The state vector is x = [v, y]T where y is position and v is

velocity.  v̇

ẏ

 =

 a 0

1 0

 v

y

+

 b

0

 τ +

 w

0


ẋ = Ax + Bτ + w (5.34)

An LQR controller Kx is designed around the parameter estimates â and b̂, which

are stored in the parameter vector β = [â, b̂]T ∼ N(β̄,P). In this example, the

covariance matrix P is diagonal, with ā = a = −0.3, b̄ = b = 1, σa = 0.1, and

σb = 0.4. The variance of w is 1. The LQR matrices are Q = diag([1, 0.01]) and

R = 10. For a reference state r(t) = [vr, vrt]
T , the control law is:

τ = Krr−Kxx (5.35)

where Kr = [Kx(1)− â/b̂, Kx(2)].

From the derivation above, we can predict the mean and variance of the path-

following error e = x− r due to the process noise when using a particular βj. Using

Hermite quadrature, we can choose specific sample points βj around β̄. For a mth
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order Hermite quadrature, there are NH = m2 sample points in the parameter space,

each with a corresponding weighting wj. After a certain amount of time T we can

look at the distribution of the position state y(T ) from a 10,000-point Monte Carlo

simulation and compare it to the distribution predicted by Hermite quadrature. The

Hermite distribution is:

p(y)(q) =

NH∑
j=1

wj ×
1√

2πΣj

exp

(
−(y − ȳj)2

2Σj

)
(5.36)

where ȳj is the mean position for the jth quadrature point and Σj is the variance

of the position. This distribution is a true PDF because its integral is 1. Next we

consider an obstacle at a certain position dobs in the space at t = T . If y(T ) > dobs,

then a collision has occurred. Due to the linear construction of the PDF, the collision

probability can be combined using the same quadrature rule:

Phit
(q) =

NH∑
j=1

wj × Phit,j =

NH∑
j=1

wj ×
1

2

(
1− erf

(
dobs − ȳj√

2Σj

))
(5.37)

where Phit,j is the collision probability computed from the jth quadrature point.

Figures 5-8 through 5-11 show the quadrature point locations and the resulting

PDF for m = {1, 2, 4, 6}. As m increases, the PDF from (5.36) converges to the

PDF as determined by the 10,000-point Monte Carlo simulation. The m = 1 case

uses a single point at the nominal β̄, so it does not include any information about

model uncertainty; the PDF and the predicted collision probability are from the

process noise alone. For large m, some of the quadrature points result in an unstable

controller when applied to the true system. The quadrature weights for these points

are so low that the resulting large state errors have little effect on the PDF.

The collision probability is computed using (5.37). As we would expect, the

accuracy of this prediction increases as the quadrature order increases. Table 5.1

shows the convergence of Phit
(q) to the 10,000-point Monte Carlo result, which is

taken as the true value. We can see that the quadrature prediction is several orders

of magnitude faster to compute than the Monte Carlo result. The convergence is
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Figure 5-8: Left: The quadrature point location in the parameter space for m = 1
(blue circle) and the Monte Carlo parameter distribution. Right: The PDF computed
using the quadrature rule (blue dashed), and the PDF computed from the Monte
Carlo simulation (red). With m = 1 there is no information about model uncertainty
in the prediction of the PDF.
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Figure 5-9: Left: The quadrature point locations in the parameter space for m = 2
(blue circles) and the Monte Carlo parameter distribution. Right: The PDF computed
using the quadrature rule (blue dashed), and the PDF computed from the Monte
Carlo simulation (red). The component Gaussian distributions for each quadrature
point are shown in gray, scaled by the quadrature weights.
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Figure 5-10: The same plots as Figure 5-9 with m = 4.
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Figure 5-11: The same plots as Figure 5-9 with m = 6. The quadrature points shown
in black (β2 < 0) result in an unstable controller when applied to the true system.
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plotted in Figure 5-12.

The procedure outlined in this section can be applied to the planar holonomic ve-

hicle. When the parameter covariance matrix P changes from maneuver to maneuver,

then the collision probability (and the plan cost) incorporates the model learning that

will take place during the plan execution. When all of these effects are combined, the

result is the integrated planning and model learning algorithm. The full algorithm is

described in the next section.

Table 5.1: Convergence of the quadrature prediction of Phit to the Monte Carlo result.

Method Phit Time (sec)
Monte Carlo, 100 points 0.1100 4.407
Monte Carlo, 1,000 points 0.1050 37.13
Monte Carlo, 10,000 points 0.1176 334.5
Quadrature, m = 1 0.0233 0.0103
Quadrature, m = 2 0.1112 0.0285
Quadrature, m = 3 0.1496 0.0561
Quadrature, m = 4 0.1087 0.0978
Quadrature, m = 5 0.1095 0.1481
Quadrature, m = 6 0.1232 0.2029
Quadrature, m = 7 0.1152 0.3132
Quadrature, m = 8 0.1140 0.3529

5.4 Full Algorithm

At this point we have all of the ingredients needed to apply the integrated motion

planning and model learning algorithm described in Section 5.1 to a planar holo-

nomic vehicle. In Chapter 3 we described a motion planning framework and a search

algorithm to find the optimal motion plan using a cost function based on collision

probability. Chapter 4 described how to predict the parameter covariance evolution

that results from following a particular motion plan, and in Section 5.3 we described

how to compute the collision probability for a maneuver based on the parameter co-

variance. When all of these ingredients are combined, the planner chooses the best

motion plan while considering the model learning and the resulting uncertainty-based
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Figure 5-12: Convergence of the quadrature prediction of Phit and the Monte Carlo
simulation. The result of the 10,000-point Monte Carlo simulation is taken as the
truth value. The m = 8 quadrature uses 64 evaluation points and runs approximately
1,000 times faster than the best Monte Carlo simulation, but comparable results are
achievable at lower quadrature levels. (Data in Table 5.1.)

cost of each plan. As we saw in Section 5.2, such a planner exhibits automatic active

learning behaviors, when necessary, to complete the mission with an optimal balance

of risk and efficiency.

This section is devoted to the synthesis of all the ingredients into a robust inte-

grated planner for planar holonomic vehicles. We begin with a high-level view.

5.4.1 High-Level View

The high-level synthesis of the different parts of the planning problem is shown in

Algorithm 11. The algorithm includes the adjustments necessary between missions

to update the parameter estimates and covariance based on the previous mission’s

data. Those steps add feedback to the planning process on a mission-to-mission level.

A block diagram of Algorithm 11 is shown in Figure 5-13.
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Algorithm 11 Integrated Planning and Model Learning Algorithm (High Level).

1: Initialize the a priori parameter estimates and the a priori parameter covariance
matrix.

2: for each mission do
3: Load the initial state, the goal state, the obstacle positions, the a priori pa-

rameter estimates β̂0 and the a priori parameter covariance matrix P0.
4: Start the A* robust motion planner (Chapter 3).
5: for each plan p considered by the planner do
6: Predict the error statistics given process noise only (Section 3.6).
7: Predict the parameter covariance evolution through the plan based on those

error statistics (Section 4.4).
8: Predict the collision probability given the parameter covariance evolution

using Hermite quadrature (Section 5.3).
9: Compute the plan cost g = T/(1− Phit).

