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Abstract

We present two embeddings of infinite-valued  Lukasiewicz logic  L into
Meyer and Slaney’s abelian logic A, the logic of lattice-ordered abelian
groups. We give new analytic proof systems for A and use the embed-
dings to derive corresponding systems for  L. These include: hypersequent
calculi for A and  L and terminating versions of these calculi; labelled sin-
gle sequent calculi for A and  L of complexity co-NP; unlabelled single
sequent calculi for A and  L.

1 Introduction

In [24] Hájek classifies truth-functional fuzzy logics as logics whose conjunc-
tion and implication functions are interpreted via continuous t-norms and their
residua. Since each continuous t-norm may be constructed from the  Lukasiewicz,
Gödel and Product t-norms, the resulting logics,  Lukasiewicz logic  L, Gödel
logic G and Product logic P respectively, are fundamental for this classifica-
tion. Also important is Hájek’s Basic Logic BL [24] which was proved in [16]
to characterise validity in logics based on continuous t-norms. In a similar vein
Godo and Esteva [20] have defined the logics MTL (Monoidal T-norm based
Logic) and IMTL (Involutive Monoidal T-norm based Logic) which turn out to
characterise validity in left-continuous t-norm based logics and left-continuous
t-norm with involutive negation based logics respectively. Underlying all the
above systems is Höhle’s monoidal logic ML [25] which provides a common ba-
sis for both t-norm logics and logics based on Heyting algebras. A diagram of
the relationships between these logics is given in Figure 1 with arrows signifying
inclusions between logics.

Systematic accounts of Hilbert-style axiomatisations and algebraic seman-
tics for fuzzy logics have been presented eg in [22, 24] but no comprehensive
Gentzen-style sequent calculus approach such as that given for substructural
logics has been forthcoming. Progress for each logic has varied.  Lukasiewicz
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Monoidal Logic (ML)

Basic Logic (BL)

Product Logic (P)

Affine Linear Logic (ALL)

Gödel Logic (G)  Lukasiewicz Logic ( L)

Involutive MTL (IMTL)

Intuitionistic Logic (I) Monoidal T-Norm Logic (MTL)

Figure 1: Relationships between fuzzy logics

logic  L, despite having been explored thoroughly from a semantic perspective
(see eg [17]), has been given only calculi that either fail to be analytic (ie cut-free)
[39, 15] or internal (ie avoiding non-logical calculations) [23, 35, 36]. A notable
exception is the work of Aguzzoli, Ciabattoni and Gerla [1, 2] who give cut-free
internal calculi for  L, G and P; their approach however is based on validity in
finite-valued logics with sequents consisting of components representing sets of
truth values, and therefore does not integrate well with more standard Gentzen
presentations. For Gödel logic G the proof-theoretic picture is more healthy;
there are several (rather complicated) single sequent calculi [42, 4, 19, 8], a cal-
culus employing sequents of relations [10], and also a very natural hypersequent
formulation [7]. Hypersequent calculi, introduced independently by Avron in [5]
and Pottinger in [38] as a generalisation of the usual sequent calculi, have also
been given for MTL and other variants of Urquhart’s C logic [43] in [9, 14]. A
first semantics-based calculus for Hájek’s Basic Logic BL has been presented in
[33].

The approach taken in this work towards developing a proof theory of fuzzy
logics is new. It results from the identification of fuzzy logics with fragments
of comparative logics. Intuitively, a fuzzy logic with truth values between 0
and 1 may be viewed as being part of an “extended” logic with truth values
between −∞ and +∞. These extended logics are called comparative logics1

here to distinguish them from fuzzy logics with truth values in [0, 1]. The
idea proposed in this paper is that (at least in some cases) comparative logics
are more natural to work with for proof-theoretic purposes. Developing proof
systems for comparative logics then allows us to exploit our translations to
obtain proof systems for their fragments, the fuzzy logics. In fact this mirrors
the strategy of systems with extra relation symbols or labels; calculations are
performed in an extended language to find answers for queries in the original
language. The novelty here is that this approach is followed at the logical level
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rather than the metalogical level.
We apply this approach here to  Lukasiewicz infinite-valued logic  L. For

 L the appropriate comparative logic is abelian logic A, the logic of lattice-
ordered abelian groups with characteristic models in the integers, rationals and
reals. A was introduced and motivated independently by Meyer and Slaney
[31] and Casari [11] as a relevance and comparative logic respectively. In [31]
the so-called enthymematic fragment of A was proved to coincide exactly with
 L+, the positive part of  L and this result is extended here to identify the
material fragment of A with the whole of  L. A further, perhaps more natural,
translation from  L into A is also provided. By introducing analytic sequent and
hypersequent calculi for A (the first proof systems for this logic) we are then
able to derive the first Gentzen-style analytic sequent and hypersequent calculi
for  L.

We proceed as follows. In section 2 we introduce  Lukasiewicz logic  L and
Abelian logic A presenting some important and relevant results. In section 3 we
relate the logics via two embeddings of  L into A. We then turn our attention
to proof theory. In section 4 we present hypersequent calculi for A and  L and
in section 5 we introduce terminating versions of these calculi. In section 6 we
introduce labelled calculi for A and  L which we show to be co-NP. Finally in
section 7 we present unlabelled single sequent calculi for A and  L.2

2 Background

In this section we first present some algebraic preliminaries and then introduce
 Lukasiewicz infinite-valued logic  L and abelian logic A.

2.1 Preliminaries

The work reported here is concerned with propositional logics; the language used
is built inductively from a denumerable set of propositional variables p1, p2, . . .

and a finite set of connectives.

Definition 1 (Con) Con = {∧,∨,⊕,+,⊃,→,⇒,↔,¬,∼, t,⊥}

Definition 2 (For) For is built inductively as follows: (1) p1, p2, . . . ∈ For,
(2) if φ1, . . . , φm ∈ For then ∗(φ1, . . . , φm) ∈ For where ∗ ∈ Con, arity(∗) = m.

Definition 3 (A-valuation) Given an algebra A = 〈L,O〉 with carrier L 6= ∅
and operations {t} ⊆ O ⊆ Con, an A-valuation is a function v : For → L such
that for ∗ ∈ Con, arity(∗) = m, v(∗(φ1, . . . , φm)) = ∗(v(φ1), . . . , v(φm)).

1The expression comparative logic was first used by Casari in [11, 12] to characterise a set
of systems formalising ideas expressed by Aristotle about comparisons of majority, minority
and equality. There is considerable overlap between Casari’s comparative logics and those
presented here but whereas Casari regards fuzzy logics such as  Lukasiewicz infinite-valued
logic as particular comparative logics, this work instead presents fuzzy logics as fragments of
comparative logics.

2Some of the results presented in sections 6 and 7 have already appeared in [29].
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Definition 4 (Validity) φ ∈ For is valid in an algebra A iff v(φ) ≥ t for all
A-valuations v. φ is X-valid (written |=X φ) iff φ is valid in all algebras of the
class X.

2.2  Lukasiewicz Logic

 Lukasiewicz infinite-valued logic  L was introduced by  Lukasiewicz in 1930 [27].
Good references for historical details and an overview of the main results are
[28] and [43]. An in-depth algebraic treatment of  L is provided by [17] and the
fuzzy logic perspective is described in [24].

Definition 5 ( Lukasiewicz Infinite-Valued Logic,  L) ⊃ and ⊥ are primi-
tive.  L has the rule (mp) and the following definitions and axioms:

D∼ ∼A = A ⊃ ⊥ D∨ A ∨B = (A ⊃ B) ⊃ B

Dt t =∼⊥ D⊕ A⊕B =∼A ⊃ B

 L1 A ⊃ (B ⊃ A)  L3 ((A ⊃ B) ⊃ B) ⊃ ((B ⊃ A) ⊃ A)
 L2 (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))  L4 ((A ⊃ ⊥) ⊃ (B ⊃ ⊥)) ⊃ (B ⊃ A)

(mp) A ⊃ B,A

B

The following axiomatisation of positive  Lukasiewicz logic was given by Rose
and Rosser in [40].

Definition 6 (Positive  Lukasiewicz Infinite-Valued Logic,  L+) ⊇, ∨, ∧
and t are primitive.  L+ has the rule (mp) and the following axioms:

 L+1 (D ⊇ B) ⊇ ((D ⊇ C) ⊇ (D ⊇ (B ∧ C)))  L+6 (B ⊇ C) ∨ (C ⊇ B)
 L+2 B ⊇ (C ⊇ B)  L+7 (B ∧ C) ⊇ B

 L+3 (B ⊇ C) ⊇ ((C ⊇ D) ⊇ (B ⊇ D))  L+8 (B ∧ C) ⊇ C

 L+4 ((B ⊇ C) ⊇ C) ⊇ (B ∨ C)  L+9 t

 L+5 (B ∨ C) ⊇ (C ∨B)

Algebraic structures for  L were introduced by Chang in 1958 [13].

Definition 7 (MV-algebra) An MV-algebra is an algebra 〈A,⊕,∼,⊥〉 with
a binary operation ⊕, a unary operation ∼ and a constant ⊥, satisfying the
following equations:

mv1 ⊥⊕ a = a mv2 a⊕ b = b⊕ a

mv3 (a⊕ b) ⊕ c = a⊕ (b⊕ c) mv4 ∼∼a = a

mv5 a⊕ ∼⊥ =∼⊥ mv6 ∼(∼a⊕ b) ⊕ b =∼(∼b⊕ a) ⊕ a

We also define: a ⊃ b =∼a⊕ b, t =∼⊥, a ∨ b =∼(∼a∧ ∼b).

Let [0, 1]R be the real unit interval and define a⊕ b = min(1, a+ b), ∼a = 1− a

and ⊥ = 0. We have that [0, 1] L = 〈[0, 1],⊕,∼,⊥〉 is an MV-algebra with
a ⊃ b = min(1, 1 + b− a). In fact [0, 1] L is characteristic for MV-algebras.
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Theorem 8 (Chang 1958 [13]) The following are equivalent: (1) φ is a the-
orem of  L. (2) φ is valid in all MV-algebras. (3) φ is valid in [0, 1] L.

It will be convenient for us to consider the (also characteristic) MV-algebra
[−1, 0] L = 〈[−1, 0]R,⊕,∼,⊥〉 where a⊕ b = min(0, a+ b+ 1), ∼a = −1− a and
⊥ = −1 with a ⊃ b = min(0, b− a).

Finally we mention the following complexity result for  L.

Theorem 9 (Mundici 1987 [34]) The tautology problem for  L is co-NP-complete.

2.3 Abelian Logic

Abelian logic A was introduced and investigated by Meyer and Slaney [31, 32] as
a logic of relevance, obtained from Anderson and Belnap’s relevant logic R (see
[3] for details) by rejecting the contraction axiom ((A→ (A→ B)) → (A→ B)
and liberalising the negation axiom ((A → ⊥) → ⊥) → A to ((A → B) →
B) → A. A has also been motivated independently by Casari [12] as a logic
of comparison formalising comparisons of majority, minority and equality in
natural language. More recently Galli et al. [21] have derived A as a logic
of equilibrium for arguments. Finally we note that a sequent calculus for the
intensional fragment of A (the logic of abelian groups) has been provided by
Paoli in [37].

We begin here by giving Meyer and Slaney’s axiomatisation of A.

