
Semimajor Axis Estimation Strategies

Jonathan P. How∗

MIT Department of Aeronautics and Astronautics

Kyle T. Alfriend †

Texas A&M Department of Aerospace Engineering

Louis Breger‡ and Megan Mitchell§

MIT Department of Aeronautics and Astronautics

This paper extends previous analysis on the impact of sensing noise for the navigation
and control aspects of formation flying spacecraft. We analyze the use of Carrier-phase
Differential GPS (CDGPS) in relative navigation filters, with a particular focus on the filter
correlation coefficient. This work was motivated by previous publications which suggested
that a “good” navigation filter would have a strong correlation (i.e., coefficient near −1)
to reduce the semimajor axis (SMA) error, and therefore, the overall fuel use. However,
practical experience with CDGPS-based filters has shown this strong correlation seldom
occurs (typical correlations ≈ −0.1), even when the estimation accuracies are very good.
We derive an analytic estimate of the filter correlation coefficient and demonstrate that,
for the process and sensor noises levels expected with CDGPS, the expected value will be
very low. It is also demonstrated that this correlation can be improved by increasing the
time step of the discrete Kalman filter, but since the balance condition is not satisfied, the
SMA error also increases. These observations are verified with several linear simulations.
The combination of these simulations and analysis provide new insights on the crucial role
of the process noise in determining the semimajor axis knowledge.

I. Introduction

In formation flying missions, accurate knowledge of the difference in semimajor axes, or equivalently,
the difference in orbital energy, between the vehicles in the formation is important.4,6, 7 A difference in
semimajor axes means that the two vehicles have different orbital periods and thus they will drift out of
formation unless considerable control effort is applied.3 The output of the CDGPS Kalman filter includes
the relative formation state in a Local Vertical Local Horizontal (LVLH) reference frame. Understanding
the relationship between position and velocity accuracies and semimajor axis accuracy is key to evaluating
the output of this type of filter. While Ref. [4] develops the navigation error analysis from absolute state
relations, the results can be reformulated for the relative case. Ref. [5] analyzed that case in detail, comparing
linear and nonlinear simulation results with analytic predictions. This paper extends the previous work to
consider further modifications to the Carrier-Phase Differential GPS (CDGPS) Kalman filter to determine
their effect on the correlation and balance, which are the two key properties. This includes further details
on the analytic predictions, an analysis of the effect of adding velocity sensing, and an investigation of the
impact of increasing the time step in the discrete Kalman filter.

The relative navigation error equations, shown below, relate semimajor axis error to position and velocity
errors. Note that this discussion is limited to circular reference orbits. The standard deviation of the
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Fig. 1: Contours of constant semimajor axis vs. po-
sition and velocity accuracy. Contours given for 3
levels of correlation.
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Fig. 2: Contours of constant balance (straight lines)
illustrate region where correlation affects SMA accu-
racy. Numbers indicate balance index.

differential semimajor axis estimate, σ∆a, is given by4

σ∆a = 2

√
4σ2

x +
4
n

ρxẏσxσẏ +
1
n2

σ2
ẏ (1)

The parameters σx, σẏ, and ρxẏ are derived from the error covariance matrix for the relative LVLH state
estimate, x̂ = [ x y ẋ ẏ ]T with estimation error x̃ = x̂−x, which is assumed to be unbiased, E[x̃] = 0,
and have a covariance

E[x̃x̃T ] =


σ2

x ρxyσxσy ρxẋσxσẋ ρxẏσxσẏ

ρyxσyσx σ2
y ρyẋσyσẋ ρyẏσyσẏ

ρẋxσẋσx ρẋyσẋσy σ2
ẋ ρẋẏσẋσẏ

ρẏxσẏσx ρẏyσẏσy ρẏẋσẏσẋ σ2
ẏ

 (2)

Note that if the radial position and in-track velocity are linearly correlated (ρxẏ = −1), the expression for
semimajor axis variance from Eq. 1 reduces to