10: Compute the heuristic function h (Section 3.8.2) and return the predicted
total cost f = g + h.

11: end for
12: Return the plan that ends at the goal with the lowest cost.
13: Execute the optimal motion plan, implementing the learning algorithm (Section

4.1.4) and updating the controller (Section 3.5.3) after each maneuver.
14: Analyze the prediction error and adjust the posterior parameter covariance

(Section 4.5.2).
15: Update β̂0 and P0 for the next mission.
16: end for
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Figure 5-13: A block diagram of Algorithm 11.
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5.4.2 Implementation Details

Here we discuss some of the specific issues that arise when implementing Algorithm

11 for the planar holonomic vehicle.

Error Statistics

With the overall algorithm defined, we can now study some of the particulars of the

algorithm. In Algorithm 11, the parameter covariance evolution is computed based

on the nominal error statistics, that is, computed based on the a priori parameter

estimate β̂0. Strictly speaking the parameter covariance evolution should be based

on the error statistics associated with each quadrature point, essentially putting the

learning prediction inside the quadrature. However, the learning data is not appre-

ciably affected by the model error at each quadrature point, and simply using the

nominal error statistics results in substantial savings in terms of computer memory

usage and computation time.

Maneuver Concatenation

Next we note that each plan in Algorithm 11 is analyzed in its entirety. However,

plans are constructed by adding maneuvers to existing plans, so it is only necessary

to consider the effect of the new maneuver. All of the algorithms are conveniently

partitioned by maneuver, so adding a maneuver and computing the incremental plan

cost is straightforward.

Quadrature Points Mapped to Parameter Vectors

The quadrature points formed by the tensor product exist in the normalized orthogo-

nal m-dimensional space; these are the xj vectors from Section 5.3.1. Meanwhile, the

corresponding parameter vectors change as the parameter covariance matrix changes.

Consider second-order (nH = 2) quadrature for m = 2; the four quadrature points
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are shown below, with each column representing one quadrature point.

xH =

 −1 −1 1 1

−1 1 −1 1

 (5.38)

If β̄0 = [1, 0]T and P0 = diag([4, 4]), then the corresponding parameter vectors

are computed using (5.31):

β̂
(q)
all,0 =

 −1 −1 3 3

−2 2 −2 2

 (5.39)

Now suppose that after one maneuver of the motion plan the estimated parameter

covariance matrix is P1 = diag([1, 0.25]). While the quadrature point locations xH

remain the same in the normalized orthogonal space, we apply (5.31) again using P1

to obtain the new parameter vectors:

β̂
(q)
all,1 =

 0 0 2 2

−0.5 0.5 −0.5 0.5

 (5.40)

Throughout the motion plan, the parameter vectors associated with each quadra-

ture point converge toward the a priori parameter vector β̄0.

Learning a Subset of Parameters

The full parameter vector for the planar holonomic vehicle has 10 parameters. It is

straightforward to learn all of the parameters at once, and the associated parameter

convergence predictions are simple as well. However, it is computationally infeasible

to predict the effects of model uncertainty using quadrature with all 10 parameters.

For the simplest useful quadrature, nH = 2, the number of quadrature points is

NH = nH
m = 210 = 1024. While the calculation of the collision probability for each

quadrature point has an analytic solution, the memory requirements for storing 1024

control matrices and covariance matrices for each of hundreds of motion plans, each

with several maneuvers, is prohibitive.
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The workaround for this issue is to only learn a subset of the parameters at once,

as described in Section 4.1.3. For example, if it is known that there are no wind

effects, then the wind parameters fU and fV need not be learned. Similarly, if it is

known that the vehicle has no cross-coupling between sway and yaw damping, then

a23 and a32 can be set to zero and not learned. If some of the parameters have

already been learned with a high degree of confidence and it is known that they will

not change during the mission, then those parameters can be fixed as well. In this

manner the vehicle may only need to learn a few parameters; if three parameters

are learned, then the planner only needs 23 = 8 quadrature points for second-order

Hermite quadrature.

Collision Probability Accuracy

As we will see in section 5.5.1, the predicted collision probability often differs from the

collision probability measured by a Monte Carlo simulation by up to a factor of two.

This occurs even when the mean and variance predictions are accurate. The reason

for the discrepancy is that the error prediction and the parameter convergence predic-

tion use several simplifying assumptions. For example, the error prediction assumes

small state errors so that the small-angle approximation is valid, and the parameter

convergence prediction uses only the first two terms of the Taylor series expansion of

the inverse of the information matrix. The final distribution of trajectories is then

modeled as a Gaussian function; the result of the approximations is that the tails of

the distribution are not well modeled. As there are likely to be obstacles in the tails

of the distribution, this means that the true collision probability is higher than pre-

dicted. However, the prediction captures all of the effects of a priori learning data,

state excitation, process noise, state correlation, etc. and the differences between

different motion plans will be revealed by the prediction as well as the collision prob-

ability measurement. For this reason we accept collision probability errors of up to a

factor of two with the understanding that the various effects of learning, uncertainty

and disturbances have been properly taken into account.
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5.5 Simulations and Experiments

In this section we present simulation and experimental results for the integrated

planning and learning algorithm. While the algorithm can be used for any motion

planning problem with any initial parameter distributions, to highlight the features

of the algorithm the same mission is performed four times according to the procedure

shown in Figure 5-14. Throughout four missions, the model uncertainty decreases as

the learning algorithm is exposed to more data. However, during the third mission

the true dynamic model is changed; depending on the resulting prediction error, the

planner may choose to actively reduce its confidence to relearn the parameters during

the last mission. Note that each mission could be performed on a different map with a

different start and goal location, but for clarity we use the same map for each mission

in these examples.

Mission 1

Mission 2

Mission 3

Mission 4

A priori estimates

Initial model error

Model changed

Internal EffectsExternal Effects

Figure 5-14: Overview of the testing procedure for the simulations and experiments.

The vehicle used in the experiments is described in Appendix A. First we present

a simulation of a planning scenario in which the vehicle learns the yaw thrust gain

b3. Next we present an experiment to learn the yaw drag parameter in calm water.
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The second experiment investigates the mean environmental effects in the presence

of waves. Finally, using those learned environmental forcing estimates we perform a

set of missions in which we learn four parameters at once.

In each simulation and experiment, the planner uses five-second trims to construct

motion plans and model uncertainty is approximated with second-order quadrature.

The learning data is acquired at 1 Hz in the simulation and 1.67 Hz (approximately

the data rate of the vehicle’s positioning system, as described in Section A-4) in

the experiments. The a priori dynamic model and the noise model are provided in

Section A.6 and the LQR weighting matrices are provided in Section A.7.

5.5.1 Simulation Learning One Parameter

To show how the integrated planning and learning algorithm applies to a planar holo-

nomic vehicle, consider the following example. For simplicity, the only free parameter

in the model is b3, the yaw thrust gain. The a priori parameter value is b3 = −0.0527

and the a priori standard deviation for b3 is 0.05, meaning that the a priori standard

deviation is approximately equal to the true parameter value. The task is to drive

from the start position indicated in Figure 5-15 to the goal marked by a green square.