Definition 10 (Abelian Logic, A) →,+,∧,∨ and t are primitive. A has the
following definitions, axioms and rules:

D↔ A↔ B = (A→ B) ∧ (B → A) D¬ ¬A = A→ t

A1 ((A ∨B) → C) ↔ ((A→ C) ∧ (B → C)) A6 A↔ (t→ A)
A2 ((A+B) → C) ↔ (A→ (B → C)) A7 (A ∧B) → A

A3 (A→ B) → ((B → C) → (A→ C)) A8 (A ∧B) → B

A4 ((A→ B) ∧ (A→ C)) → (A→ (B ∧ C)) A9 A→ ((A→ B) → B)
A5 (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C)) A10 ((A→ B) → B) → A

(mp) A→ B,A

B

(∧I) A,B

A ∧B

The appropriate class of algebras for A are lattice-ordered abelian groups:

Definition 11 (Lattice-Ordered Abelian Group (Abelian L-Group)) An
abelian l-group is an algebra 〈G,+,∨,¬, t〉 with binary operations + and ∨, a
unary operation ¬ and a constant t, satisfying the following equations:

a1 t+ a = a a5 a ∨ b = b ∨ a
a2 a+ b = b+ a a6 (a ∨ b) ∨ c = a ∨ (b ∨ c)
a3 (a+ b) + c = a+ (b+ c) a7 a = a ∨ a
a4 a+ ¬a = t a8 a+ (b ∨ c) = (a+ b) ∨ (a+ c)

In addition, we define: a ∧ b = ¬(¬a ∨ ¬b), a → b = ¬a + b, a ↔ b = (a →
b) ∧ (b→ a) and a ≤ b iff a ∨ b = b.
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Well known examples of abelian l-groups are the integers Z = 〈Z,+,max,−, 0〉,
the rationals Q = 〈Q,+,max,−, 0〉 and the reals R = 〈R,+,max,−, 0〉. In fact
any of these serves as a characteristic model for A.

Theorem 12 (Characterisation Theorem for A) The following are equiv-
alent: (1) φ is a theorem of A. (2) φ is valid in all abelian l-groups. (3) φ is
valid in Z. (4) φ is valid in Q. (5) φ is valid in R.

Proof. The equivalence of (2)-(5) is well known from pure mathematics. The
equivalence of (1) and (2) is proved by Meyer and Slaney in [31]; also given
there is a more logic minded proof of the equivalence of (2) and (3). �

Notice that in A we have a + b = ¬(¬a + ¬b) ie intensional disjunction and
intensional conjunction are exactly the same thing. Similarly we have that
t = ¬t so truth and canonical falsity are also identical.

The complexity of the tautology problem for A follows directly from the
following theorem.

Theorem 13 (Weispfenning [44]) The word problem for abelian l-groups is
co-NP-complete.

Corollary 14 The tautology problem for A is co-NP-complete.

3 Relating A and  L

The use of abelian l-groups in the theory of  Lukasiewicz infinite-valued logic is
not new. Chang’s original completeness proof for  L involved extending MV-
algebras to abelian l-groups and more recently Cignoli et al. have proved that
MV-algebras and abelian l-groups are categorically equivalent [17]. Ordered
abelian groups are also fundamental to the Kripke-style semantics for  L provided
independently by Scott [41] and Urquhart [43]. It is not surprising therefore
that the logic of abelian l-groups and  L should be related in some way. Here we
give both an embedding of  L into A which mirrors relationships between other
logics investigated by Meyer and co-workers, and also a translation from  L into
A which will prove useful later in deriving calculi for  L.

We begin by defining two new implications for A.

Definition 15 (Enthymematic Implication (⊇)) A ⊇ B = (t ∧A) → B

Definition 16 (Material Implication (⊃)) A ⊃ B = (t ∧A) → (⊥ ∨B)

In [30] Meyer shows that fragments obtained using these new implications fre-
quently correspond to other well-known logics; for example the material and
enthymematic fragments of R are classical logic and positive intuitionistic logic
respectively. Of particular interest here is the fact, demonstrated by Dunn and
Meyer in [18], that the material fragment of Gödel logic G is the relevance logic
RM. We now investigate the corresponding fragments for A, noting that since
A has no falsity constant, ⊥ is treated as a propositional variable.
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Definition 17 (Enthymematic Fragment of A, AE) AE consists of the the-
orems of A in the language built up from propositional variables, t, ∧, ∨ and
⊇.

Definition 18 (Material Fragment of A, AM) AM consists of the theorems
of A in the language built up from propositional variables, ⊥ and ⊃.

Meyer and Slaney in [31] show that the enythmematic fragment of A is  L+,
the positive part of  Lukasiewicz logic. We generalise this here to identify the
material fragment of A with the whole of  L.

Theorem 19 (Meyer and Slaney [31])  L+ = AE

Theorem 20  L = AM

Proof.

 L ⊆ AM. It is straightforward if laborious to check that all the (translated)
axioms of  L are valid in Q so it remains to show that (mp) is admissible.
Consider AM formulae, φ and ψ where |=A φ ⊃ ψ and |=A φ. Since |=A φ

we have φ ≥ t, whence φ ⊃ ψ = (φ ∧ t) → (ψ ∨ ⊥) = ψ ∨ ⊥ ≥ t. If ψ is a
propositional variable then by taking a valuation v(ψ) = v(⊥) = −1 in Q we
have v(φ ⊃ ψ) < t, a contradiction. So either ψ = t or ψ = ψ1 ⊃ ψ2. If the
former then clearly |=A ψ, if the latter then we have ψ = (ψ1 ∧ t) → (ψ2 ∨⊥) ≥
ψ2 ∨⊥ ≥ ⊥ whence ψ ∨ ⊥ = ψ ≥ t and |=A ψ as required.

AM ⊆  L. We show that if 6|= L φ then 6|=A φ. Given a valuation v for [−1, 0] L
such that v(φ) < 0, define a valuation v′ in Q as follows: v′(⊥) = −1, v′(p) =
v(p) for all propositional variables p. We claim that for all formulae ψ: (1) if
v(ψ) < 0 then v′(ψ) = v(ψ), (2) if v(ψ) = 0 then v′(ψ) ≥ 0. We would then have
v′(φ) = v(φ) < 0 as required. We prove the claim by induction on the complexity
of ψ. The base case holds by stipulation. If ψ = ψ1 ⊃ ψ2 = (t ∧ ψ1) →
(⊥ ∨ ψ2), then if v(ψ1) > v(ψ2) we have v(ψ) = v(ψ2) − v(ψ1). v(ψ2) < 0 so
v′(⊥ ∨ ψ2) = v(ψ2). Also v′(t ∧ ψ1) = v(ψ1), whence v′(ψ) = v(ψ2) − v(ψ1).
If v(ψ1) ≤ v(ψ2) then if v(ψ2) = 0 we have v′(⊥ ∨ ψ2) ≥ 0 by the induction
hypothesis and v′(t ∧ ψ1) ≤ 0 by definition, whence we have v′(ψ) ≥ 0; if
v(ψ2) < 0 then v(ψ1) < 0 and we have v′(ψ1) = v(ψ1) and v′(ψ2) = v(ψ2)
whence v′(ψ) = v(ψ2) − v(ψ1) ≤ 0 as required. �

We now give a less general but possibly more intuitive translation of  L into
A. The idea is to restrict the valuations of atoms in A to lie between t and
an arbitary fixed propositional variable q⊥ that acts as falsity.  Lukasiewicz
implication (replacing ⊃ by ⇒ from now on) is defined in A as follows:

Definition 21 (Positive Implication ⇒) A⇒ B = (A→ B) ∧ t

Before continuing we note that ∧ and ∨ can be interpreted using only ⇒ and
the intensional connectives:

Proposition 22 (i) a ∧ b = a+ (a⇒ b) (ii) a ∨ b = (b⇒ a) → a

7



Proof. (i) a + (a ⇒ b) = a + (t ∧ (a → b)) = (a + t) ∧ (a + (a → b)) = a ∧ b
(ii) (b ⇒ a) → a = ¬((t ∧ (b → a)) + ¬a) = ¬((t + ¬a) ∧ ((b → a) + ¬a)) =
¬(¬a ∧ (¬(b + ¬a) + ¬a)) = ¬(¬a ∧ (¬b + (a+ ¬a))) = ¬(¬a ∧ ¬b) = a ∨ b. �

Our translation of  L into A is given below:

Definition 23 (Translation *) p∗ = (p ∨ q⊥) ∧ t, ⊥∗ = q⊥ ∧ t, (A ⇒ B)∗ =
t ∧ (A∗ → B∗) where q⊥ is an arbitary fixed propositional variable of A.

Theorem 24 |= L φ iff |=A φ∗.

Proof.

For the left-to-right direction suppose that v(φ∗) < 0 in Q. If v(q⊥) ≥ 0
then it is easy to prove that v(φ∗) = 0 which is a contradiction. Hence we
have that v(q⊥) < 0 and in fact we can assume WLOG that v(q⊥) = −1
(multiplying our valuation v if necessary). We now define a valuation v′ for
[−1, 0] L where v′(p) = v(p∗). We prove inductively that for all  L-formulae
ψ, v′(ψ) = v(ψ∗) which gives us v′(φ) = v(φ∗) < 0 in [−1, 0] L as required.
The base cases for propositional variables and ⊥ follow by definition, for ⇒ we
have that v′(ψ1 ⇒ ψ2) = min(0, v′(ψ2) − v′(ψ1)) = min(0, v(ψ∗

2) − v(ψ∗
1)) =

v(t ∧ (ψ∗
1 → ψ∗

2)) = v((ψ1 ⇒ ψ2)∗) and we are done.

For the right-to-left direction suppose that v(φ) < 0 in [−1, 0] L, we define a
valuation v′ in Q such that v′(p) = v(p) and v′(q⊥) = −1 and prove inductively
that v′(ψ∗) = v(ψ) for all  L-formulae ψ, whence v′(φ) < 0 in Q as required.
The base cases follow immediately by definition and for ⇒ we have v′((ψ1 ⇒
ψ2)∗) = v′(t∧ (ψ∗

1 → ψ∗
2)) = min(0, v′(ψ∗

2)− v′(ψ∗
1)) = min(0, v(ψ2)− v(ψ1)) =

v(ψ1 ⇒ ψ2) and we are done. �

4 Hypersequent Calculi

Hypersequent calculi were introduced independently by Avron [5] and Pottinger
[38] for logics with a reasonably simple semantics lacking a correspondingly sim-
ple sequent calculus. Hypersequents consist of multiple components (sequents)
interpreted disjunctively and hypersequent rules include, in addition to single
sequent rules, external structural rules that can operate on more than one com-
ponent at a time. Hypersequent calculi are particularly suitable for logics obey-
ing prelinearity (ie (A → B) ∨ (B → A)) since the multiple components of the
hypersequent allow several alternative hypotheses to be processed in parallel.
All t-norm based logics have prelinearity and this suggests that the hypersequent
formalism could be a more suitable framework for a systematic proof theory of
fuzzy logics than the usual Gentzen single-sided sequents; indeed natural and
intuitive hypersequent calculi have already been provided for Gödel logic G [6]
and MTL [9, 14].

Definition 25 (Hypersequent) A component is an ordered pair of multisets
of formulae written Γ ⊢ ∆ ie a sequent; a hypersequent is a multiset of compo-
nents written Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n.

8



Note that we choose components to consist of pairs of multisets of formulae
and hypersequents to consist of multisets of components and therefore avoid
the need in our calculi for internal and external exchange rules. In what follows
all set terminology ∪, ∩, {} and so on will refer to multisets. We will also make
use of the following definitions.

Definition 26 (Formula Complexity cp(A)) cp(q) = 0 for q atomic,
cp(∗(A1, . . . , Am)) = 1 + Σm

i=1cp(Ai) where ∗ ∈ Con, arity(∗) = m.