σ∆a = 2

√
4σ2

x −
4
n

σxσẏ +
1
n2

σ2
ẏ = 2

√(
2σ2

x −
1
n

σẏ

)2

(3)

If the position and velocity error are linearly correlated and satisfy

σẏ = 2nσx (4)

then the position and velocity errors cancel and there is no error in the semimajor axis estimate. In other
words, the two requirements for zero semimajor axis variance are:

ρxẏ = −1 and σẏ = 2nσx

which will subsequently be referred to as the correlation and balance requirements.
The relationship between σx, σẏ, ρxẏ, and σ∆a is illustrated in Fig. 1.4 The x and y axes of the plot

are the standard deviations of the position and velocity estimation errors. Contours of constant semimajor
axis standard deviation are shown on the figure. Each contour is associated with a value of ρxẏ in addition
to a level of σ∆a; several values of ρxẏ are shown for each level of σ∆a. The diagonal of peaks indicates
where σẏ = 2nσx. Along the diagonal of peaks, the lines of constant semimajor axis experience a “bump”
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Fig. 3: Contours of constant Q and R are shown on
axes of position and velocity accuracy.
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the LPM contours shown here     

Fig. 4: Contours of constant semimajor axis shown
vs position/velocity accuracy. Contours of constant
Q and R are dotted lines in background.

that increases in size as the correlation tends towards −1. This bump corresponds to increasing cancelation
between the error in x and ẏ that results from increasing correlation in these errors. Essentially, if the
errors have high correlation and the proper balance, the higher error levels can be tolerated with the same
resulting semimajor axis error. Each point on the graph corresponds to a unique set of σx and σẏ. However,
many points on the graph are intersected by more than one contour of constant semimajor axis. It is the
correlation that determines the specific contour on which the system lies. Fig. 2 shows the contours for a
constant value of the semimajor axis error for varying values of correlation. The plot also shows lines of
constant balance index, which is calculated as

bal =
∣∣∣∣1− 2nσx

σẏ

∣∣∣∣ (5)

Clearly bal should be zero when the balance requirement is met. However, the figure shows that if the
balance is slightly off, i.e., bal ≈ 0.5 or bal ≈ | − 1|, then the effects of the correlation are reduced.

II. Linear Planar Model Simulations with Q and R

This section investigates the relationship between the Kalman filter parameters and the resulting estimate
accuracy. These results are based on the premise that the Kalman filter produces the best answer from the
given the models and measurements, and that the balance or correlation between elements of the state vector
estimate are not important. Initial investigations showed that, predictably, the levels of measurement and
process noise have the most influence of the estimate accuracy. These levels are indicators of how well the
sensors and the dynamics are modeled. The relative levels of these noises determines how the filter will weigh
new measurement information against the current state estimate propagated from the dynamics information.
A CDGPS navigation filter has nonlinearities in both the system dynamics and the measurement equations,
and because the set of visible GPS satellites changes, the measurement matrix H will change, and the state
vector length will grow or shrink as the set of estimated carrier biases changes.12 These factors make it
difficult to understand direct relationships between the filter parameters and the navigational accuracies.
Thus, we started with a simplified Linear Planar Model (LPM) to develop insights into the behavior of a
relative navigation filter using CDGPS.5

Meeting the balance and correlation requirements discussed in Section I corresponds to being on the
“bump” in Fig. 1, but the baseline results of the LPM simulation were above this region. This leads to the
question of how changing filter inputs will move the output closer to or further from the bump. To answer
this question, the LPM simulation was run for a range of measurement and process noise levels.

For each unique assignment of Q and R, the resulting error variances for radial position and in-track
velocity, σx and σẏ, were recorded. The corresponding semimajor axis error, σ∆a, was calculated using
Eq. 1. Fig. 3 shows lines of constant Q and R on axes of σx and σẏ. The diagonal of peaks on this graph
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indicates the location of the “bump,” where the balance and correlation requirements are met (which means
σẏ = 2nσx). By moving from one line of constant Q or R to another, one can see how decreasing the process
or measurement noise would change the resulting position and velocity error. However, it is semimajor axis
knowledge, not just position and velocity knowledge, that is important for control performance.