For simplicity we do not let the planner use reverse maneuvers, restricting it to the

trims a-f.

Simulation results for each mission are described below. A summary of the results

is shown in Table 5.2.

Mission 1

With the problem parameters described above, the planner chooses the indicated

motion plan ecaabaw with a duration of 32.4 seconds and a predicted collision prob-

ability of 4.6%, resulting in a cost g = 34.0. This plan was found after 51 iterations

of the A* algorithm in 15.1 seconds on a 2.33 MHz Intel Core 2 Duo processor. A

Monte Carlo simulation with 1,000 trajectories returns a collision probability of 8.8%.

Figure 5-16 shows the predicted mean and standard deviation of the trajectories.
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Figure 5-15: The mission is to drive from the indicated start position to the green
square. The black circles are waypoints available to the planner. This figure shows
the search tree expanding toward the goal.

Table 5.2: Summary of Missions for Figure 5-15.

Mission Motion Plan Param. β̂0

√
var(β)0 β̂N

√
var(β)N

1 ecaabaw b3 -0.0527 0.05 -0.031 0.0243
T = 32.4 sec
Phit = 4.6%

2 ebbawaw b3 -0.031 0.0243 -0.042 0.0182
T = 28.0 sec
Phit = 11.2%

3 ebbawaw b3 -0.042 0.0182 -0.044 0.0778
T = 28.1 sec
Phit = 4.6%
Increased thrust gain

4 edfcaabaw b3 -0.044 0.043 -0.077 0.0208
T = 42.6 sec
Phit = 8.9%
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Figure 5-16: (Mission 1) With a large initial yaw parameter uncertainty, the planner
chooses a motion plan that will improve the parameter estimate and the controller be-
fore driving through the passage to the goal. The blue dashed lines show the predicted
mean and standard deviation of the trajectories given no parameter uncertainty, and
the shaded blue region indicates the spread of the mean quadrature trajectories. A
single plan execution is drawn in green.

A single plan execution is shown in Figure 5-16. For this trajectory, the final

parameter estimate is b̂3 = −0.031. The predicted final standard deviation is 0.0243.

For this run, the prediction error is within the expected bounds, so α = 1 and the

posterior standard deviation is also 0.0243. Note that the true parameter value,

b3 = −0.0527, is within one standard deviation of the estimate.

If the evolution of the model uncertainty is not taken into account, then the

optimal plan is ebbawaw, with a duration of 28.1 seconds. However, including the

effects of parameter uncertainty its predicted collision probability is 21.7%, resulting

in a cost g = 35.9. The collision probability measured from a 1,000-point Monte

Carlo simulation is 32.0%. This motion plan is shown in Figure 5-17.

Mission 2

Next, the planner is run a second time with the a priori parameter values and esti-

mates taken from the posterior values from the first plan execution. This time, the

increased confidence from the first plan execution causes the planner to choose the

shorter motion plan ebbawaw, as shown in Figure 5-18. This plan has a duration
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Figure 5-17: The optimal motion plan not considering model learning drives directly
to the goal. This motion plan is shorter than the plan shown in Figure 5-16, but
it has a higher collision probability because of the large parameter errors near the
obstacles (shaded blue region).

of 28.0 seconds and a predicted collision probability of 11.2%, resulting in a cost of

g = 31.5. The plan was found in 7.8 seconds after 29 iterations. It has a shorter dura-

tion than the plan shown in Figure 5-17 because of the new parameter estimate for b3

results in a smaller predicted turning radius for the vehicle. The collision probability

calculated from a 1,000-point Monte Carlo simulation is 23.1%.

A single plan execution is shown in Figure 5-18. For this trajectory, the final

parameter estimate is b̂3 = −0.042. The predicted final standard deviation is 0.0182.

Again, the prediction error is within the expected bounds, so α = 1 and the posterior

variance is also 0.0182.

Mission 3

The planner is run a third time with the a priori parameter values and estimates

taken from the posterior values from the second plan execution, and it returns the

same motion plan, ebbawaw. However, this time we increase the true parameter value

by a factor of two to b3 = −0.1054. This change could model a different thruster

being installed on the vehicle or a different amplifier gain. The execution of this

plan is shown in Figure 5-19. Due to the a priori confidence in the old parameter
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Figure 5-18: (Mission 2) Because the parameter uncertainty was reduced in the first
run (Figure 5-16), the planner chooses a more direct path to the goal. A single plan
execution is drawn in green.

estimate, the new estimate does not change much: now b̂3 = −0.044. However, this

value results in a large prediction error. The posterior correction factor computed

from the learning data is α = 23.8, so the posterior standard deviation is adjusted

from the predicted value of 0.0159 to 0.0778. This adjusted value more than accounts

for the difference between the parameter estimate and the new true parameter value.

Mission 4

Finally, we run the planner a fourth time to find a motion plan that will best learn

the new parameter value. However, because we can see that the posterior variance

estimate from the previous plan execution would result in an unstable controller at

one of the quadrature points (b̂
(q)
3 = −0.044±0.0778 for second-order quadrature), we

reduce the parameter standard deviation to 0.043. In this way all of the quadrature

points will be stable and the error analysis can proceed. The planner returns the mo-

tion plan edfcaabaw shown in Figure 5-20. This motion plan includes two stationary

maneuvers at the beginning of the plan to learn the parameter before driving away

from the start point. The rest of the plan is the same as in Figure 5-22. After this

motion plan is executed, the new parameter estimate is b̂3 = −0.077 with a predicted

posterior standard deviation of 0.0208. When the planner is run again, it returns
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Figure 5-19: (Mission 3) After executing this plan, the learning algorithm recognizes
that the true parameter value has changed. The confidence in the learned parameter
value is reduced so that an active learning strategy will be chosen the next time the
planner is run. A single plan execution is drawn in green.

the plan shown in Figure 5-18 because the new parameter value has been learned

adequately.

In the next section we present experimental results showing a similar sequence of

motion plans.

5.5.2 Experiment Learning One Parameter

The planning task for the first batch of experiments is shown in Figure 5-21. These

four missions follow the same sequence as in the previous section. The vehicle must

drive through a channel and make a quick left turn to arrive at the goal. Because

these experiments were performed in calm water, the process noise was reduced by

a factor of 100. We learn a single parameter, the yaw drag a33. A summary of the

results of the four missions is given in Table 5.3.

Mission 1

The a priori value for a33 is -0.1047 with a standard deviation of 0.5. In the first

mission, the planner chooses the motion plan eacwbadw shown in Figure 5-22. This

plan was found in 26.8 seconds after 150 iterations of the A* algorithm. The plan was
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Figure 5-20: (Mission 4) The planner chooses the motion plan edfcaabaw, which
causes the vehicle to turn back and forth in place to learn the new parameter and
reduce the uncertainty before driving to the goal. The shaded blue region indicates
the spread of the mean quadrature trajectories. A single plan execution is drawn in
green.

Figure 5-21: The planning task for the first batch of experiments. The goal is shown
with a green square. The black circles are waypoints available to the planner. The
main obstacles are one meter wide and the channel gap is one meter.
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Table 5.3: Summary of Missions for Figure 5-21.