Definition 27 (Hypersequent Multiset Complexity mc(G)) mc(Γ1 ⊢ ∆1| . . . |Γn ⊢
∆n) = {cp(A) : A ∈ ∪n

i=1Γi ∪ ∆i}

Definition 28 (Integer Multiset Ordering <m) For Γ and ∆ multisets of
integers, Γ <m ∆ if either (1) Γ ⊂ ∆ or (2) Γ <m ∆′ where ∆′ = ∆ − {j} ∪
{i, . . . , i} and i < j.

Note that <m is a well-order on multisets of integers.

4.1 A Hypersequent Calculus for A

Hypersequents for A are interpreted in the standard way, recalling that inten-
sional conjunction and intensional disjunction are equivalent in this logic:

Definition 29 (Interpretation of Hypersequents for A) Let the interpre-
tation of a sequent S = A1, . . . , An ⊢ B1, . . . , Bm be φS = (A1 + . . . + An) →
(B1 + . . .+ Bm) (where C1 + . . .+ Ck = t if k = 0) so that |= S iff |= φS . Let
the interpretation of a hypersequent G = S1| . . . |Sn be φG = φS1 ∨ . . . ∨ φSn so
that |= G iff |= φG.

We introduce the following hypersequent calculus for A.

Definition 30 (GA) GA has the following rules:

Axioms

(ID) A ⊢ A (Λ) ⊢

Structural rules

(EW ) G|Γ ⊢ ∆

G|Γ ⊢ ∆|Γ′ ⊢ ∆′

(EC) G|Γ ⊢ ∆|Γ ⊢ ∆

G|Γ ⊢ ∆

(S) G|Γ1, Γ2 ⊢ ∆1, ∆2

G|Γ1 ⊢ ∆2|Γ2 ⊢ ∆2

(M) G|Γ1 ⊢ ∆1 G|Γ2 ⊢ ∆2

G|Γ1, Γ2 ⊢ ∆1, ∆2
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Logical rules

(t, l) G|Γ ⊢ ∆

G|Γ, t ⊢ ∆

(t, r) G|Γ ⊢ ∆

G|Γ ⊢ t, ∆

(¬, l) G|Γ ⊢ A, ∆

G|Γ,¬A ⊢ ∆

(¬, r) G|Γ, A ⊢ ∆

G|Γ ⊢ ¬A, ∆

(→, l) G|Γ, B ⊢ A, ∆

G|Γ, A → B ⊢ ∆

(→, r) G|Γ, A ⊢ B, ∆

G|Γ ⊢ A → B, ∆

(+, l) G|Γ, A, B ⊢ ∆

G|Γ, A + B ⊢ ∆

(+, r) G|Γ ⊢ A, B, ∆

G|Γ ⊢ A + B, ∆

(∧, l) G|Γ, A ⊢ ∆|Γ, B ⊢ ∆

G|Γ, A ∧ B ⊢ ∆

(∧, r) G|Γ ⊢ A, ∆ G|Γ ⊢ B, ∆

G|Γ ⊢ A ∧ B, ∆

(∨, l) G|Γ, A ⊢ ∆ G|Γ, B ⊢ ∆

G|Γ, A ∨ B ⊢ ∆

(∨, r) G|Γ ⊢ A, ∆|Γ ⊢ B, ∆

G|Γ ⊢ A ∨ B, ∆

Alternative (non-invertible) rules to replace (∧, l) and (∨, r) without losing com-
pleteness are:

(∧′

i, l) G|Γ, Ai ⊢ ∆

G|Γ, A1 ∧ A2 ⊢ ∆

i = 1, 2 (∨′

i, r) G|Γ ⊢ Ai, ∆

G|Γ ⊢ A1 ∨ A2 ⊢ ∆

i = 1, 2

We could also replace the rules (M), (EW ) and the axioms (ID), (Λ), (t, l),
(t, r) with the single axiom:

(AX) G|Γ, t, . . . , t ⊢ Γ, t, . . . , t

Prelinearity for A is proved as follows.

Example 31 A proof of (A→ B) ∨ (B → A) in GA:

A ⊢ A B ⊢ B
A,B ⊢ A,B

A ⊢ B|B ⊢ A

A ⊢ B| ⊢ B → A

⊢ A→ B| ⊢ B → A

⊢ (A→ B) ∨ (B → A)

We now turn our attention to the soundness and completeness of GA. Note
that we use the convention in what follows of writing Γ for both the multiset Γ
and the sum of elements of Γ. We also write λΓ for Γ ∪ . . . ∪ Γ

︸ ︷︷ ︸

λ

.

Theorem 32 (Soundness of GA) If G succeeds in GA then |=A G.

Proof. We reason inductively on the height of a proof in GA showing that the
axioms are sound and that the rules of GA preserve validity in Q:

10



• Axioms. Clearly A−A ≥ 0 and 0 ≥ 0

• Structural Rules. For (S), if |=A G|Γ1,Γ2 ⊢ ∆1,∆2 then either G ≥ 0 or
(∆1 + ∆2) − (Γ1 + Γ2) ≥ 0. So we have either G ≥ 0 or ∆1 − Γ1 ≥ 0
or ∆2 − Γ2 ≥ 0 whence we have |=A G|Γ1 ⊢ ∆1|Γ2 ⊢ ∆2. The other
structural rules are similar.

• Logical Rules. For (→, r), if |=A G|Γ, A ⊢ ∆, B then either G ≥ 0 or
(∆ + B) − (Γ + A) ≥ 0 so either G ≥ 0 or (∆ + B − A) − Γ ≥ 0 ie
|=A G|Γ ⊢ ∆, A→ B. The other logical rules are similar. �

We prepare for our completeness proof by proving some simple properties of
GA.

Proposition 33 Π ⊢ Π succeeds in GA

Proof. By induction on the size of Π. If Π = ∅ then we apply (Λ). Otherwise
Π = {A} ∪ Π′ and we apply (M) to obtain A ⊢ A which succeeds by (ID), and
Π′ ⊢ Π′ which succeeds by the induction hypothesis. �

Proposition 34 The logical rules of GA are terminating.

Proof. It is easy to see that all the logical rules strictly reduce the multiset
complexity of the hypersequent. �

Definition 35 (Invertible) A rule is invertible if whenever the conclusion of
the rule is valid then all its premises are valid.

Proposition 36 The logical rules of GA are invertible.

Proof. We reason in Q. As an example consider (∧, l); if |=A G|Γ, A ⊢ ∆|Γ, B ⊢
∆ then either G ≥ 0, ∆− (Γ +B) ≥ 0 or ∆− (Γ +A) ≥ 0. So if G < 0 then we
have ∆ − (Γ + min(A,B)) ≥ 0 ie |=A G|Γ, A ∧ B ⊢ ∆. The other logical rules
are similar. �

We now show that proving an atomic hypersequent in GA is equivalent to
solving a linear programming problem over Q.

Proposition 37 Given Γi,∆i containing only atoms for i = 1 . . . n then |=A

Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n iff there exist λ1, . . . , λn ∈ Z+ such that λi > 0 for some
i, 1 ≤ i ≤ n and ∪n

i=1λiΓi = ∪n
i=1λi∆i.

Proof. Reasoning in Q we have |=A Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n iff Γ1 ≤ ∆1 or
. . . or Γn ≤ ∆n. This is equivalent to the set {Γ1 > ∆1, . . . ,Γn > ∆n} being
inconsistent over Q which holds iff there exist λ1, . . . , λn ∈ Z+ such that λi > 0
for some i, 1 ≤ i ≤ n and Σn

i=1λiΓi = Σn
i=1λi∆i ie iff ∪n

i=1λiΓi = ∪n
i=1λi∆i. �

Proposition 38 If there exist λ1, . . . , λn ∈ Z+ such that ∪n
i=1λiΓi = ∪n

i=1λi∆i

then Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n succeeds in GA.

11



Proof. For each i, if λi = 0 then we apply (EW ) to remove Γi ⊢ ∆i from
the hypersequent, otherwise we apply (EC) λi − 1 times to obtain λi copies of
Γi ⊢ ∆i. We then apply (S) repeatedly to get a component of the form Π ⊢ Π
(since ∪n

i=1λiΓi = ∪n
i=1λi∆i) which succeeds by Proposition 33. �

We are now ready to prove the completeness of GA.

Theorem 39 (Completeness of GA) If |=A G then G succeeds in GA

Proof. We show that given a hypersequent G valid in A we are able to find
a proof of G in GA. Our first step in the proof is to apply the logical rules
exhaustively to G; since by Propositions 34 and 36 these rules are terminating
and invertible respectively we obtain atomic hypersequents valid in A. It there-
fore suffices to show that each atomic hypersequent G′ = Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n

valid in A is provable in GA. By Proposition 37 we have that G′ is valid iff
there exist λ1, . . . , λn ∈ Z+ such that λi > 0 for some i, 1 ≤ i ≤ n and
∪n

i=1λiΓi = ∪n
i=1λi∆i ie a linear combination of the components of G′ (taking

λi copies of each Γi ⊢ ∆i and adding them all together) gives a component
of the form Π ⊢ Π. So now by Proposition 38, which says that we can apply
(EC), (EW ) and (S) to G′ to obtain the required combination, we have that
G′ succeeds. �

We note that Theorem 39 tells us that the following cut rules are admissible in
A:

Γ, A ⊢ ∆, A

Γ ⊢ ∆

Γ, A ⊢ ∆ Π ⊢ Σ, A

Γ, Π ⊢ ∆, Σ

In fact these are interderivable in GA:

Γ, A ⊢ ∆ Π ⊢ Σ, A

Γ, Π, A ⊢ ∆, Σ, A

Γ, Π ⊢ ∆, Σ

Γ, A ⊢ ∆, A

Γ ⊢ ∆, A → A

A ⊢ A

A → A ⊢

Γ ⊢ ∆

4.2 A Hypersequent Calculus for  L

We derive a hypersequent calculus for  L from GA, our hypersequent calculus
for A, in several stages. First we give an interpretation for hypersequents for
 L in terms of the characteristic model [−1, 0] L. This allows us to give a very
natural translation from hypersequents for  L to hypersequents for A. We then
immediately have a hypersequent calculus for  L using GA which we refine to
obtain a more direct and natural calculus for  L.

We start by interpreting hypersequents for  L. We extend the standard notion
of validity for  L from |= L to |=∗

 L using the characteristic model [−1, 0] L. A
formula is interpreted as usual for this model but multisets of formulae are
interpreted (as for A) as sums of elements in Q (as opposed to bounded sums
using the  Lukasiewicz conjunction ⊕). Interpretations are extended to sequents
and hypersequents in the usual way.

Definition 40 (Interpretation of Hypersequents for  L) |=∗

 L Γ1 ⊢ ∆1| . . . |Γn ⊢

∆n iff for all v : For → [−1, 0] L there exists i such that ΣA∈Γi
v(A) ≤ ΣB∈∆i

v(B).
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We emphasise that for formulae this notion coincides with the standard notion
of validity for  L.

Proposition 41 |=∗

 L φ iff |= L φ.

Proof. Immediate from Definition 40. �

Clearly our hypersequents for  L can also be interpreted in A. The following
translation, extending that given by Definition 23 makes this relationship pre-
cise.

Definition 42 (Translation *) p∗ = (p ∨ q⊥) ∧ t, ⊥∗ = q⊥ ∧ t, (A ⇒ B)∗ =
t ∧ (A∗ → B∗), (Γ ⊢ ∆)∗ = Γ∗ ⊢ ∆∗, (S1| . . . |Sn)∗ = S∗

1 | . . . |S
∗
n where q⊥ is an

arbitary fixed propositional variable.

Theorem 43 |=∗

 L G iff |=A G∗.