Several graphs demonstrate the relationship between Q, R and σ∆a. First, Fig. 4 is reproduced and
lines of constant semimajor axis error added. The lines for constant Q and R are dimmed for clarity. Note
the lines of constant semimajor axis are horizontal, which corresponds with the horizontal sections of the
semimajor axis contours on Fig. 1. The effect of changes in Q and R on σ∆a can be assessed by looking at the
constant lines for all three values. Because the lines of constant semimajor axis are horizontal, improvement
in σ∆a can only be accomplished by moving in the vertical direction on the graph, which is equivalent to
decreasing σẏ. Whether this requires decreasing Q or R depends on the angles between the horizontal lines
of constant σ∆a and the contours of constant Q and R.

The LPM results shown thus far occupy the region above the σẏ = 2nσx line. Ref. [5] investigated three
questions about the system: (i) What features of the system cause this behavior? (ii) Does this agree with
expected behavior? (iii) What is required to cause the LPM results to move closer to this line, and below
the line?

This was done by modifying the LPM to put more emphasis on the orbital dynamics in the Kalman filter.
This was based on the observation that it is reasonable to expect the correlation between radial position and
in-track velocity will increase only when the estimate depends more on the dynamics model embedded in
the filter. The following extends the previous analysis to consider the effects of other changes to the Kalman
Filter and to expand the analytic results.

III. Discrete Simulations for Varying ∆t
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Fig. 5: Filter correlation, balance, and SMA error for
various discretization time steps ∆t (seconds).

One way to put more emphasis on the dy-
namics model is to reduce the measurement
rate. Prior analysis of the CDGPS filter by
Busse12 used a 1 Hz rate, although much longer
time steps were considered in Ref. [11]. One dif-
ficulty with increasing the propagation time is
that the nonlinearity in the orbit propagation
becomes much more significant, and more so-
phisticated models and propagation algorithms
must be used, especially for the error covari-
ance.14,15 The following investigation of the
effect of varying measurement update rate by
changing the discretization time step uses the
linear model and thus ignores these effects.

To do this, a family of discrete Riccati equa-
tions was solved using Hill’s dynamics at various
discretization times. In each case, the constant
spectral density matrix Qc associated with the
process noise of the continuous dynamics was
converted to the appropriate discrete process
noise Qd using the conversion algorithm in Ref. [13] (DISRW in Chapter 9). The simulation results in Figure 5
were done for several values of σqc = {10−5, 10−6, 5×10−7}m/s3/2 (Qc = σ2

qcI2) and a constant sensing noise
covariance R = (5× 10−3m)2. The plots shows that, as the discretization time step is increased, the corre-
lation coefficient tends to −1. This trend is expected, because longer propagation times will force increased
filter dependence on the equations of motion, translating into increased overall correlationa. However, the
proper position to velocity error balance is not achieved, causing the SMA accuracy to degrade. The plot
clearly shows the role of the process noise Qc in determining the SMA error growth.

aOne caution: the correlation approaches −1 for filter time steps larger than 1000 seconds for which the nonlinearity in the
dynamics will play an important role.
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Comparing this result to Fig. 2, it can be seen that while the balance index is not zero, it is producing
the effect of lowering the overall semimajor axis in combination with the correlation. However, the canceling
effects of correlation and balance are not sufficient to prevent the semimajor axis error from growing rapidly
as the time step is increased. Thus, decreasing the measurement update rate to produce higher correlation
is not a viable strategy for reducing semimajor axis error.