Mission Motion Plan Param. β̂0

√
var(β)0 β̂N

√
var(β)N

1 eacwbadw a33 -0.1047 0.5 -0.259 0.257
T = 34.8 sec
Phit = 0.082%

2 ebawbaw a33 -0.259 0.257 -0.237 0.235
T = 30.0 sec
Phit = 0.0002%

3 ebawbaw a33 -0.237 0.235 -0.713 1.31
T = 29.9 sec
Phit = 0.0042%
Added drag

4 ebawbawdw a33 -0.713 1.31 -1.334 0.209
T = 43.1 sec
Phit = 0.63%

executed using the vehicle shown in Figure A-1. The resulting trajectory is shown in

the Figure 5-22.

Figure 5-22: (Mission 1) The motion plan eacwbadw takes two turns at the beginning
of the plan to learn the yaw drag parameter before entering the channel. The actual
vehicle trajectory is shown in green and the heading is shown in five second increments.

After executing the first motion plan, the new parameter value is a33 = −0.2585.

With no external disturbances, the prediction error is within the expected bounds

(α = 1) and the posterior parameter standard deviation is 0.257.
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Mission 2

When the planner is run a second time with the improved uncertainty from the first

mission, it chooses the more direct route ebawbaw shown in Figure 5-23. The vehicle

executed this motion plan with the trajectory shown in the figure. The parameter

value after this plan execution is a33 = −0.2370 with a posterior standard deviation

of 0.235. Again, the prediction error is small and α = 1.

Figure 5-23: (Mission 2) The motion plan ebawbaw drives directly to the goal. The
measured vehicle trajectory is shown in green.

Mission 3

Next we consider how the learning algorithm identifies system changes. To increase

the yaw drag, we add rope to the stern of the vehicle as shown in Figure 5-24. With

the increased confidence in the parameter value from the second experiment, the

motion plan to get to the goal remains the same as in Figure 5-23. With the added

drag, the vehicle trajectory is shown in Figure 5-25. The turning performance is

reduced and the path errors are larger.

While executing the motion plan, the learning algorithm changes the parameter

value to a33 = −0.7134. Afterward, the posterior variance prediction described in

Section 4.5.2 identifies that the prediction error is higher than expected; as a result,

it increases the posterior variance by a factor of α = 36.2, from 0.0475 to 1.72 (a

standard deviation of 1.31). This ensures that the next time the planner is run, it
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Figure 5-24: Rope was added to the stern of the vessel to increase the yaw drag for
the third experiment. The resulting trajectory is shown in Figure 5-25.

will choose a plan that quickly learns the new parameter value and it will put more

weight on new data.

Figure 5-25: (Mission 3) The turning performance of the vehicle suffers due to added
yaw drag. After executing the plan, the learning algorithm identifies that the true
parameter value has changed and reduces its confidence in that parameter value
accordingly. The measured vehicle trajectory is shown in green.

Mission 4

Finally, we run the planning algorithm a fourth time using the new a priori data

obtained from the previous run. Because the drag parameter estimate has been

increased, the planner knows that it is harder to turn the vehicle. The optimal
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motion plan is ebawbawdw, which is shown in Figure 5-26. This plan does not include

any maneuvers to actively learn the parameter value because it is expected that

with the added drag the vehicle will not deviate very far from the straight-line path

through the channel. The parameter uncertainty affects the error variance on the

far side of the channel when the vehicle turns in place, but this maneuver can be

safely performed despite the uncertainty because there are no obstacles nearby to

hit. In other words, the shaded blue region in the figure is far enough away from

obstacles that the planner accepts the risk. After executing this motion plan, the

new parameter estimate is â33 = −1.334 with a standard deviation of 0.457.

Figure 5-26: (Mission 4) The planner chooses to take a direct path to the goal,
ebawbawdw, rather than explicitly learn the parameter, because the yaw drag estimate
is large. The effects of the parameter uncertainty are only seen during the sharp turn
at the end of the plan where the spread of the quadrature means (shaded blue) is
large. The measured vehicle trajectory is shown in green.

5.5.3 Experiment Learning Environmental Forcing Parame-

ters

In this experiment, we learn the steady environmental forcing terms fU and fV when

driving through waves. The motion planning task is shown in Figure 5-27. The

vehicle must back away from the wall then turn and drive into the slip. The optimal

motion plan is eihawawcw as shown in the figure. Because we do not use any position

feedback when driving in reverse (the actual vehicle is unstable in reverse) the error
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variance grows rapidly. However, as soon as the vehicle starts driving forward toward

the goal the error variance contracts.

Figure 5-27: The motion plan eihawawcw backs the vehicle away from the wall before
turning toward the goal. There is no position feedback when driving in reverse, so
the error variance grows during maneuvers i and h. The vehicle trajectory is shown
in green and the heading is shown in five second increments.

Without any initial knowledge of the mean environmental force, we set the a priori

estimates to fU = fV = 0 with an a priori standard deviation of 0.001. The controller

does not compensate for the wind effects, so the planner will never choose an active

learning strategy to learn these parameters. (Learning these parameters online does

not contribute to reducing the collision probability for this mission, which is the only

effect considered by the planner.) However, we use second-order quadrature to predict

the effects of the wind parameter uncertainty. The predicted collision probability is

30.7%, mostly from the initial maneuver to pull away from the wall.

The vehicle executed this plan in the presence of 2.4-Hz waves with a wave height

of 2 cm, the same sea state as the experiment in Section 3.9. The waves traveled from

left to right in Figure 5-27. The vehicle’s trajectory is plotted in the figure. Note

that the trajectory mostly falls within one standard deviation of the predicted mean

path.

The environmental parameter estimates after executing this motion plan are f̂U =

−1.1× 10−3 and f̂V = −5.3× 10−4. It is not guaranteed that these parameters truly

reflect the mean environmental force; in fact, the nonlinear wave drift force ought to

240



result in a positive value for fU for these waves. Rather, these parameters indicate

the mean drift that the vehicle will experience when following this motion plan and

similar motion plans. This drift may be caused by other model error, thruster lag,

sensor filters, or a number of other reasons. As such, we can use these parameters

when finding similar motion plans as these effects are likely to also be similar.

5.5.4 Experiment Learning Two Parameters

In this batch of experiments we learn two parameters at once: the the yaw drag a33

and the yaw thrust gain b3. The planner uses second-order quadrature to evaluate the

collision risk due to modeling error. The environmental parameters are fixed to the

values derived above. As in the earlier batch of experiments, we perform the same

mission four times with the same procedure described at the beginning of this section.

The planning task is shown in Figure 5-28; it is similar to the previous example.

Figure 5-28: The planning task is to drive from the indicated start position to the
green square. The waypoints available to the planner are shown as black circles.

For each parameter the a priori standard deviation is on the same order of mag-

nitude as the a priori estimate. The initial estimates and standard deviations are

shown in Table 5.4.
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Table 5.4: Summary of Missions for Figure 5-28.