Proof. The proof of Theorem 24 is easily extended from formulae to hyperse-
quents. �

Theorem 43 means that we have a calculus for  L simply by using GA applied
to formulae of the form A∗. We refine this calculus in several steps. We first
simplify the rules for formulae of the form A∗ to obtain the following calculus:

Definition 44 (GA∗) GA∗ consists of the axioms and structural rules of GA

together with the following logical rules:

(⊥∗, l) G|Γ ⊢ ∆|Γ, q⊥ ⊢ ∆

G|Γ,⊥∗ ⊢ ∆

(⊥∗, r) G|Γ ⊢ ∆ G|Γ ⊢ q⊥, ∆

G|Γ ⊢ ⊥∗, ∆

(q∗, l) G|Γ ⊢ ∆|Γ, q⊥ ⊢ ∆ G|Γ ⊢ ∆|Γ, q ⊢ ∆

G|Γ, q∗ ⊢ ∆

(q∗, r) G|Γ ⊢ ∆ G|Γ ⊢ ∆, q|Γ ⊢ q⊥, ∆

G|Γ ⊢ q∗, ∆

(⇒∗, l) G|Γ, B∗ ⊢ A∗, ∆|Γ ⊢ ∆

G|Γ, (A ⇒ B)∗ ⊢ ∆

(⇒∗, r) G|Γ, A∗ ⊢ B∗, ∆ G|Γ ⊢ ∆

G|Γ ⊢ (A ⇒ B)∗, ∆

Proposition 45 If G∗ succeeds in GA then G∗ succeeds in GA∗.

Proof. It is easy to check that the logical rules of GA∗ are derivable using
the logical rules of GA and are hence invertible. Since they also reduce a
hypersequent G∗ to atomic hypersequents and the two calculi share the same
structural rules and axioms we are done. �

Our next move is to define a calculus that is stronger than GA∗ and operates
directly on formulae of  L rather than their translations:

Definition 46 (G Li) G Li consists of the axioms and structural rules of GA

13



and the following logical rules:

(⊥, l) G|Γ ⊢ ∆|Γ,⊥ ⊢ ∆

G|Γ,⊥ ⊢ ∆

(q, l) G|Γ ⊢ ∆|Γ, q ⊢ ∆

G|Γ, q ⊢ ∆

(q, r) G|Γ ⊢ q, ∆|Γ ⊢ ⊥, ∆

G|Γ ⊢ q, ∆

(⇒, l) G|Γ, B ⊢ A, ∆|Γ ⊢ ∆

G|Γ, A ⇒ B ⊢ ∆

(⇒, r) G|Γ, A ⊢ B, ∆ G|Γ ⊢ ∆

G|Γ ⊢ A ⇒ B, ∆

Proposition 47 If G∗ succeeds in GA∗ then G succeeds in G Li.

Proof. First we observe that removing the left premises from (⊥∗, r) and (q∗, l)
and (q∗, r) gives a calculus GA∗

1 such that if G∗ succeeds in GA∗ then G∗

succeeds in GA∗
1
. We now replace (for the calculus GA∗

1
) q by q∗ in the rules

(q∗, l) and (q∗, r) and q⊥ by ⊥∗ in the rules (⊥∗, l) and (⊥∗, r) to obtain a
calculus GA∗

2. Since no rules have conclusions with formulae that must be
atomic we have that if G∗ succeeds in GA∗

1
then G∗ succeeds in GA∗

2
. But

this is just the translation of the calculus G Li (removing (⊥∗, r) as it is just
the trivial rule) so we have that if G∗ succeeds in GA∗

2 then G succeeds in G Li

and we are done. �

We now present our final calculus for  L:

Definition 48 (G L) G L has the following rules:

Axioms

(ID) A ⊢ A (Λ) ⊢ (⊥) ⊥ ⊢ A

Structural rules

(IW ) G|Γ ⊢ ∆

G|Γ, A ⊢ ∆

(EW ) G|Γ ⊢ ∆

G|Γ ⊢ ∆|Γ′ ⊢ ∆′

(EC) G|Γ ⊢ ∆|Γ ⊢ ∆

G|Γ ⊢ ∆

(S) G|Γ1, Γ2 ⊢ ∆1, ∆2

G|Γ1 ⊢ ∆2|Γ2 ⊢ ∆2

(M) G|Γ1 ⊢ ∆1 G|Γ2 ⊢ ∆2

G|Γ1, Γ2 ⊢ ∆1, ∆2

Logical rules

(⇒, l) G|Γ, B ⊢ A, ∆|Γ ⊢ ∆

G|Γ, A ⇒ B ⊢ ∆

(⇒, r) G|Γ, A ⊢ B, ∆ G|Γ ⊢ ∆

G|Γ ⊢ A ⇒ B, ∆

Below we give a proof of the characteristic axiom of  L.
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Example 49 A proof of ((A⇒ B) ⇒ B) ⇒ ((B ⇒ A) ⇒ A) in G L:

⊢

⊢
(A ⇒ B) ⇒ B ⊢

B ⊢ B A ⊢ A

B, A ⊢ A,B

B, A ⊢ A, B|B ⊢ A

B, B ⇒ A ⊢ A

B ⊢ B A ⊢ A

B, A ⊢ A, B

B, B ⇒ A, A ⊢ A, B

B, B ⇒ A ⊢ A, A ⇒ B

B, B ⇒ A ⊢ A, A ⇒ B|B ⇒ A ⊢ A

(A ⇒ B) ⇒ B, B ⇒ A ⊢ A

(A ⇒ B) ⇒ B ⊢ (B ⇒ A) ⇒ A

⊢ ((A ⇒ B) ⇒ B) ⇒ ((B ⇒ A) ⇒ A)

We prove soundness and completeness proof-theoretically using the translation
of Definition 42.

Proposition 50 The translations of the rules (IW ), (⊥), (⇒, l) and (⇒, r) are
derivable in GA for hypersequents containing only formulae of the form A∗.

Proof. For (IW ) we note that all formulae A∗ are of the form X∧t and proceed
as follows:

G|Γ ⊢ ∆

G|Γ, t ⊢ ∆

G|Γ, X ⊢ ∆|Γ, t ⊢ ∆

G|Γ, X ∧ t ⊢ ∆

For (⊥) we proceed by induction on the complexity of A. If A is a propositional
variable p then we have:

q⊥ ⊢ q⊥

q⊥ ⊢ p|q⊥ ⊢ q⊥

q⊥ ⊢ p ∨ q⊥

t ⊢ p ∨ q⊥|q⊥ ⊢ p ∨ q⊥

t ∧ q⊥ ⊢ p ∨ q⊥

t ⊢ t

t ⊢ t|q⊥ ⊢ t

t ∧ q⊥ ⊢ t

t ∧ q⊥ ⊢ (p ∨ q⊥) ∧ t

If A = ⊥ then we succeed immediately by (ID). For A = B ⇒ C we have the
following situation:

t ⊢ t

t ⊢ t|q⊥ ⊢ t

t ∧ q⊥ ⊢ t

t ∧ q⊥, B∗ ⊢ C∗

t ∧ q⊥ ⊢ B∗ → C∗

t ∧ q⊥ ⊢ t ∧ (B∗ → C∗)

But now since (IW ) is derivable in GA we can step to t∧ q⊥ ⊢ C∗ for the right
branch which succeeds by the induction hypothesis.
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(⇒, l) and (⇒, r) are derived as follows:

G|Γ ⊢ ∆|Γ, B∗ ⊢ ∆, A∗

G|Γ ⊢ ∆|Γ, A∗ → B∗ ⊢ ∆

G|Γ, t ⊢ ∆|Γ, A∗ → B∗ ⊢ ∆

G|Γ, t ∧ (A∗ → B∗) ⊢ ∆

G|Γ ⊢ ∆

G|Γ ⊢ ∆, t

G|Γ, A∗ ⊢ ∆, B∗

G|Γ ⊢ ∆, A∗ → B∗

G|Γ ⊢ ∆, t ∧ (A∗ → B∗) �

Proposition 51 The following rule is admissible in G L:

G|Γ1 ⊢ ⊥,∆1| . . . |Γn ⊢ ⊥,∆n

G|Γ1 ⊢ A,∆1| . . . |Γn ⊢ A,∆n

Proof. By induction on the height h of a proof of G|Γ1 ⊢ ⊥,∆1| . . . |Γn ⊢ ⊥,∆n.
If h = 0 then we must have ⊥ ⊢ ⊥ and we get ⊥ ⊢ A by (⊥). The cases for
h > 0 follow easily from the induction hypothesis. �.

Proposition 52 The rules (⊥, l), (q, l) and (q, r) of G Li are admissible in G L.

Proof. (q, l) is derivable using (EC) and (IW ). (q, r) and (⊥, l) are admissible
using (EC) and Proposition 51.

Proposition 53 G succeeds in G L iff G∗ succeeds in GA.

Proof.

For the left-to-right direction we simply note that by Proposition 50 we have
that the translations of all the rules of G L are either rules of GA or derivable
in GA for hypersequents containing only formulae of the form A∗.

For the right-to-left direction by Propositions 47 and 45 we only have to show
that if G succeeds in G Li then G succeeds in G L. We simply note that all the
extra rules of G Li are either derivable or admissible in G L by Proposition 52.
�

Theorem 54 (Soundness and Completeness of G L) G succeeds in G L iff
|=∗

 L
G.

Proof. By Proposition 53, Theorems 39 and 32, and Theorem 43 respectively
we have that G succeeds in G L iff G∗ succeeds in GA iff |=A G∗ iff |=∗

 L G. �

Corollary 55 ⊢ φ succeeds in G L iff |= L φ.

Finally we note that by disregarding the rule (⊥) we obtain a calculus for the
positive part of  Lukasiewicz logic  L+. Moreover unlike  L we can interpret
hypersequents for  L+ within  L+ in the standard way using ⊕ instead of +.
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5 Terminating Hypersequent Calculi

Although GA and G L are natural and elegant calculi they are not particularly
suitable for proof search. Most obviously they are non-terminating due to the
presence of the external contraction rule (EC). One method of obtaining ter-
minating calculi is to replace (EC) and (S) with new rules that apply external
contraction and splitting more carefully. In particular propositional variables
can be removed from hypersequents one at a time by adding a particular propo-
sitional variable as a focus to each hypersequent; the focus is changed only when
all occurrences of the marked propositional variable have been removed from the
hypersequent.

Definition 56 (Focussed Hypersequent) If G is a hypersequent and q is a
propositional variable then [q]G is a focussed hypersequent with focus q. The
interpretation of [q]G is the same as for G ie |=X [q]G iff |=X G.

5.1 A Terminating Hypersequent Calculus for A

We present the following terminating hypersequent calculus for A.

Definition 57 (GAt) GAt consists of the axioms, logical rules and structural
rules (EW ) and (M) of GA with focussed hypersequents and the same focus for
premises and conclusion, and also:

(shift) [q]G

[p]G

where: q occurs in G

p doesn’t occur in G

(S′) [p]G|mΓ1, nΓ2 ⊢ m∆1, n∆2|S

[p]G|Γ1, np ⊢ ∆1|Γ2 ⊢ ∆2, mp

where: Γ1, Γ2, ∆1, ∆2 atomic

n > 0, m > 0
p 6∈ Γ1 ∪ ∆1 ∪ Γ2 ∪ ∆2

S is Γ1, np ⊢ ∆1 or Γ2 ⊢ ∆2, mp

Consider the example below, noting that some of the more obvious steps in the
proof have been left out to aid readability.