IV. Agreement with Analytical Work

The analysis in this section develops analytical relationships between the process and measurement noise
levels and the errors and correlations. The link between the two is established through the algebraic Riccati
equation. The matrix Riccati equation has no known analytic solution for system more complicated than a
double integrator. However, for a Kalman filter with a time step ∆t ≈ 1 second for a 90 minute orbit, the
coupling between motion in the x and y directions is very weak and the dynamics can be well approximated
as two weakly coupled double integrators.

Start with the planar equations of motion in an LVLH frame about a circular reference orbit with
frequency n

ẍ− 2nẏ − 3n2x = fx (6)
ÿ + 2nẋ = fy (7)

where fx and fy are disturbance accelerations with identical spectral densities σ2
Q. We can write this in state

space form using X = [x, ẋ, y, ẏ]T and dynamics matrices Ah and Bh. When only position measurements
are available, the output matrix is

Hh =

[
1 0 0 0
0 0 1 0

]
(8)

with sensing noise given by σ2
R on each measurement. These dynamics can be transformed to a new

system of equations with the state X̄ = [x, x′, y, y′]T , where (∗)′ = (∗̇)∆t, X̄ = TpX, and Tp =
diag([ 1 ∆t 1 ∆t ]), to yield

x′′ = 2εy′ + 3ε2x + (∆t)2fx (9)
y′′ = −2εx′ + (∆t)2fy (10)

with ε = n∆t. Note that when ε � 1, which is true for this application, the x and y dynamics can essentially
be written as double integrators for which the solution of the Riccati equation is easily found. The combined
dynamics then consist of these two double integrators with coupling terms of order ε and ε2.

A. Correlation with Position Measurements

The dynamics in Eqs. 9 and 10 are written in state space form as

X̄ ′ = ĀX̄ + B̄f (11)

where Ā = ∆t(TP AhT−1
P ), B̄ = ∆t(TpBh), and H̄ = Hh. The differential filter Riccati equation for the

original system (Eqs. 6 and 7) must also be transformed using Tp, and the result is that, at steady state

0 = ĀP + PĀT + B̄QB̄T − PH̄T R−1H̄P (12)

where Q = (σ2
Q/∆t)I2 and R = (σ2

R/∆t)I2, with the factors of 1/∆t resulting from the transformation. To
proceed, the covariance for the transformed state is represented as a Taylor expansion in ε. Substituting the
expressions for P = P0 + εP1 + ε2P2 and Ā = A0 + εA1 + ε2A2 in the Riccati equation and grouping terms
in the same power of ε, it is possible to solve for the expansion of the covariance matrix (Pkxx, Pky′y′ , and
Pkxy′ , k = 0, 1, 2). The Ā matrix in Eq. 11 gives the expansion matrices A0 and A1

A0 =

[
A00 02

02 A00

]
A1 =

[
02 A11

−A11 02

]
(13)

A00 =

[
0 1
0 0

]
A11 =

[
0 0
0 2

]
(14)
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Define x = [ x x′ ]T and y = [ y y′ ]T . Then P0xy = 0 for the solution of the two independent double
integrators. The first-order solution to the Riccati equation is computed using

A =

[
0 1
0 0

]
B =

[
0

∆t2

]
H = [ 1 0 ] (15)

and is found to be

P0xx = P0yy =

[ √
2σ

1
2
Qσ

3
2
R σQσR∆t

σQσR∆t
√

2σ
3
2
Qσ

1
2
R∆t2

]
(16)

Substituting into the Riccati equation and isolating O(ε) terms yields

P0A
T
1 + P1A

T
0 + A0P1 + A1P0 = P0DP1 + P1DP0 (17)

P1(AT
0 −DP0) + (A0 − P0D)P1 = −(P0A

T
1 + A1P0) (18)

where

D =

[
C 02

02 C

]
C =

∆t

σ2
R

[
1 0
0 0

]
(19)

Using knowledge that P0xx = P0yy,

(AT
0 −DP0) =

[
E 02

02 E

]
(20)

where

E =

[
−∆tP0xx

σ2
R

−∆tP0
xx′

σ2
R

1 0

]
(21)

and

(A0 − P0D) =

[
ET 02

02 ET

]
(22)