Mission Motion Plan Param. β̂0

√
var(β)0 β̂N

√
var(β)N

1 eacbcw a33 -0.105 0.5 -0.281 0.268
T = 31.5 sec b3 -0.0527 0.03 -0.0432 0.0179
Phit = 4.1%

2 eawcaw a33 -0.281 0.268 -0.538 0.228
T = 30.8 sec b3 -0.0432 0.0179 -0.0348 0.0146
Phit = 8.0%

3 eacbcaw a33 -0.538 0.228 -0.333 0.203
T = 31.9 sec b3 -0.0348 0.0146 -0.0237 0.0120
Phit = 18.3%
Reduced thrust

4 eacbcaw a33 -0.333 0.203 -0.262 0.181
T = 31.9 sec b3 -0.0237 0.0120 -0.0101 0.0097
Phit = 29.2%

Mission 1

To learn the parameters before driving near the obstacles, the planner chooses the

motion plan eacbcw, which has a duration of 31.5 seconds and a predicted collision

probability of 4.1%. This plan is shown in Figure 5-29. Note the large spread of

the quadrature trajectories after the turning maneuvers. This plan was executed by

the vehicle in the same sea state as described in the previous section. The resulting

trajectory is plotted in the figure. The parameter estimates at the end of the mission

are shown in Table 5.4. The yaw drag parameter estimate increases by a factor of

three, and the yaw thrust gain reduces slightly. These changes mean that the vehicle

experiences more sideslip during turns than predicted by the a priori model.

Mission 2

After the parameter uncertainty was reduced in Mission 1, the planner chooses a more

direct route to the goal. The motion plan eawcaw has a duration of 30.8 seconds and

a predicted collision probability of 8.0%. This plan is shown in Figure 5-30 along

with the actual vehicle trajectory. The parameter estimates are shown in Table 5.4.
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Figure 5-29: (Mission 1) The motion plan eacbcw exposes the vehicle yaw data early
in the mission so that the controller performance is improved.

Figure 5-30: (Mission 2) The motion plan eawcaw drives directly to the goal.
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Mission 3

Next we change the vehicle dynamics by reducing the thrust by 25%. Using the pos-

terior variance estimates from Mission 2, the optimal motion plan is slightly different:

now it is eacbcaw, with a duration of 31.9 seconds and a predicted collision probabil-

ity of 18.3%. The yaw thrust gain estimate reduces by 32%, but the prediction error

based on the final parameter estimate is not enough to increase the posterior vari-

ance. In other words, the learning algorithm has enough trust in the new parameter

estimate that it continues to increase its confidence. The new estimates are shown in

Table 5.4. The motion plan and the measured trajectory are shown in Figure 5-31.

Figure 5-31: (Mission 3) The thrust gain has been reduced by 25% while following
the motion plan eacbcaw.

Mission 4

The new parameter estimates reflect the fact that the vehicle has poor turning per-

formance with the reduced thrust gain. The planner chooses the same motion plan

eacbcaw as shown in Figure 5-32. Because the thrust is lower, it takes longer for the

vehicle to get up to speed and the error variance increases. This motion plan has the

same duration of 31.9 seconds but a larger predicted collision probability, 29.2%, due

to the larger error variance. The measured trajectory is shown in the figure.
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Figure 5-32: (Mission 4) The errors are larger when following this plan than when
following the identical plan in Figure 5-31 because the vehicle’s speed is lower.

5.6 Summary

In this chapter we have brought the various pieces of the motion planning and model

learning problems together in a single integrated strategy. The resulting algorithm is

based on the robust motion planner described in Chapter 3 and it uses the predictions

of the parameter convergence from Chapter 4 to relate active learning strategies to

the planner’s cost function. The final algorithm has very few parameters that need

to be tuned by the operator and it is robust to changes in the true vehicle model

parameters.

We have provided simulations of this algorithm applied to a simple 2D grid-based

robot and simulations and experiments of the algorithm applied to a marine surface

vessel, which is representative of a large class of planar holonomic vehicles. The ex-

perimental results show how the learning algorithm gains confidence in the parameter

estimates by executing the motion plans, and how the planner uses that confidence to

find motion plans that will be successful in the presence of model uncertainty. High-

level feedback is achieved by adjusting the parameter covariance estimates based on

the prediction error during the execution of the motion plans. In this way the algo-

rithm does not become too confident in incorrect parameter estimates.

In Chapter 6 we summarize the novel contributions in this thesis and we highlight

fruitful areas of future work.
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Chapter 6

Conclusions

In Chapter 5 we presented the integrated motion planning and model learning algo-

rithm that ties together the various components of this thesis. In this chapter we

summarize the novel contributions in this thesis and we suggest avenues of future

research. While much of this thesis is devoted to specific calculations applicable to

a planar holonomic vehicle such as a marine surface vessel, the overall algorithm can

be applied to a wide variety of mobile robots. Much of the future work involves ex-

tending the specific components of the full algorithm to new types of vehicles. In the

last section we finish with some concluding remarks.

6.1 Novel Contributions

This thesis includes new contributions to several disparate research areas in the con-

struction of the integrated algorithm, which is itself a novel high-level strategy. The

various specific contributions are summarized below.

6.1.1 Robust Motion Planner

The first new contribution in this thesis is the robust motion planning algorithm.

Building on a standard cost-based motion planner to find the shortest sequence of

actions to bring a mobile robot through a cluttered environment to a goal configura-
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tion, this robust motion planner discourages plans that have a low chance of success.

Success is defined by the avoidance of obstacles, so in a stochastic context the planner

incorporates the probability of collisions into the cost function.

Evaluating the collision probability is the key step when determining the value of

a motion plan. This probability could be computed using a Monte Carlo simulation,

but that approach requires a great computational effort to achieve an accurate and

reliable result. Instead, we develop fast and efficient algorithms to approximate the

collision probability for each motion plan based on the estimated dynamic model for

the system, the noise models, and the obstacle locations. These various algorithms

are described below.

6.1.2 Error Variance Predictions

For a planar holonomic vehicle driving under closed-loop velocity and/or position

control in the presence of stochastic disturbances, under certain conditions it is pos-

sible to express the variance of the state error as a linear variance evolution equation,

which is a version of the matrix Riccati equation. This equation can be solved ana-

lytically to predict the error covariance matrix at any moment in the execution of the

motion plan. In a parallel problem, we can predict the mean error due to transient

effects and underactuation by solving a first-order differential equation using the ma-

trix exponential. These approximations are valid as long as the path-following error

(the heading error in particular) is not too large, i.e. the small-angle approximation

applies.

One feature of the prediction of the mean and variance of the state error is that

it can account for the effects of a controller designed around incorrect parameter

estimates. This effect is particularly strong in the feedforward velocity term. This

prediction on its own is not particularly useful because if the model error is known

then the true parameter values are known (and, in that case, it would be possible

to design a controller around the correct values). However, the calculation is the

foundation of the numerical quadrature technique described below.
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6.1.3 Model-Based Collision Probability Predictions

Given the distribution of state errors around the reference trajectory and the loca-

tions of the obstacles, it is not a simple task to evaluate the collision probability. The

continuous dynamic model of the system leads to state correlations through time, so

the collision probability evaluation is an infinite-dimensional conditional probability

problem. We related this problem to the particle absorption problem from statistical

physics, and we solved the problem for the case of driving past a single continuous

obstacle. To deal with multiple obstacles and non-continuous sampling of the error

statistics, it was necessary to make a rough approximation in which the obstacle

locations are sampled at a certain rate. This sampling rate is determined by the

vehicle dynamics, so the collision probability prediction improves as the model esti-

mate improves. While the predicted collision probability for a motion plan does not

exactly match the result of a Monte Carlo simulation, the prediction is a useful tool

for comparing different motion plans.