Example 58 A proof of ((q + q + q) ∧ (p+ p+ p)) → (p+ q + q) in GAt:

[q]p ⊢ p [q]p ⊢ p

[q]p, p ⊢ p, p

[q]p, p ⊢ p, p|q ⊢ p

[q]q ⊢ p|p, p ⊢ q, q [1]

[q]q, q, q ⊢ p, q, q|p, p, p ⊢ p, q

[q]q + q + q ⊢ p, q, q|p+ p+ p ⊢ p, q, q

[q](q + q + q) ∧ (p+ p+ p) ⊢ p, q, q

[q](q + q + q) ∧ (p+ p+ p) ⊢ p+ q + q

[q] ⊢ ((q + q + q) ∧ (p+ p+ p)) → (p+ q + q)
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[1] For the application of (S′) at this point in the proof we have n = 1 occurrences
of the focus q on the left hand side of the first component and m = 2 occurrences
of q on the right hand side of the second component. Hence for the next line
up in the proof we have a component with 2 copies of the first component put
together with 1 copy of the second component.

Let us see why this calculus terminates. Clearly the logical rules serve to reduce
any hypersequent to a hypersequent containing only atoms. The proof then
focuses on a particular propositional variable, p say, and uses (S′), (M), (ID)
and (EW ) to remove all occurrences of p. Each component has a difference
between the number of ps on each side; (S′) reduces the sum of differences for
the whole hypersequent. When this sum is 0 only (M), (ID) and (EW ) can
be used to remove further occurrences of p. If a propositional variable has been
removed from the hypersequent completely the (shift) rule allows a change of
focus to a different variable.

We now put this more formally.

Definition 59 (count) count(Γ, p) = |p : p ∈ Γ|

Definition 60 (d([p]G)) For a hypersequent G = Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n,
d([p]G) = Σn

i=1|count(Γi, p) − count(∆i, p)|.

Proposition 61 d([p]G|mΓ1, nΓ2 ⊢ m∆1, n∆2|S) < d([p]G|Γ1, np ⊢ ∆1|Γ2 ⊢
∆2,mp) when Γ1,Γ2,∆1,∆2 are atomic, n > 0, m > 0, p 6∈ Γ1 ∪ ∆1 ∪ Γ2 ∪ ∆2

and S is Γ1, np ⊢ ∆1 or Γ2 ⊢ ∆2,mp.

Proof. Suppose that S = Γ1, np ⊢ ∆1 then d([p]G|mΓ1, nΓ2 ⊢ m∆1, n∆2|S) =
d([p]G) + n < d([p]G) + n + m = d([p]G|Γ1, np ⊢ ∆1|Γ2 ⊢ ∆2,mp). The case
where S = Γ2 ⊢ ∆2,mp is symmetrical. �

Theorem 62 (Termination) GAt terminates for [p]G.

Proof. We proceed by induction on (c, n, d, s) ordered lexicographically where c
is the multiset complexity of G not including atoms, n is the number of different
propositional variables in [p]G (including p), d is d([p]G) and s is the number
of symbols in G. We show that all the rules (read backwards) strictly decrease
(c, n, d, s). The logical rules all strictly reduce c so we turn our attention to
the structural rules. (shift) does not increase c and decreases n. (S′) does not
increase c or n and by Proposition 61 strictly reduces d. (EW ) and (M) do not
increase c, n or d and strictly reduce s. �

We now check that GAt is sound and complete.

Theorem 63 (Soundness) If [p]G succeeds in GAt then |=A G.

Proof. We observe simply that (S′) is a derived rule of GA. �

Although (S′) is not invertible we have that if its conclusion is valid then its
premise is valid for one of the choices for S.
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Proposition 64 If |=A G|Γ1 ⊢ ∆1|Γ2 ⊢ ∆2 then either |=A G|Γ1,Γ2 ⊢ ∆1,∆2|Γ1 ⊢
∆1 or |=A G|Γ1,Γ2 ⊢ ∆1,∆2|Γ2 ⊢ ∆2.

Proof. Let G = Γ′
1 ⊢ ∆′

1| . . . |Γ
′
n ⊢ ∆′

n. By Proposition 37 we have that
|=A G|Γ1 ⊢ ∆1|Γ2 ⊢ ∆2 iff there exist λ1, λ2, µ1, . . . , µn where λi > 0 for
1 ≤ i ≤ 2 or µi > 0 for 1 ≤ i ≤ n, such that Σn

i=1µiΓ
′
i + λ1Γ1 + λ2Γ2 =

Σn
i=1µi∆

′
i + λ1∆1 + λ2∆2. Suppose that λ1 ≤ λ2 then we have Σn

i=1µiΓ
′
i +

λ1(Γ1 +Γ2)+(λ2−λ1)Γ2 = Σn
i=1µi∆

′
i +λ1(∆1 +∆2)+(λ2−λ1)∆2 which gives,

again by Proposition 37, that |=A G|Γ1,Γ2 ⊢ ∆1,∆2|Γ2 ⊢ ∆2. The case where
λ1 ≥ λ2 is symmetrical. �

Now consider a valid hypersequent G where for a given propositional variable
p there are never more occurrences of p on the right hand side of a component
of G than the left. If we remove a component where p occurs more on the left
than the right then we will still obtain a valid hypersequent G′.

Proposition 65 Given an atomic hypersequent G = Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n

where |=A G and count(Γ1, p) > count(∆1, p) and count(Γi, p) ≥ count(∆i, p)
for i = 2 . . . n then |=A Γ2 ⊢ ∆2| . . . |Γn ⊢ ∆n.

Proof. By Proposition 37 |=A G iff there exist λ1, . . . , λn ∈ Z+ such that
λi > 0 for some i, 1 ≤ i ≤ n and ∪n

i=1λiΓi = ∪n
i=1λi∆i. But if λ1 > 0 then

count(∪n
i=1λiΓi, p) > count(∪n

i=1λi∆i, p) a contradiction. Hence λ1 = 0 and we
have |=A Γ2 ⊢ ∆2| . . . |Γn ⊢ ∆n. �

Our completeness proof proceeds along the same lines as that of Theorem 39.

Theorem 66 (Completeness) If |=A G then [p]G succeeds in GAt.

Proof. Suppose |=A G then by applying the (invertible) logical rules to [p]G we
get valid atomic hypersequents. It remains to show then that all valid atomic
hypersequent [p]G′ are provable. We proceed by induction on (n, d) where n
is the number of propositional variables in G′ and d is d([p]G′). If n = 0 then
we just apply (EW ) and (Λ) and we are done. For n > 0 if d = 0 then we
apply (M) and (ID) until there are no occurrences of p left in the hypersequent
and use (shift) to decrease n. If d > 0 then for some component Γ1 ⊢ ∆1

either count(Γ1, p) > count(∆1, p) or count(∆1, p) > count(Γ1, p). Suppose
the former; if there is no component Γ2 ⊢ ∆2 in [p]G′ where count(∆2, p) >
count(Γ2, p) then by Proposition 65 we can apply (EW ) to [p]G′ to remove Γ1 ⊢
∆1 giving [p]G′′ where |=A [p]G′′ and d([p]G′′) < d([p]G′). Now suppose there
is such a component Γ2 ⊢ ∆2 in [p]G′ where count(∆2, p) > count(Γ2, p). We
apply (M) and (ID) to [p]G′ giving [p]G′′ containing components Γ′

1, np ⊢ ∆′
1

and Γ′
2 ⊢ ∆′

2,mp where n > 0, m > 0 and p 6∈ Γ′
1,Γ

′
2,∆

′
1,∆

′
2. So by Proposition

64 we can apply (S′) to obtain a hypersequent [p]G′′′ where |=A [p]G′′′ and by
Proposition 61 d([p]G′′′) < d([p]G′′) ≤ d([p]G′). �

5.2 A Terminating Hypersequent Calculus for  L

A terminating hypersequent calculus for  L is developed in a similar way to GAt.

19



Definition 67 (G Lt) G Lt consists of the axioms, logical rules and structural
rules (IW ), (EW ) and (M) of G L with foccussed hypersequents and the same
focus for premises and conclusion, and also the rules (shift) and (S′) of GAt.

Theorem 68 (Termination of G Lt) G Lt is terminating.

Proof. Similar to the proof of Theorem 62. Just observe that (IW ) does
not increase the multiset complexity of G not including atoms, the number of
different atomic variables or d([p]G) and strictly reduces the number of symbols
of G. �

Theorem 69 (Soundness of G Lt) If [p]G succeeds in G Lt then |=∗

 L G.

Proof. (S′) is a derived rule of G L so we are done. � Completeness for G Lt

is proved in the same way as for GAt with the following proposition replacing
Proposition 65. Note that for convenience we call formulae of the form q∗ where
q is atomic, starred atoms.

Proposition 70 Given a hypersequent G = Γ1 ⊢ ∆1| . . . |Γn ⊢ ∆n contain-
ing only starred atoms where |=A G and count(Γ1, p

∗) > count(∆1, p
∗) and

count(Γi, p
∗) ≥ count(∆i, p

∗) for i = 2 . . . n then |=A Γ1 − {p∗} ⊢ ∆1|Γ2 ⊢
∆2| . . . |Γn ⊢ ∆n.

Proof. G is valid iff the atomic hypersequents obtained by applying the ∧
and ∨ rules of GA to the starred atoms of G are valid. But these atomic
hypersequents meet the conditions of Proposition 65 so we can remove the
components containing a p resulting directly from the component Γ1 ⊢ ∆1.
The resulting hypersequents are valid and therefore so is the hypersequent
|=A Γ1 − {p∗} ⊢ ∆1|Γ2 ⊢ ∆2| . . . |Γn ⊢ ∆n.

Theorem 71 (Completeness of G Lt) If |=∗

 L G then [p]G succeeds in G Lt.

Proof. Let GA∗
t

be the calculus G Lt with formulae A replaced everywhere
with A∗ and the requirements for atoms in the structural rules changed to
requirements for starred atoms. We have if [p]G∗ succeeds in GA∗

t then [p]G
succeeds in G Lt. Now suppose |=∗

 L G, by Proposition 43, we have |=A G∗.

[p]G∗ is shown to succeed in GA∗
t imitating the proof of Theorem 66. We just

note that Propositions 64 and 61 hold when applied to starred atoms and that
Proposition 65 can be replaced by Proposition 70. �

6 Labelled Single Sequent Calculi

One drawback of our hypersequent calculi from a computational perspective is
that components multiply exponentially with respect to occurrences of ∨ and
∧. Here we give a method for tackling this problem using labels. We repre-
sent a disjunction of several unlabelled components (ie a hypersequent) as a
single labelled sequent and give rules that operate on all components simulta-
neously. The labels themselves are built up from a unit label 1 and atomic
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labels x1, x2, . . . and each labelled formula in a sequent consists of a label and
a formula. Unlabelled components may be obtained from labelled sequents via
labelling functions that map each label into the set {0, 1}, removing formulae
labelled with a 0 from the sequent and leaving those labelled with a 1. For ex-
ample, the sequent x : p, 1 : q ⊢ 1 : p, x : q is mapped by a labelling function f to
q ⊢ p if f(x) = 0 and to p, q ⊢ p, q if f(x) = 1, the corresponding hypersequent
being q ⊢ p|p, q ⊢ p, q.

The following definitions make these notions precise:

Definition 72 ((Atomic) Labels, Labelled Formulae, Labelled Sequents)
The set of labels Lab is generated from the set of atomic labels {xi}i∈N as fol-
lows: (1) 1 ∈ Lab, (2) xi ∈ Lab for all i ∈ N, (3) if x ∈ Lab and y ∈ Lab

then xy ∈ Lab. A labelled formula is of the form x : A where x ∈ Lab and A is
a formula. A labelled sequent is a sequent Γ ⊢ ∆ where Γ and ∆ contain only
labelled formulae.

