8 research outputs found

    Sequent and Hypersequent Calculi for Abelian and Lukasiewicz Logics

    Full text link
    We present two embeddings of infinite-valued Lukasiewicz logic L into Meyer and Slaney's abelian logic A, the logic of lattice-ordered abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for L. These include: hypersequent calculi for A and L and terminating versions of these calculi; labelled single sequent calculi for A and L of complexity co-NP; unlabelled single sequent calculi for A and L.Comment: 35 pages, 1 figur

    From Semantic Games to Provability: The Case of Gödel Logic

    Get PDF
    We present a semantic game for Gödel logic and its extensions, where the players’ interaction stepwise reduces arbitrary claims about the relative order of truth degrees of complex formulas to atomic ones. The paper builds on a previously developed game for Gödel logic with projection operator in FermĂŒller et al. (in: M.-J. Lesot, S. Vieira, M.Z. Reformat, J.P. Carvalho, A. Wilbik, B. Bouchon-Meunier, and R.R. Yager, (eds.), Information processing and management of uncertainty in knowledge-based systems, Springer, Cham, 2020, pp. 257–270). This game is extended to cover Gödel logic with involutive negations and constants, and then lifted to a provability game using the concept of disjunctive strategies. Winning strategies in the provability game, with and without constants and involutive negations, turn out to correspond to analytic proofs in a version of SeqGZL (A. Ciabattoni, and T. Vetterlein, Fuzzy Sets and Systems 161(14):1941–1958, 2010) and in a sequent-of-relations calculus (M. Baaz, and Ch.G. FermĂŒller, in: N.V. Murray, (ed.), Automated reasoning with analytic tableaux and related methods, Springer, Berlin, 1999, pp. 36–51) respectively

    Sequent and hypersequent calculi for abelian and Ƃukasiewicz logics

    Get PDF
    We present two embeddings of Ɓukasiewicz logicƁinto Meyer and Slaney's Abelian logicA, the logic of lattice-ordered Abelian groups. We give new analytic proof systems forAand use the embeddings to derive corresponding systems forƁ. These include hypersequent calculi, terminating hypersequent calculi, co-NP labeled sequent calculi, and unlabeled sequent calculi

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page

    Goal-directed proof theory

    Get PDF
    This report is the draft of a book about goal directed proof theoretical formulations of non-classical logics. It evolved from a response to the existence of two camps in the applied logic (computer science/artificial intelligence) community. There are those members who believe that the new non-classical logics are the most important ones for applications and that classical logic itself is now no longer the main workhorse of applied logic, and there are those who maintain that classical logic is the only logic worth considering and that within classical logic the Horn clause fragment is the most important one. The book presents a uniform Prolog-like formulation of the landscape of classical and non-classical logics, done in such away that the distinctions and movements from one logic to another seem simple and natural; and within it classical logic becomes just one among many. This should please the non-classical logic camp. It will also please the classical logic camp since the goal directed formulation makes it all look like an algorithmic extension of Logic Programming. The approach also seems to provide very good compuational complexity bounds across its landscape
    corecore