6.1.4 Model Uncertainty Effects through Numerical Quadra-

ture

Model uncertainty affects the collision probability in a fundamentally different way

than disturbances; instead of being a continuous random process, model uncertainty

makes the collision probability a deterministic function of a random variable. Nu-

merical quadrature techniques are ideal for this type of problem. The output PDF

is approximated by sampling the function (the collision probability) at specific input

points (vectors in the parameter space) and combining the results with a weighting

rule. Each point in the parameter space corresponds to a vector of parameter error.

As described above, the prediction of the mean and variance of the state error can be

calculated for a specific parameter error vector. The net effect of random parameter

error is approximated by the quadrature rule.
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6.1.5 Parameter Convergence Predictions

The learning algorithm used in this thesis is least squares regression, which is a stan-

dard algorithm in parameter estimation. If the sensor noise model and the input data

to the learning algorithm are known in advance, then it is possible to predict the pa-

rameter covariance matrix before any output data is collected. However, this problem

is more complicated when the input data is stochastic rather than deterministic, and

it is even more difficult when the input data has correlations through time. Because

the learning algorithm takes as an input the vehicle’s velocity and control values, and

those states are the output of a system excited by a stochastic process, the learning

data is indeed correlated and stochastic. Using a Taylor series expansion applied

to matrix data, we developed a second-order prediction of the parameter covariance

matrix evolution.

6.1.6 Integrated Motion Planning and Model Learning Al-

gorithm

The various predictions outlined above are combined in the integrated motion plan-

ning and model learning algorithm. The key link is made when the parameter co-

variance at the beginning of each maneuver in the motion plan is used to define the

quadrature point locations (parameter error vectors) used by the numerical quadra-

ture rule. In this way, the state excitation resulting from different maneuvers is

reflected in the parameter convergence, the collision probability, and ultimately the

cost of the motion plan. Active learning strategies appear naturally out of this pro-

cess.

There is a high-level feedback that occurs between missions when the prediction

error is used to adjust the a priori parameter covariance for the next mission. This

feedback corrects for noise model errors and changes to the true parameter values.

Over the course of many missions, the dynamic model and the collision probability

calculations become more accurate.

The integrated motion planning and model learning algorithm can apply to any
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mobile robot system; the only necessary ingredients are a prediction of the parameter

convergence for each motion plan, and a way to relate that parameter convergence to

the planner’s cost function. With those two ingredients, any robotic system can be

made to plan ahead with active learning strategies.

6.2 Future Research

This thesis leads to many avenues of future research. The integrated motion planning

and model learning algorithm is very general, while the calculations of the error

variance and collision probability for the planar holonomic vehicle are very specific.

Consequently, the main thrust of future work should be to extend the calculations to

more general classes of mobile robots. Some specific directions are suggested below.

6.2.1 Extensions to 6 DOF Vehicles, Non-Holonomic Robots,

and Non-Gaussian Disturbances

The overall integrated algorithm is general enough that it can be applied to a wide

range of mobile robots, as discussed below. However, some of the predictions de-

rived in this thesis are limited to 3 DOF planar holonomic vehicles. The coordinate

transformation used in Section 3.6 results in a constant state transition matrix A0

for a planar vehicle, but in 6 DOF the corresponding matrix is not constant. The

calculation of the mean error using the matrix exponential and the error variance

using the Riccati equation require a constant A0 matrix, so these approaches do not

work for the 6 DOF vehicle. This problem must be explored further to find a way to

predict the error statistics analytically for a more general vehicle.

The sampled approach to predicting the collision probability can be applied to a

6 DOF vehicle as well as a planar vehicle, but the calculation of the optimal sample

time would need to be adapted to a 6 DOF vehicle operating in a 3D environment. A

simple approach would be to map the 6 DOF problem to a one-dimension-plus-time

(1D+T) problem, just as the 3 DOF planar holonomic vehicle problem is mapped to

251



a 1D+T problem in Section 3.7.

This work is focused on holonomic vehicles, meaning that there are no velocity-

based constraints. A car-like robot is the most common non-holonomic vehicle: with-

out wheel slip, the turn rate and sideways motion are dependent on one another. An

obvious extension of the work in this thesis would be to extend the predictions to

non-holonomic mobile robots. Such an extension would bring the error distribution

predictions and collision probability predictions to unmanned ground vehicles, rovers,

and other wheeled robots.

Finally, the analytic predictions of the error statistics, the collision probability and

the parameter convergence rely on Gaussian models for the process noise, sensor noise

and uncertainty. A useful extension of this thesis would be to derive predictions for

other noise models, including bounded disturbances and parameter error distributions

with semi-infinite support (a Rayleigh distribution, for example).

6.2.2 Adaptive Sparse Grid Quadrature

For simplicity, the planar holonomic vehicle examples presented in Chapter 5 used

second-order quadrature. The quadrature scheme was defined using a full tensor grid,

meaning that the number of quadrature points in each dimension was the same. For

higher-order quadratures this approach leads to a very large number of quadrature

points, and the speed of the planning algorithm will be slow as a result. If the

full tensor grid is replaced by an adaptive sparse grid, then similar accuracy can be

achieved with fewer quadrature points. The adaptivity places the quadrature points

where they are needed most. However, because the quadrature points are fixed in

a normalized orthogonal space for each motion plan, the adaptivity would have to

take place over the entire motion plan rather than on a maneuver-by-maneuver basis.

In other words, each maneuver requires the same quadrature point locations in the

normalized space.
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6.2.3 Generalize the Integrated Algorithm

As discussed above, the integrated motion planning and model learning algorithm

can be applied to any mobile robot system. The simple 2D robot simulation and

the marine surface vessel are only two examples of the applicability of the algorithm.

For the simple 2D robot the predictions were straightforward, but for the marine

surface vessel and other vehicles with complicated dynamics the predictions are more

difficult to obtain. However, if those predictions are available without resorting to

Monte Carlo simulations then the algorithm can be applied to a wide range of vehicles.

In fact, if precision, repeatability and computational cost are not an issue then Monte

Carlo simulations could indeed be used in the integrated algorithm as well.

6.2.4 Investigate Emergent Practicing Behavior

Section 5.2.8 contained a brief discussion of the conditions under which a robot will

choose to practice maneuvers. In the discretized planning framework used in this

thesis, the practicing behavior is quantized by the discrete maneuvers. If a continuous

planning approach was used instead, then one would expect to observe a continuous

gradient of practicing behavior; in other words, the robot would practice just enough

to exactly minimize the overall cost function. Equation (5.26) offers a glimpse of

what that gradient might look like for general mobile robots.

Next, POMDPs should be applied to the model learning problem to see if similar

practicing behaviors emerge. POMDPs result in a policy, not specific motion plans,

so they may offer new insights into the motivations for practicing. However, it is

possible that the motion planning problem using POMDPs is too computationally

expensive to be practical for this problem.