Definition 73 (Labelling Function) f : Lab→ {0, 1} is a labelling function
iff: (1) f(1) = 1, (2) f(xi) ∈ {0, 1} for all i ∈ N, (3) f(xy) = f(x).f(y). f is
extended to multisets of labelled formulae and labelled sequents by the conditions:
(4) f(Γ) = {A | x : A ∈ Γ and f(x) = 1}, (5) f(Γ ⊢ ∆) = f(Γ) ⊢ f(∆).

Definition 74 (Γl, Γul) Given a multiset of unlabelled formulae Γ, Γl = {1 :
A | A ∈ Γ}. Given a multiset of labelled formulae Γ, Γul = {A | x : A ∈ Γ}.

6.1 A Labelled Single Sequent Calculus for A

We interpret a labelled sequent S for A as the disjunction of all the unlabelled
sequents obtained by applying labelling functions to S.

Definition 75 (Interpretation of Labelled Sequents for A) Let the inter-
pretation of a labelled sequent S be φS =

∨
{φf(S)|f a labelling function} so that

|=A S iff |=A φS .

Observe that validity for labelled sequents coincides with the usual notion of
validity |=A for sequents where all formulae are labelled with a 1.

Proposition 76 For multisets Γ,∆ we have |=A Γl ⊢ ∆l iff |=A Γ ⊢ ∆.

Proof. Immediate from Definition 75.

We now present our labelled calculus for A. Note that recalling Proposition
22, we choose ⇒ as a primitive connective rather than ∧ and ∨. Our reasons
are firstly that the rules for ⇒ are more uniform than those for ∧ and ∨ (and
looking ahead to Section 7 the rules for ∧ and ∨ for the unlabelled calculus do
not even obey the subformula property) and secondly that we want to exploit
similarities with  L.
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Definition 77 (GAl) GAl has the following rules:

(t, l) Γ ⊢ ∆

Γ, x : t ⊢ ∆

(t, r) Γ ⊢ ∆

Γ ⊢ x : t, ∆

(¬, l) Γ ⊢ x : A, ∆

Γ, x : ¬A ⊢ ∆

(¬, r) Γ, x : A ⊢ ∆

Γ ⊢ x : ¬A, ∆

(+, l) Γ, x : A,x : B ⊢ ∆

Γ, x : A + B ⊢ ∆

(+, r) Γ ⊢ ∆, x : A,x : B

Γ ⊢ ∆, x : A + B

(→, l) Γ, x : B ⊢ ∆, x : A

Γ, x : A → B ⊢ ∆

(→, r) Γ, x : A ⊢ ∆, x : B

Γ ⊢ ∆, x : A → B

(⇒, l) Γ, xy : B ⊢ ∆, xy : A

Γ, x : A ⇒ B ⊢ ∆

(⇒, r) Γ, x : A ⊢ ∆, x : B Γ ⊢ ∆

Γ ⊢ ∆, x : A ⇒ B

y a new atomic label

(success) Γ ⊢ ∆ where Γ and ∆ are atomic and there exist labelling
functions f1, . . . fn such that ∪n

i=1fi(Γ) = ∪n

i=1fi(∆)

Derived rules for ∧ and ∨ are:

(∧, l) Γ, x : A,xy : B ⊢ xy : A, ∆

Γ, x : A ∧ B ⊢ ∆

(∧, r) Γ ⊢ ∆, x : A Γ ⊢ ∆, x : B

Γ ⊢ ∆, x : A ∧ B

(∨, l) Γ, x : A ⊢ ∆ Γ, x : B ⊢ ∆

Γ, x : A ∨ B ⊢ ∆

(∨, r) Γ, xy : A ⊢ ∆, x : A, xy : B

Γ ⊢ ∆, x : A ∨ B

The following example shows that more than one labelling function may be
required to apply (success):

Example 78 A proof of (p ⇒ (p ⇒ r)) ⇒ ((q ⇒ (q ⇒ r)) ⇒ (p ⇒ (q ⇒ r)))
in GAl (note that for convenience we write x instead of x1):

⊢

f(u) = f(v) = 0

uv : r ⊢ u : p, uv : p

u : p⇒ r ⊢ u : p

1 : p⇒ (p⇒ r) ⊢

xy : r, zw : r, 1 : p, 1 : q ⊢ 1 : r, x : p, xy : p, z : q, zw : q

xy : r, z : q ⇒ r, 1 : p, 1 : q ⊢ 1 : r, x : p, xy : p, z : q

xy : r, 1 : q ⇒ (q ⇒ r), 1 : p, 1 : q ⊢ 1 : r, x : p, xy : p

x : p⇒ r, 1 : q ⇒ (q ⇒ r), 1 : p, 1 : q ⊢ 1 : r, x : p

1 : p⇒ (p⇒ r), 1 : q ⇒ (q ⇒ r), 1 : p, 1 : q ⊢ 1 : r

...
1 : p⇒ (p⇒ r), 1 : q ⇒ (q ⇒ r) ⊢ p⇒ (q ⇒ r)

1 : p⇒ (p⇒ r) ⊢ (q ⇒ (q ⇒ r)) ⇒ (p⇒ (q ⇒ r))

⊢ 1 : (p⇒ (p⇒ r)) ⇒ ((q ⇒ (q ⇒ r)) ⇒ (p⇒ (q ⇒ r)))

For the right branch we apply (success) with two labelling functions:

f1(x) = f1(y) = 1, f1(z) = f1(w) = 0
f2(x) = f2(y) = 0, f2(z) = f2(w) = 1
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Which gives:

∪2
i=1fi({xy : r, zw : r, 1 : p, 1 : q}) = ∪2

j=1fj(1 : r, x : p, xy : p, z : q, zw : q) =
{r, r, p, p, q, q}

The (success) rule replaces the structural rules of GA. Interpreting each la-
belling function applied to the labelled sequent as a component it can be seen
that (success) checks whether putting together any number of components (ie
applying (EC) and (S)) gives a component of the form Γ ⊢ Γ (which succeeds
in GA using (M) and (ID)). Note also that checking whether (success) can
be applied is equivalent to checking the inconsistency of the set of inequations
{f(Γ) > f(∆)|f a labelling function} over Q ie to solving a linear programming
problem.

We now consider the soundness and completeness of GAl.

Theorem 79 (Soundness of GAl) If S succeeds in GAl then |=A S.

Proof We reason by induction on the length of a proof in GAl and show that
the logical rules and (success) are sound in Q.

• Logical rules. Consider (⇒, l); if |=A Γ, xy : B ⊢ ∆, xy : A then given a
valuation v we have that v(f(Γ)) + v(f(xy : B)) ≤ v(f(∆)) + v(f(xy : A))
for some labelling function f . For f(xy) = 0 we have v(f(Γ)) ≤ v(f(∆))
so we take a labelling function f ′ defined as f ′(z) = f(z) for z 6= x

and f ′(x) = 0 and get v(f ′(Γ)) + v(f ′(x : A ⇒ B)) ≤ v(f ′(∆)). For
f(x) = f(y) = 1 we have v(f(Γ)) + v(B) ≤ v(f(∆)) + v(A) so taking
f ′ = f we get v(f ′(Γ)) + v(f ′(x : A ⇒ B)) ≤ v(f ′(∆)). Proofs for the
other logical rules are very similar.

• (success). By (success) there exist labelling functions f1, . . . , fn and
λ1, . . . , λn where λi > 0 for some i 1 ≤ i ≤ n and ∪n

i=1λi.fi(Γ) =
∪n

i=1λi.fi(∆) so by Proposition 37 we have |=A f1(Γ) ⊢ f1(∆)| . . . |fn(Γ) ⊢
fn(∆) as required. �

Proposition 80 The logical rules of GAl are invertible.

Proof. We show the invertibility of (⇒, l) as an example. If |=A Γ, x : A⇒ B ⊢
∆ then given a valuation v we have that v(f(Γ)) + v(f(x : A⇒ B)) ≤ v(f(∆))
for some labelling function f . For f(x) = 0 we take f ′ = f and f ′(y) = 0
and get v(f ′(Γ)) + v(f ′(xy : B)) ≤ v(f ′(∆)) + v(f ′(xy : A)). For f(x) = 1,
if v(A) ≤ v(B) then we have v(f ′(Γ)) ≤ v(f ′(∆)) and we take f ′ = f and
f ′(y) = 0; if v(A) > v(B) then we have v(f ′(Γ)) + v(B) ≤ v(f ′(∆)) + v(B) and
we take f ′ = f and f ′(y) = 1. �

Theorem 81 (Completeness of GAl) If |=A S then S succeeds in GAl .

Proof As in the proof of Theorem 39 we apply the invertible (by Proposition
80) logical rules to S obtaining a set of valid labelled atomic sequents. We now
show that all valid labelled atomic sequents Γ ⊢ ∆ are provable. We have that
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there are labelling functions f1, . . . , fn such that |=A f1(Γ) ⊢ f1(∆)| . . . |fn(Γ) ⊢
fn(∆); now by Proposition 37 there exist λ1, . . . , λn where λi > 0 for some i
1 ≤ i ≤ n and ∪n

i=1λi.fi(Γ) = ∪n
i=1λi.fi(∆) so we can apply (success). �

An apparent problem for the complexity of GAl is that checking the (success)
rule is equivalent to checking the inconsistency of a set of equations of size
exponential in the number of labels. As we show however, this set of equations
can be transformed in linear time into a set of equations of linear size such that
the new set is consistent iff the old set is consistent.

First however we introduce some new terminology.

Definition 82 (Labelled Inequation) A labelled inequation is an inequation
Γ⊲∆ where Γ and ∆ contain only labelled formulae, ⊲ ∈ {>,≥}. For a labelling
function f , f(Γ ⊲∆) = f(Γ) ⊲ f(∆), ⊲ ∈ {>,≥}.

Definition 83 (Consistent Set of Labelled Inequations) A set of labelled
inequations U is consistent iff the set {f(Γ) ⊲ f(∆)|Γ ⊲ ∆ ∈ U , f a labelling
function} is consistent over Q.

Definition 84 (Label-regular) A labelled inequation is label-regular iff the
set of atomic labels occurring in the inequation together with 1 form a tree with
root 1 and each label occurring in the inequation is a path from 1 to a node.

Definition 85 (Maximal Label) Given a label-regular set of atomic labels, a
maximal label is a child node of 1 in the tree.

The idea is that proofs in GAl generate labelled sequents of a particular form.
Each new atomic label y is introduced in a proof as part of a complex label xy
and will always occurs alongside x in subsequent labelled sequents in the proof.

Proposition 86 Given a branch of a proof in GAl [Γl ⊢ ∆l, . . . ,Σ ⊢ Π] the
labelled inequation Σ > Π is label-regular.

Proof. By induction on the length of a proof in GAl. New labels are only
introduced via (⇒, l) and it is easy to see that the new atomic label y can be
added to the tree of atomic labels as a new node below those atomic labels
occurring in x and that the label xy forms a path from the root to this node. �

We now prove our main lemma.

Lemma 87 Given a set U of m label-regular inequations with n atomic labels
occurring in U where no atomic label occurs in more than one inequation, a set
V of 2n + m unlabelled inequations can be found in O(n) time such that V is
consistent iff U is consistent.