Defining G as

G = A11P0xx − P0xxAT
11 =

[
02 −2P0xx′

2P0xx′ 02

]
(23)

⇒ (P0A
T
1 + A1P0) =

[
02 G

−G 02

]
(24)

Substituting into the Riccati equation yields[
P1xx P1xy

P1T
xy

P1yy

] [
E 02

02 E

]
+

[
ET 02

02 ET

] [
P1xx P1xy

P1T
xy

P1yy

]
= −

[
02 G

−G 02

]
(25)

which is a system of three equations

P1xxE + ET P1xx =04 (26)

P1yyE + ET P1yy =04 (27)

P1xyE + ET P1xy =−G (28)

The solution to Eqs. 26 and 27 is P1xx = P1yy=0, and Eq. 28 gives

P1xy′ = −2σ2
RP0xx′

∆tP0xx
P1x′y = −P1xy′ P1x′y′ = P1xy = 0 (29)
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Then the correlation coefficient can be found from

ρxẏ =
Pxẏ√
PxxPẏẏ

=
Pxy′/∆t√

PxxPy′y′/∆t2
≈ εP1xy′√

P0xxP0y′y′
(30)

Using the expressions given above, it follows that

ρxẏ ≈ −2(n∆t)σ2
R(σQσR∆t)

√
2∆tσ

1
2
Qσ

3
2
R

(√
2σ

1
2
Qσ

3
2
R

√
2σ

3
2
Qσ

1
2
R∆t2

)−1/2

= −
√

2σ
3− 3

2
R σ

1− 1
2

Q ∆t√
2σ2

Qσ2
R∆t2

(31)

≈ −n

√
σR

σQ
(32)

which, upon substitution in Eq. 1, gives a semimajor axis error of

σ∆a =
2

5
4

n
σ

3
4
Qσ

1
4
R (33)

Eqs. 32 and 33 predict the correlation and semimajor axis error variance that can be expected from a contin-
uous Kalman filter. Since these predictions were developed from a model based on two double integrators,
the results may not immediately map to the full CDGPS problem. However, these equations agree well with
LPM simulations.5

To verify the ranges of σQ and σR for which the equation is valid. The correlation coefficient, ρxẏ, has a
limit of −1, so

− n

√
σR

σQ
≥ −1 ⇒ σQ

σR
≥ n2 (34)

In low Earth orbit (n ≈ 0.001), Eq. 34 implies that σR must be no more than six orders of magnitude larger
than σQ. Many space-rated GPS receivers produce differential carrier phases measurements with millimeters
of error. To achieve ρxẏ = −1, the dynamics environment of the vehicle would have to be modeled to
nanometer-level accuracy, which is not currently possible. For a typical example with σQ = 1× 10−6 m/s3/2

and σR = 5× 10−3 ms1/2, note that

|ρxẏ| ≈ 1× 10−3

√
5× 10−3

1× 10−6
= 0.0707 � 1

This interpretation of the relationship between correlation and process and measurement noises concurs with
conclusions drawn from the LPM examples.

B. Examination of Balance Requirement

One strategy for minimizing the semimajor axis error is to achieve a high correlation and to simultaneously
have a balance of errors given by

σẏ/σx = 2n (35)

For the transformed state described by Eqs. 9 and 10, this requirement is

σy′/σx = 2n∆t (36)

Section A showed that for Hill’s equations, to first order, the standard deviations for in-track velocity and
radial position estimates are

σy′ ≈
√

P0y′y′ = (
√

2σ
3/2
Q σ

1/2
R ∆t2)1/2 (37)

σx =
√

Pxx ≈
√

P0xx = (
√

2σ
1/2
Q σ

3/2
R )1/2 (38)

Substituting into Eq. 36 gives the analytic expression for the balance condition

σy′/σx =

√√√√√
2σ

3/2
Q σ

1/2
R ∆t2

√
2σ

1/2
Q σ

3/2
R

= ∆t

√
σQ

σR
(39)