6.3 Concluding Remarks

The thesis goal stated at the beginning of Chapter 1 has a wide scope, but through

the construction of the integrated motion planning and model learning algorithm and
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the careful derivation of the various components, we have achieved the goal. Using

this algorithm a marine surface vessel or any mobile robot with similar dynamics

can find feasible and safe motion plans through a known environment. If the vehicle

model changes due to damage, wear, or configuration changes, then the planner will

automatically take steps to learn about the new model while executing the next

mission.

After initially defining the speed controller setpoints, the LQR control cost and

an approximate a priori model, the human operator of the system only needs to

provide the robot with maps and destinations. As more and more mobile robots are

used in practical applications, this paradigm will be very useful. An entire fleet of

autonomous vehicles could be programmed in a factory and delivered to customers;

then each vehicle could be configured by the customer for his or her specific appli-

cation, and the vehicle would teach itself about the dynamic model corresponding to

that configuration. In this way, the end user does not need to know anything about

planning algorithms, learning algorithms, or control theory. If designers of robotic

systems continue with this strategy, then autonomous vehicles will gain a greater

acceptance in the field.
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Appendix A

Autonomous Surface Vessel

A.1 General Description

The autonomous surface vessel used in the experiments in this thesis is a 1.25-meter

wooden model of an icebreaking ship outfitted with an electric propulsion system, a

computer system, and digital sensors. The vessel is shown in Figure A-1. The various

subsystems are described in the following sections.

Figure A-1: The autonomous surface vessel used in the experiments. It is a wooden
model of an icebreaker. From left to right, the four masts are (1) the radio modem
used for the ultrasonic positioning system, (2) the ultrasonic beacons, (3, partially
hidden) the computer’s wireless router, and (4) the radio control antenna.
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A.2 Propulsion

The vehicle is propelled by a single azimuthing thruster, a West Marine 2140W bilge

pump motor rated at 410 gallons per hour drawing 1.2 amps at 13.6V. Its propeller

is a 2-bladed plastic model aircraft propeller. The thruster is mounted to the bottom

of a vertical stainless steel post that turns inside a plastic tube passing through the

hull. The unit is shown in Figure A-2.

Figure A-2: The azimuthing thruster.

A.2.1 Speed Controller

The propulsion motor is controlled with a Vantec RFR825 pulse width modulated

(PWM) speed controller. Its input is a standard servo PWM control signal, and the

output is a 12-volt PWM whose duty cycle is proportional to the throttle setting of

the control input. The power source is a 12V lead acid battery that also powers the

CPU and sensors.

A.2.2 Azimuthing Servo

The vertical post of the thruster connects to a Tonegawa SSPS-105 servo through a

chain drive. The servo runs off the 12V lead acid battery that powers the CPU and
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sensors. It has a maximum rotation rate of 95◦/sec with an angular sweep of ±180◦.

The maximum load is 27.5 in-lb. The servo has an internal position controller; a

standard servo PWM control signal sets the reference position and the servo converges

to that position without overshoot. The servo connects to the top of the thruster’s

vertical post with a chain drive.

Figure A-3: The azimuthing servo (left) connected to the vertical post of the thruster
with a chain drive.

A.3 Sensors

A.3.1 Ultrasonic Positioning

The ultrasonic positioning system consists of five Hexamite HX900ASIO modules:

two onshore pilots and three onboard beacons. The pilots simultaneously send a 40

kHz pulse out to the vehicle; as soon as any of the beacons on the vehicle hears one

of the pulses, it sends a pulse back. The total time of flight measured by the pilots

determines the distance from each pilot to the beacon, and the beacon position is

computed by triangulation. The rated maximum range is 16 meters, but the maxi-

mum useful range is around 10 meters. The update rate is around 1.75 Hz. A pair of

radio modems are used to send the position data back to the vehicle.
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The two pilots are connected to each other by a two-meter phone cable. This

cable provides serial communication between the two pilots and power to the second

pilot. Through a Y-adapter the phone cable continues on to a radio modem. The

radio modem’s power supply feeds into the phone cable to power both HX900 units.

The three pilots are connected to the 12V bus of the onboard computer. They are

mounted to a short mast; the three units point towards the stern, 60◦ to port, and

60◦ to starboard. This mast is shown in Figure A-4.

Figure A-4: Three ultrasonic positioning beacons are mounted on a short mast on
the deck of the vessel. They each have an effective angular coverage of 120◦, so these
three units together act as an omnidirectional beacon.

The radio modems are Max Stream 9XStream 900 MHz 9600 baud modules. The

onshore modem is powered by a 12V AC/DC supply and the onboard modem is

powered by the onboard computer’s 12V bus. The onboard modem is mounted in the

bow with its antenna protruding up through the deck.
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A.3.2 Compass

The compass is a PNI Corporation TCM2.6 tilt-compensated magnetometer. It uses

an integrated tilt sensor to correct for the orientation of the magnetometer. The

compass sends the heading angle, the roll angle and the pitch angle to the computer

at 8 Hz. The unit is mounted in the bow of the vessel, far from the magnets in the

propulsion motor.

A.4 Computer System

The computer system is a PC/104 stack with a CPU board, a counter/timer board,

a power board, and a flash disk module. The CPU is a Diamond Systems Athena

PC/104 computer, model ATH660-128, with a 660 MHz VIA Eden processor (equiva-

lent to a Pentium III) and 128 MB of RAM. It has four serial ports and four USB 1.1

ports. There are sixteen 16-bit analog inputs, four 12-bit analog outputs, and twenty-

four digital I/O channels. The system uses a solid state hard drive, the Emphase

FDM4400 2 GB Flash Disk Module. The counter-timer PC/104 board is a Diamond

Systems GPIO-MM. It has 48 digital I/O channels and ten 16-bit counter/timers, five

each on 2 AM9513A-equivalent chips. Power is delivered to the computer from a 7 AH

12V sealed lead-acid battery that connects to a Tri-M Engineering HE104 PC/104

power supply board. The Athena CPU, GPIO-MM, HE-104, breakout boards, and

Emphase Flash Disk Module are housed in a Diamond Systems 5-inch Pandora en-

closure, stacked in that order. The front panel of the enclosure has the computer

connectors and the back panel is perforated to allow air circulation.

A.5 Remote Control

A radio control system is used to drive the boat under manual control and switch

between different modes of operation while the boat is underway. The transmitter is

a 6-channel 75 MHz FM Airtronics VG600, shown in Figure A-5, and the receiver is a

7-channel 75 MHz FM Airtronics 92875. The transmitter has two 2-channel joysticks,
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a two-position switch, and a three-position switch. The left stick controls the throttle,

and the right stick controls the azimuth angle. The three-position switch is used to

select the mode of operation of the vehicle and to start the planner.

Figure A-5: The radio control transmitter used to manually drive the vehicle. The
switch on the upper right corner is used to start the planner and activate automatic
control.

260



A.6 Dynamic Model

The following parameter vector was computed from a series of simple system identi-

fication tests using least squares regression.