Proof. We proceed by induction on n. For n = 0 we take V = {Γul⊲∆ul|Γ⊲∆ ∈
U} and we are done. For n > 0 there must be an inequation S in U containing a
maximal atomic label x, where S = Γ,Σ⊲∆,Π, ⊲ ∈ {>,≥}, Σ and Π contain only
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formulae in which x occurs and Γ and ∆ contain only formulae in which x does
not occur. Now we define new inequations S1 = Γ, 1 : λx⊲∆, S2 = Σ ≥ Π, 1 : λx

and S3 = 0 ≥ 1 : λx where λx is a new propositional variable and U is consistent
iff U ′ = U − {S} ∪ {S1, S2, S3} with n− 1 atomic labels is consistent. Now S1,
S2 and S3 are all label-regular and since x is a maximal label there are no
atomic labels occurring in more than one labelled inequation in U ′. So by
the induction hypothesis U ′ is consistent iff V is consistent where V contains
2(n− 1) +m+ 2 = 2n+m unlabelled inequations. �

Theorem 88 (Complexity of GAl) GAl ∈ co-NP

Proof. Let n be the size of the input formula A. To refute A we choose a
branch B of the proof tree non-deterministically. B is of O(n) length (since each
logical rule strictly reduces the number of connectives in the sequent) and ends
with a labelled sequent Γ ⊢ ∆ with O(n) atomic labels (since (⇒, l) introduces
exactly one new atomic label). So applying Lemma 87 to the labelled and, by
Proposition 86 label-regular, inequation Γ > ∆ we obtain a set of unlabelled
inequations U of O(n) size in O(n) time such that checking the (success) rule
for Γ ⊢ ∆ is equivalent to checking the consistency of U over Q ie a linear
programming problem. Since linear programming can be solved in polynomial
time we are done. �

6.2 A Labelled Single Sequent Calculus for  L

Labelled sequents for  L are interpreted using the characteristic model [−1, 0] L.

Definition 89 (Interpretation of Labelled Sequents for  L) |=∗

 L Γ ⊢ ∆

iff for all v : For → [−1, 0] L there exists a labelling function f such that
ΣA∈Γv(f(A)) ≤ ΣB∈∆v(f(B)).

We also extend the translation * to labelled sequents.

Definition 90 (Translation * for Labelled Sequents) Given a labelled mul-
tiset Γ, Γ∗ = {x : A∗|x : A ∈ Γ}. Given a labelled sequent S = Γ ⊢ ∆,
S∗ = Γ∗ ⊢ ∆∗.

Theorem 91 |=∗

 L S iff |=A S∗.

Proof. The proof of Theorem 24 is easily extended from formulae to labelled
sequents. �

To give a suitable (success) rule for  L we must first define a relation ⊆∗ that
takes account of internal weakening and ⊥.

Definition 92 (⊆∗) ∆ ⊆∗ Γ iff (1) ∆ ⊆ Γ, or (2) ∆′ ⊆∗ Γ′ where Γ = Γ′∪{⊥}
and ∆ = ∆′ ∪ {q} for some atom q.

We now present the following labelled calculus for  L.
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Definition 93 (G Ll) G Ll has the following rules:

(⇒, l) Γ, xy : B ⊢ ∆, xy : A

Γ, x : A ⇒ B ⊢ ∆

(⇒, r) Γ, x : A ⊢ ∆, x : B Γ ⊢ ∆

Γ ⊢ ∆, x : A ⇒ B

y a new atomic label

(success) Γ ⊢ ∆ where Γ and ∆ are atomic and there exist labelling
functions f1, . . . fn such that ∪n

i=1fi(Γ) ⊆∗ ∪n

i=1fi(∆)

As in section 4, the soundness and completeness of G Ll are proved proof-
theoretically using the translation from  L to A.

Proposition 94 S succeeds in G Ll iff S∗ succeeds in GAl.

Proof. Similar to (and in fact easier than) the proof of Proposition 53. �

Theorem 95 (Soundness and Completeness of G Ll) S succeeds in G Ll

iff |=∗

 L S.

Proof. By Proposition 94, Theorems 81 and 79, and Theorem 91 respectively
we have that S succeeds in G Ll iff S∗ succeeds in GAl iff |=A S∗ iff |=∗

 L S. �

Theorem 96 (Complexity of G Ll) G Ll is co-NP-complete.

Proof. Similar to the proof of Theorem 88. �

7 Unlabelled Single Sequent Calculi

In this section we obtain unlabelled single sequent calculi for A and  L. Instead of
maintaining several components in a hypersequent or introducing labels we add
rules permitting contraction from a sequent Γ,Γ ⊢ ∆,∆ to Γ ⊢ ∆, derivable in
GA by applying (EC) and (S). We also alter the (⇒, l) rules using the identity
A + (A ⇒ B) = B + (B ⇒ A), thereby obtaining sound and complete single
sequent calculi for A and  L.

7.1 An Unlabelled Single Sequent Calculus for A

We present the following unlabelled single sequent calculus for A.

Definition 97 (GAs) GAs has the following rules.

Axioms

(ID) A ⊢ A (Λ) ⊢

Structural Rules

(W ) Γ ⊢ ∆

Γ, A ⇒ B ⊢ ∆

(M) Γ1 ⊢ ∆1 Γ2 ⊢ ∆2

Γ1, Γ2 ⊢ ∆1, ∆2

(C)

n

︷ ︸︸ ︷

Γ, . . . , Γ ⊢

n

︷ ︸︸ ︷

∆, . . . , ∆

Γ ⊢ ∆

n > 0
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Logical Rules

(t, l) Γ ⊢ ∆

Γ, t ⊢ ∆

(t, r) Γ ⊢ ∆

Γ ⊢ t, ∆

(¬, l) Γ ⊢ A, ∆

Γ,¬A ⊢ ∆

(¬, r) Γ, A ⊢ ∆

Γ ⊢ ¬A, ∆

(→, l) Γ, B ⊢ A, ∆

Γ, A → B ⊢ ∆

(→, r) Γ, A ⊢ B, ∆

Γ ⊢ A → B, ∆

(+, l) Γ, A, B ⊢ ∆

Γ, A + B ⊢ ∆

(+, r) Γ ⊢ A, B, ∆

Γ ⊢ A + B, ∆

(⇒, l) Γ, B, B ⇒ A ⊢ ∆, A

Γ, A ⇒ B ⊢ ∆

(⇒, r) Γ ⊢ ∆ Γ, A ⊢ ∆, B

Γ ⊢ ∆, A ⇒ B

Derived rules for ∧ and ∨ are:

(∧, l) Γ, A, A ⇒ B ⊢ ∆

Γ, A ∧ B ⊢ ∆

(∧, r) Γ ⊢ ∆, A Γ ⊢ ∆, B

Γ ⊢ ∆, A ∧ B

(∨, l) Γ, A ⊢ ∆ Γ, B ⊢ ∆

Γ, A ∨ B ⊢ ∆

(∨, r) Γ, B ⇒ A ⊢ ∆, A

Γ ⊢ ∆, A ∨ B

To understand the differences between this calculus and GA compare the fol-
lowing proof of prelinearity with Example 31.

Example 98 A proof of (A→ B) ∨ (B → A) in GAs:

B ⊢ B B ⊢ B
B,B ⊢ B,B

A ⊢ A A ⊢ A
A,A ⊢ A,A

B,B,A,A ⊢ B,B,A,A

B,A,A ⊢ B,B,B → A,A

A→ B,A,A ⊢ B,B,B → A

(A→ B) ⇒ (B → A), A→ B,A,A ⊢ B,B,B → A

(B → A) ⇒ (A→ B), A,A ⊢ B,B

(B → A) ⇒ (A→ B), (B → A) ⇒ (A→ B), A,A ⊢ B,B

(B → A) ⇒ (A→ B), A ⊢ B

(B → A) ⇒ (A→ B) ⊢ A→ B

⊢ (A→ B) ∨ (B → A)

Soundness is proved in the usual way.

Theorem 99 (Soundness of GAs) If S succeeds in GAs then |=A S.

Proof. We follow the standard inductive proof and just check soundness in Q

for the rules different to those of GA.
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• (W ). If v(Γ) ≤ v(∆) then since v(A ⇒ B) ≤ 0 we have v(Γ) + v(A ⇒
B) ≤ v(∆) for all valuations v.

• (C). If v(Γ) + . . .+ v(Γ)
︸ ︷︷ ︸

n

≤ v(∆) + . . .+ v(∆)
︸ ︷︷ ︸

n

then dividing by n gives

v(Γ) ≤ v(∆) for all valuations v.

• (⇒, l). For any valuation v, if v(Γ) + v(B) + v(B ⇒ A) ≤ v(∆) + v(A)
then since v(B) + v(B ⇒ A) − v(A) = v(A ⇒ B) we have v(Γ) + v(A ⇒
B) ≤ v(∆). �

We now turn our attention to proving the completeness of GAs. Our strategy
is to show that any sequent provable in the labelled calculus GAl is provable in
GAs. To this end we introduce an intermediate calculus GAi which performs
proofs in GAl but which also maintains a record of the formulae added by the
(⇒, l) rule for GAs in a store; this allows us to prove inductively that any of
the sequents represented by a labelled sequent Γ‖Π ⊢ ∆ (where Π is the store)
can be reached in GAs from the unlabelled sequent Γul,Π ⊢ ∆ul.

Definition 100 (⇒-formula, atoms(Γ), nonatoms(Γ)) A ⇒-formula is a for-
mula of the form A⇒ B, atoms(Γ) = {q ∈ Γ | q atomic}, nonatoms(Γ) = {A ∈
Γ | A not atomic}.

Definition 101 (GAi) The rules for GAi are exactly the same as for GAl

except that each premise and conclusion Γ ⊢ ∆ is replaced by Γ‖Π ⊢ ∆ and
(⇒, l) becomes:

Γ, xy : B‖Π, B ⇒ A ⊢ ∆, xy : A

Γ, x : A ⇒ B‖Π ⊢ ∆

where: (1) y is a new atomic label.
(2) ∆ contains only atoms.
(3) Γ contains only atoms and ⇒ -formulae.

We emphasize that formulae in the store are not used in GAi.

Proposition 102 Γ ⊢ ∆ succeeds in GAl iff Γ‖Π ⊢ ∆ succeeds in GAi.

Proof. We simply observe that the unlabelled formulae in the store are not
processed by the rules of the calculus and that the restrictions for (⇒, l) can
easily be shown not to affect completeness. �

Definition 103 (Branch) A branch [S1, . . . , Sn] in a calculus G is a sequence
of sequents (or hypersequents) where for i = 1 . . . n−1, Si is the conclusion and
Si+1 a premise of a rule of G.

Proposition 104 Given a branch [Γ,∆ ⊢ Γ,∆ . . .Γ,Σ+ ⊢ Σ−,∆] in GAs con-
taining only applications of the logical rules excepting (⇒, l), Γ,Σ+ ⊢ Σ−,∆
succeeds in GAs.

Proof. By induction on the multiset complexity of Γ ∪ ∆. �

We now prove the main technical proposition for our completeness proof. The
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idea is that at any point in a proof in GAi where only sequents and ⇒-formulae
occur in the sequent, and given any labelling function, we are able to divide the
current sequent S = Γ‖Π ⊢ ∆ into three parts; the first is the result of applying
the labelling function to S, the second is a sequent that succeeds (removing
labels) in GAs and the third consists of ⇒-formulae.

Proposition 105 Given a branch of a proof in GAi [Γl
1‖∅ ⊢ ∆l

1 . . .Γ‖Π ⊢ ∆]
where ∆ is atomic and Γ contains only atoms and ⇒-formulae, then for every
labelling function f there exist multisets Γa, Γe, Γr, ∆a and ∆e such that:

(1) Γul = Γa ∪ Γe ∪ Γr and ∆ul = ∆a ∪ ∆e

(2) Γa = atoms(f(Γ)) and ∆a = f(∆)
(3) Γe,Π ⊢ ∆e succeeds in GAs

(4) Γe ⊆ {A | x : A ∈ Γ, f(x) = 0}
(5) Γr contains only ⇒-formulae

Proof. By induction on the number of atomic labels, n, occurring in Γ‖Π ⊢ ∆.
If n = 0 then we take Γa = atoms(Γul), Γe = ∅, Γr = nonatoms(Γul), ∆a = ∆ul

and ∆e = ∅ and the conditions hold. For n > 0 we consider the last introduction
of a label via (⇒, l):

From Q = Γ, x : A⇒ B‖Π ⊢ ∆ to:

Q′ = Γ, xy : B‖Π, B ⇒ A ⊢ ∆, xy : A

followed by applications of the logical rules excepting (⇒, l) giving:

Q′′ = Γ,Σ+‖Π, B ⇒ A ⊢ ∆,Σ−

where Σ− contains only atoms, Σ+ contains only atoms and ⇒-formulae, and
all formulae in Σ− and Σ+ have label xy.

