2,328 research outputs found

    Multi-GPU maximum entropy image synthesis for radio astronomy

    Full text link
    The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 minutes, instead of 2.5 days that takes a sequential version on CPU.Comment: 11 pages, 13 figure

    Swimmer-tracer scattering at low Reynolds number

    Full text link
    Understanding the stochastic dynamics of tracer particles in active fluids is important for identifying the physical properties of flow generating objects such as colloids, bacteria or algae. Here, we study both analytically and numerically the scattering of a tracer particle in different types of time-dependent, hydrodynamic flow fields. Specifically, we compare the tracer motion induced by an externally driven colloid with the one generated by various self-motile, multi-sphere swimmers. Our results suggest that force-free swimmers generically induce loop-shaped tracer trajectories. The specific topological structure of these loops is determined by the hydrodynamic properties of the microswimmer. Quantitative estimates for typical experimental conditions imply that the loops survive on average even if Brownian motion effects are taken into account.Comment: 14 pages, to appear in Soft Matte

    GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*

    Full text link
    Synthesis imaging of the black hole in the center of the Milky Way, Sgr A*, with the Event Horizon Telescope (EHT) rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence GRMHD simulations of Sgr A*. We employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented perpendicular to the spin axis of the black hole typically decrease smoothly over baseline lengths that are comparable to those of the EHT. On the other hand, the visibility amplitudes for baselines oriented parallel to the spin axis show significant structure with one or more minima. This suggests that fitting EHT observations with geometric models will lead to reasonably accurate determination of the orientation of the black-hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes depend primarily on the width and asymmetry of the crescent-like images and are highly variable. In the jet-dominated models, the locations of the minima are determined by the separation of the two image components but their depths depend primarily on the relative brightness of the two components and are also variable. This suggests that using time-independent models to infer additional black-hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.Comment: replaced to match published version, new figure added, results unchange

    Variability in GRMHD simulations of Sgr A∗^*: Implications for EHT closure phase observations

    Full text link
    The observable quantities that carry the most information regarding the structures of the images of black holes in the interferometric observations with the Event Horizon Telescope are the closure phases along different baseline triangles. We use long time span, high cadence, GRMHD+radiative transfer models of Sgr A∗^* to investigate the expected variability of closure phases in such observations. We find that, in general, closure phases along small baseline triangles show little variability, except in the cases when one of the triangle vertices crosses one of a small regions of low visibility amplitude. The closure phase variability increases with the size of the baseline triangle, as larger baselines probe the small-scale structures of the images, which are highly variable. On average, the jet-dominated MAD models show less closure phase variability than the disk-dominated SANE models, even in the large baseline triangles, because the images from the latter are more sensitive to the turbulence in the accretion flow. Our results suggest that image reconstruction techniques need to explicitly take into account the closure phase variability, especially if the quality and quantity of data allow for a detailed characterization of the nature of variability. This also implies that, if image reconstruction techniques that rely on the assumption of a static image are utilized, regions of the u−vu-v space that show a high level of variability will need to be identified and excised.Comment: submitted to apj. 12 pages, 12 figure

    Efficient Many-Light Rendering of Scenes with Participating Media

    Get PDF
    We present several approaches based on virtual lights that aim at capturing the light transport without compromising quality, and while preserving the elegance and efficiency of many-light rendering. By reformulating the integration scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive, high-quality lighting on surfaces, and one for handling scenes with participating media

    Real-Time Volumetric Shadows using 1D Min-Max Mipmaps

    Get PDF
    Light scattering in a participating medium is responsible for several important effects we see in the natural world. In the presence of occluders, computing single scattering requires integrating the illumination scattered towards the eye along the camera ray, modulated by the visibility towards the light at each point. Unfortunately, incorporating volumetric shadows into this integral, while maintaining real-time performance, remains challenging. In this paper we present a new real-time algorithm for computing volumetric shadows in single-scattering media on the GPU. This computation requires evaluating the scattering integral over the intersections of camera rays with the shadow map, expressed as a 2D height field. We observe that by applying epipolar rectification to the shadow map, each camera ray only travels through a single row of the shadow map (an epipolar slice), which allows us to find the visible segments by considering only 1D height fields. At the core of our algorithm is the use of an acceleration structure (a 1D minmax mipmap) which allows us to quickly find the lit segments for all pixels in an epipolar slice in parallel. The simplicity of this data structure and its traversal allows for efficient implementation using only pixel shaders on the GPU
    • …
    corecore