βsysid =



a11

b1

a22

a23

b2

a32

a33

b3

fU

fV



=



−0.03716

0.04247

−0.08013

0.006497

0.002850

0.07146

−0.1047

−0.05270

0

0



(A.1)

Using the parameters in βsysid, the dynamic model for the icebreaker is:

ν̇ =


−0.03716 0 0

0 −0.08013 0.006497

0 0.07146 −0.1047


︸ ︷︷ ︸

a(ν)

ν +


0.04247 0

0 0.002850

0 −0.05270


︸ ︷︷ ︸

b

+


0

0

0


︸ ︷︷ ︸
fν(ψ)

+wν

(A.2)

The process noise vector wν is sampled from a zero-mean diagonal multinormal

distribution with a covariance matrix Wν shown below:

Wν =


2× 10−5 0 0

0 8× 10−4 0

0 0 3× 10−3

 (A.3)

The process noise was evaluated by measuring the variance of the surge, sway and

yaw accelerations while the vehicle encountered 2.4-Hz waves with a 2-cm wave height

and a wavelength of 27 cm.
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The learning algorithm must have an estimate of the noise ws that affects the

measurement of the accelerations u̇, v̇ and ṙ. This noise arises more from the relatively

slow sample rates of the sensors than sensor noise itself; three position or orientation

data points are needed for one acceleration measurement using a finite difference

approach, and it is difficult to sync the resulting acceleration measurement to the

input variables of velocity and thrust. Online learning algorithms do not have the

benefit of post-processing and bi-directional smoothing, so we must account for the

measurement lag with a sensor noise model. The noise levels were measured by

collecting position data while driving the vehicle in smooth water, then calculating

the acceleration through numerical differentiation, removing low-frequency effects,

and taking the variance of the resulting data. Using this method, the sensor noise

covariance matrix Ws is:

Ws =


0.0035 0 0

0 0.019 0

0 0 0.11

 (A.4)

A.7 Controller

The vehicle uses an LQR controller to follow the reference trajectory. This controller

has two forms, depending on whether or not position feedback will be applied. For

all forward maneuvers, the state cost matrix is:

Qlqr = diag([1, 1, 1, 1, 2, 1]) (A.5)

For all other maneuvers, the state cost matrix is shown below. There is no cost

on position error, and the cost on velocity errors is increased to keep the overall

bandwidth approximately the same.

Qlqr = diag([2, 2, 2, 0, 0, 0]) (A.6)
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For all maneuvers, the control cost matrix is:

Rlqr =

 0.05 0

0 0.05

 (A.7)

The nominal forward speed for the vehicle is 0.15 m/sec and the nominal yaw rate

is 9◦/sec.
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Appendix B

Numerical Procedures

B.1 Continuous Algebraic Riccati Equation

The continuous algebraic Riccati equation is used to design an LQR controller. For

a square system matrix A, input matrix B, control cost matrix Rlqr, and state cost

matrix Qlqr, the feedback matrix is Rlqr
−1BTP where the symmetric positive-definite

matrix P is the solution to the following equation:

ATP + PA− PBRlqr
−1BTP +Qlqr = 0 (B.1)

This equation can be solved in Matlab with the command P = care(A,B,Qlqr,Rlqr).

The solution is outlined in [2]. First a new matrix M is constructed from the original

matrices:

M =

 A −BRlqr
−1BT

−Qlqr −AT

 (B.2)

Next we find the Schur decomposition of M , that is, the orthogonal matrix U and

the upper triangular matrix S so that S = UTMU . However, the Schur decomposition

is not unique, and we need the particular U and S for which the eigenvalues in the

upper-left quadrant of S are all in the left half-plane. Once the proper decomposition
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is found, P is computed as follows:

U =

 U11 U12

U21 U22


P = U21U11

−1 (B.3)

To find the appropriate U , we note that the Schur decomposition can be found

using the following procedure:

D = V −1MV [V,D] = eig(M)

V = UR [U,R] = qr(V)

D = R−1UTMUR

RDR−1 = UTMU (B.4)

RDR−1 is an upper-triangular matrix and U is orthogonal, so (B.4) represents a

Schur decompositon. The positions of the eigenvalues along the diagonal of RDR−1

depend on their positions in D. However, because D is strictly diagonal, it is easy

to reorder the eigenvalues in D (and the corresponding eigenvectors in V ). The

procedure is listed below. Note that n is the size of A.

[V,D] = eig(M);

Ddiag = diag(D);

[Dsort, isort] = sort(real(Ddiag));

Ddiag = Ddiag(isort);

D = diag(Ddiag);

V = V(:, isort);

[U,R] = qr(V);

U1 = U(1:n, 1:n);

U2 = U(n+1:2*n, 1:n);

P = U2 * inv(U1);

This procedure can be performed in Java because both matrix packages, JAMA
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and Jampack, have QR decomposition routines.

B.2 Discrete-time Lyapunov Equation

The discrete-time Lyapunov equation is used in the correlated prediction of E[R−1]

(4.92) in the parameter convergence problem. The problem is to find the matrix X

that satisfies:

X − AXA = C (B.5)

If A is invertible, then (B.5) can be rewritten as follows:

A−1X −XA = A−1C (B.6)

This form of the equation resembles the non-symmetric continuous algebraic Ric-

cati equation. We can solve the equation be creating an M matrix similar to (B.2):

M =

 A 0

−A−1C A−1

 (B.7)

Once M is constructed, the solution X is computed using the same Schur de-

composition procedure shown in Section B.1. However, this procedure does not work

when A is singular because A−1 does not exist. In the application (4.92) A is often

singular due to the construction of the problem. To deal with this, we first take the

eigenvalue decomposition of A, [V,D] = eig(A), so that A = V DV −1. Plugging this

into the original problem we have the following:

X − V DV −1XVDV −1 = C

V −1XV −DV −1XVD = V −1CV (B.8)

−→ XV −DXVD = CV (B.9)

When A is singular, D only has nonzero values on some of the diagonal elements.

We assume that D (and V ) have been arranged so that all of the nonzero values
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come first on the diagonal and all the zero elements on the diagonal are in the lower

right corner. If there are m nonzero diagonal elements (equivalently, the rank of

A is m), then the second term of (B.9) has zeros everywhere except for an m × m

submatrix in the upper left quadrant. In the other three quadrants, XV = CV . The

upper left quadrant of XV is the solution outlined above for the invertible case if M

is constructed using D(1 : m, 1 : m) instead of A and CV (1 : m, 1 : m) instead of C.

Once all four quadrants of XV have been formed, then the final solution is extracted

using X = V XV V
−1.

B.3 Continuous-time and Discrete-time State Space

Models

The path-following error statistics for the vehicle are computed using a continuous-

time state space model of the vehicle’s dynamics. However, the learning rate predic-

tions use a discrete-time model. The following table shows the conversion of a simple

continuous-time state space model (B.10) to a discrete-time model (B.11) with a sam-

ple time ∆t. The zero-mean Gaussian process noise vector wc has a covariance matrix

Wc. The covariance of wk is W .

ẋ(t) = acx(t) + bc + wc(t) (B.10)

xk+1 = axk + b+ wk (B.11)

Table B.1: Conversion from continuous-time to discrete-time state space system ma-
trices.

Continuous Discrete
ac a = eac∆t

bc b = (a− I)ac
−1bc

Wc W = Wc∆t
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