7 of 9

2nd International Symposium on Formation Flying Missions & Technologies



Using Eq. 36, perfect balance requires that

∆t

√
σQ

σR
= 2n∆t =⇒

√
σR

σQ
=

1
2n

(40)

This expression can be substituted into Eq. 32 to find the correlation that is achieved when the balance is
correct

ρxẏ = −n

√
σR

σQ
= −n

(
1
2n

)
= −0.5 (41)

This analysis suggests that achieving the required balance in this example is incompatible with achieving a
correlation of −1. This indicates that the strategy of minimizing semimajor axis by correlation and balance
is impossible.

C. Correlation with Position and Velocity Measurements

In this example, the system will be augmented with a velocity sensor. The sensor noise and measurement
matrices for the transformed double integrator dynamics now take the form

R =

[
σ2

rx 0
0 σ2

rẋ

]
→ R̄ = R/∆t H = I2 → H̄ =

[
1 0
0 ∆t−1

]
(42)

and the process noise term Q̄ = Q/∆t. Substituting into the Riccati equation and solving for the terms in
the covariance matrix yields

P11 =
√

2σ3/2
rx σ

1/2
Q

[
(1 + 0.5K)1/2

(1 + K)

]
P22 =

√
2σ1/2

rx σ
3/2
Q ∆t2

[
(1 + 0.5K)1/2

(1 + K)

]
(43)

P12 =
σrxσQ∆t

(1 + K)

where K =
σQσrx

σ2
rẋ

Substituting Eq. 43 into the Hill’s expansion used in Section A yields a matrix equation in the same form
as Eq. 25, however, the matrix D is now redefined as

D =

[
C̄ 02

02 C̄

]
C̄ =

[
∆t/σ2

rx 0
0 1/(σ2

rẋ∆t)

]
(44)

This set of matrix equations once again indicates that P1xx = P1yy = 02. Solving the system of matrix
equations yields

P1xy = P1x′y′ = 02 (45)

P1xy′ = −P1x′y = −2
σ2

rxP0xx′

∆tP0xx

(
1

1 + K

)
(46)

Solving for the correlation coefficient, ρxẏ, gives

ρxẏ ≈
εP1xy′

(P0xxP0y′y′ )
1
2
≈ −n

√
σrx

σQ

(
1

1 + 0.5K

)
(47)

From Eq. 47, it can be seen that as the velocity measurement becomes more accurate (K increases), the
correlation magnitude is reduced. This is consistent with the observation that the filter makes more use
of dynamics when there are fewer measurements. Substituting this value for ρxẏ into the expression for
semimajor axis standard deviation yields

σ∆a =
2

5
4

n
σ

1
4
rxσ

3
4
Q

[
σQσrx + 4σ2

Rn2 + 2σ2
rẋ

σQσrx + σ2
Rn2 + 2σ2

rẋ

]1/2
[

(1 + 0.5K)
1
4

(1 + K)
1
2

] [
1 + 0.5

(
nσrx

σrẋ

)2 1
1 + 0.5K

] 1
2

(48)
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V. Conclusions

This paper was motivated by the desire to 1) determine what metrics should be used to characterize the
filter performance as “good,” and 2) explore what parameters in the Kalman filter have the most impact on
the performance of the navigation system. Closed loop control performance, which the navigation system
exists to support, is dependent on accurate knowledge of the semimajor axis. Analytical work showed that a
Kalman filter will not be able to produce the requisite correlation without a process noise level significantly
lower than is likely to be possible. Further work showed that the balance and correlation requirements are
incompatible. An examination of the effects of velocity measurements demonstrated that such measurements
tend to reduce the correlation magnitude, making a ρ → −1 even more difficult to achieve. Increasing the
time step of the discrete filter implementation tended to strengthen the correlation, but because the balance
property was not simultaneously satisfied, the SMA accuracy also degraded.
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