Now for a given labelling function f we apply the induction hypothesis to Q, ob-
taining multisets Γa,Γe,Γr,∆a and ∆e as specified above. We seek Γ′

a,Γ
′
e,Γ

′
r,∆

′
a

and ∆′
e suitable for Q′′. There are two cases to consider:

• f(x) = f(y) = 1. We take Γ′
a = Γa ∪ atoms(Σ+)ul, Γ′

e = Γe, Γ′
r =

Γr − {A ⇒ B} ∪ nonatoms(Σ+)ul, ∆′
a = ∆a ∪ (Σ−)ul and ∆′

e = ∆e.
We have: (1) (Γ ∪ Σ+)ul = Γ′

a ∪ Γ′
e ∪ Γ′

r and (∆ ∪ Σ−)ul = ∆′
a ∪ ∆′

e,
(2) Γ′

a = atoms(f(Γ ∪ Σ+)) and ∆′
a = f(∆ ∪ Σ−) since f(xy) = 1, (3)

Γ′
e,Π ⊢ ∆′

e succeeds in GAs and hence so does Γ′
e,Π, B ⇒ A ⊢ ∆′

e by
(W ), (4) Γ′

e ⊆ {A | x : A ∈ Γ∪Σ+, f(x) = 0} = {A | x : A ∈ Γ, f(x) = 0}
and (5) Γ′

r contains only ⇒-formulae.

• f(x) = 0 or f(y) = 0. We take Γ′
a = Γa, ∆′

a = ∆a and ∆′
e = ∆e ∪ (Σ−)ul

and then for A⇒ B ∈ Γe, we take Γ′
e = Γe −{A⇒ B}∪ (Σ+)ul and Γ′

r =
Γr, forA⇒ B ∈ Γr, we take Γ′

e = Γe∪(Σ+)ul and Γ′
r = Γr−{A⇒ B}. We

have: (1) (Γ∪Σ+)ul = Γ′
a∪Γ′

e∪Γ′
r and (∆∪Σ−)ul = ∆′

a∪∆′
e by definition;

(2) Γ′
a = atoms(f(Γ ∪ Σ+)) and ∆′

a = f(∆ ∪ Σ−) since f(xy) = 0; (3) we
have that Γe,Π ⊢ ∆e succeeds in GAs so (for A⇒ B ∈ Γe) by Proposition
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104 Γe − {A⇒ B}, (Σ+)ul,Π, B ⇒ A ⊢ ∆e, (Σ
−)ul succeeds in GAs, and

(for A ⇒ B 6∈ Γr), since B ⇒ A, (Σ+)ul ⊢ (Σ−)ul succeeds in GAs using
Proposition 104 so also by (M) does Γe, B ⇒ A, (Σ+)ul,Π ⊢ ∆e, (Σ

−)ul;
(4) if u : C ∈ Γe∪(Σ−)ul then f(u) = 0 so Γ′

e ⊆ {C|u : C ∈ Γ∪Σ+, f(u) =
0}; (5) Γ′

r contains only ⇒-formulae. �

We now use this proposition to prove the completeness of GAs.

Theorem 106 (Completeness of GAs) If |=A S then S succeeds in GAs.

Proof. If |=A Γ1 ⊢ ∆1 then by Theorem 81 we have that Γl
1 ⊢ ∆l

1 succeeds in
GAl and hence by Proposition 102 Γl

1‖∅ ⊢ ∆l
1 also succeeds in GAi. Given a

proof of Γl
1‖∅ ⊢ ∆l

1 in GAi we apply the corresponding rules of GAs until the
point on each branch when (success) is applied to a sequent Γ‖Π ⊢ ∆ ie where
there are labelling functions f1, . . . , fn such that ∪n

i=1fi(Γ) = ∪n
j=1fj(∆). Now

by Proposition 105, for i = 1 . . . n there exist multisets Γi
a,Γ

i
e,Γ

i
r,∆

i
a,∆

i
e such

that:

(1) Γul = Γi
a ∪ Γi

e ∪ Γi
r and ∆ul = ∆i

a ∪ ∆i
e

(2) Γi
a = atoms(fi(Γ)) = fi(Γ) and ∆i

a = fi(∆)
(3) Γi

e,Π ⊢ ∆i
e succeeds in GAs

(4) Γi
e ⊆ {A | x : A ∈ Γ, fi(x) = 0}

(5) Γi
r contains only ⇒-formulae

We show that the corresponding sequent Γul,Π ⊢ ∆ul succeeds in GAs. First
we use (C) to step to:

Γul, . . . ,Γul

︸ ︷︷ ︸

n

,Π, . . . ,Π
︸ ︷︷ ︸

n

⊢ ∆ul, . . . ,∆ul

︸ ︷︷ ︸

n

We then apply (W) repeatedly to formulae in Γi
r for i = 1 . . . n obtaining:

Γ1
a ∪ Γ1

e, . . . ,Γ
n
a ∪ Γn

e ,Π, . . . ,Π
︸ ︷︷ ︸

n

⊢ ∆1
a ∪ ∆1

e, . . . ,∆
n
a ∪ ∆n

e

Since ∪n
i=1fi(∆) = ∪n

j=1fj(Γ) we have that Γ1
a, . . . ,Γ

n
a ⊢ ∆1

a, . . . ,∆
n
a succeeds in

GAs using (M) and (ID). Also Γi
e,Π ⊢ ∆i

e succeeds in GAs for i = 1 . . . n. So
applying (M) repeatedly, we get that the whole sequent succeeds as required.
�

7.2 An Unlabelled Single Sequent Calculus for  L

We present the following unlabelled single sequent calculus for  L.

Definition 107 (G Ls) G Ls has the following rules.

Axioms

(ID) A ⊢ A (Λ) ⊢ (⊥) ⊥ ⊢ A
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Structural Rules

(W ) Γ ⊢ ∆

Γ, A ⊢ ∆

(M) Γ1 ⊢ ∆1 Γ2 ⊢ ∆2

Γ1, Γ2 ⊢ ∆1, ∆2

(C)

n

︷ ︸︸ ︷

Γ, . . . , Γ ⊢

n

︷ ︸︸ ︷

∆, . . . , ∆

Γ ⊢ ∆

n > 0

Logical Rules

(⇒, l) Γ, B, B ⇒ A ⊢ ∆, A

Γ, A ⇒ B ⊢ ∆

(⇒, r) Γ ⊢ ∆ Γ, A ⊢ ∆, B

Γ ⊢ ∆, A ⇒ B

We give the following proof of the characteristic axiom of  L for comparison with
the G L proof in Example 49.

Example 108 A proof of ((A⇒ B) ⇒ B) ⇒ ((B ⇒ A) ⇒ A) in G Ll:

⊢

⊢
(A ⇒ B) ⇒ B ⊢

A ⊢ A

B ⊢ B A ⇒ B ⊢ A ⇒ B

B, A ⇒ B ⊢ B, A ⇒ B

B ⇒ (A ⇒ B), B, A ⇒ B ⊢ B, A ⇒ B

(A ⇒ B) ⇒ B, A ⇒ B ⊢ B

(A ⇒ B) ⇒ B, A ⇒ B, A ⊢ A, B

(A ⇒ B) ⇒ B, B ⇒ A ⊢ A

(A ⇒ B) ⇒ B ⊢ (B ⇒ A) ⇒ A

⊢ ((A ⇒ B) ⇒ B) ⇒ ((B ⇒ A) ⇒ A)

As usual the soundness and completeness of G Ls is proved proof-theoretically
using the translation from  L to A.

Proposition 109 S succeeds in G Ls iff S∗ succeeds in GAs.

Proof. For the left-to-right direction it is straightforward to show that the
translated rules of G Ls are either derivable or admissible in GAs. For the
right-to-left direction we just sketch a proof. First we replace the axioms and
the rules (W ) and (M) of G Ls with (AX) Γ, t . . . , t ⊢ ∆, t . . . , t where ∆ ⊆∗ Γ.
It is easy to show that the two versions prove the same theorems (replacing
t with q ⇒ q where appropriate). Now since the rules and axioms of GAs

applying to ⇒ and propositional variables are a subset of those for G Ls we
have that if S∗ succeeds in GAs then S∗ succeeds in G Ls. Hence we can then
prove inductively that if S∗ succeeds in G Ls then S succeeds in G Ls and we
are done. �

Theorem 110 (Soundness and Completeness of G Ls) S succeeds in G Ls

iff |=∗

 L S.

Proof. By Proposition 109, Theorems 106 and 99, and Theorem 43 respectively
we have that S succeeds in G Ls iff S∗ succeeds in GAs iff |=A S∗ iff |=∗

 L S. �
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8 Discussion

In this paper we have presented the first Gentzen-style analytic and internal
sequent and hypersequent calculi for abelian logic A and  Lukasiewicz infinite-
valued logic  L. We have also developed terminating versions of the hypersequent
calculi and co-NP labelled sequent calculi matching the complexity bounds for
both logics. The key step for achieving these results for  L has been a translation
of  L into A.

For abelian logic A our work, providing the first comprehensive proof sys-
tems for this logic, extends that of Paoli [37] who gave a calculus for just the
intensional part of A. For  Lukasiewicz logic  L, on the other hand, several proof
systems have been presented in the literature. All of these however either fail
to be analytic, that is they have cut as a uneliminable rule eg [39, 15], or they
rely on external non-logical calculations such as solving mathematical program-
ming problems [23, 35, 36]. One exception is the proof calculus of Aguzzoli
and Ciabattoni [1] which exploits the fact that any formula valid in  L is also
valid in  Ln where n is a function of the number of occurrences of variables in
the formula. This calculus uses multiple sequents that seem to perform a simi-
lar role proof-theoretically to hypersequents but with a very different semantic
interpretation. Although this approach provides a valuable perspective on the
relationship between  L and the finite-valued logics we take the view that  L both
can and should be viewed as independent of the finite-valued logics. This is sup-
ported by the fact that the calculi given in this paper, in particular G L and
G Ls, are more direct and natural than those for  Ln. Moreover proof systems
for the finite-valued logics may be obtained from our systems for  L by adding
appropriate extra axioms or rules.

A more implementation-oriented approach to  Lukasiewicz logic is introduced
by Hähnle in [23] where a labelled tableaux reduction of  L to mixed integer pro-
gramming is presented. Although similar in output (ie mathematical program-
ming problems) to our calculus G Lt and of the same complexity (co-NP) the
method is significantly different to ours in that constraints (ie equations) are
generated dynamically as a proof progresses rather than maintaining a single
labelled equation for each branch. For this reason our calculus seems to be
more logical and easier to understand at various stages of a proof. A further
tableaux calculus has also been presented by Olivetti in [36] based on the Kripke
semantics of  L that again performs a reduction to mathematical programming
problems and is co-NP.

Finally we note that our approach of embedding fuzzy logics in comparative
logics could prove successful in deriving sequent and hypersequent calculi for
the other fuzzy logics. In particular we would like to find proof systems for
Hájek’s basic logic BL and Product logic P.
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