4,318 research outputs found

    Investigation of Gate Dielectric Materials and Dielectric/Silicon Interfaces for Metal Oxide Semiconductor Devices

    Get PDF
    The progress of the silicon-based complementary-metal-oxide-semiconductor (CMOS) technology is mainly contributed to the scaling of the individual component. After decades of development, the scaling trend is approaching to its limitation, and there is urgent needs for the innovations of the materials and structures of the MOS devices, in order to postpone the end of the scaling. Atomic layer deposition (ALD) provides precise control of the deposited thin film at the atomic scale, and has wide application not only in the MOS technology, but also in other nanostructures. In this dissertation, I study rapid thermal processing (RTP) treatment of thermally grown SiO2, ALD growth of SiO2, and ALD growth of high-k HfO2 dielectric materials for gate oxides of MOS devices. Using a lateral heating treatment of SiO2, the gate leakage current of SiO2 based MOS capacitors was reduced by 4 order of magnitude, and the underlying mechanism was studied. Ultrathin SiO2 films were grown by ALD, and the electrical properties of the films and the SiO2/Si interface were extensively studied. High quality HfO2 films were grown using ALD on a chemical oxide. The dependence of interfacial quality on the thickness of the chemical oxide was studied. Finally I studied growth of HfO2 on two innovative interfacial layers, an interfacial layer grown by in-situ ALD ozone/water cycle exposure and an interfacial layer of etched thermal and RTP SiO2. The effectiveness of growth of high-quality HfO2 using the two interfacial layers are comparable to that of the chemical oxide. The interfacial properties are studied in details using XPS and ellipsometry

    Characterization and modeling of low-frequency noise in Hf-based high -kappa dielectrics for future cmos applications

    Get PDF
    The International Technology Roadmap for Semiconductors outlines the need for high-K dielectric based gate-oxide Metal Oxide Semiconductor Field Effect Transistors for sub-45 nm technology nodes. Gate oxides of hafnium seem to be the nearest and best alternative for silicon dioxide, when material, thermal and structural properties are considered. Usage of poly-Si as a gate electrode material degrades the performance of the device and hence gate stacks based on metal gate electrodes are gaining high interest. Though a substantial improvement in the performance has been achieved with these changes, reliability issues are a cause of concern. For analog and mixed-signal applications, low-frequency (I /f~ noise is a major reliability factor. Also in recent years. low frequency noise diagnostics has become a powerful tool for device performance and reliability characterization. This dissertation work demonstrates the necessity of gate stack engineering for achieving a low I/f noise performance. Changes in the material and process parameters of the devices, impact the 1/f noise behavior. The impact of 1/f noise on gate technology and processing parameters xvere identified and investigated. The thickness and the quality of the interfacial oxide, the nitridation effects of the layers, high-K oxide, bulk properties of the high-K layer. percentage of hafnium content in the high-K, post deposition anneal (PDA) treatments, effects of gate electrode material (poly-silicon. fully silicided or metal). Gate electrode processing are investigated in detail. The role of additional interfaces and bulk layers of the gate stack is understood. The dependence of low-frequency noise on high and low temperatures was also investigated. A systematic and a deeper understanding of these parameters on 1/f noise behavior are deduced which also forms the basis for improved physics-based 1/f noise modeling. The model considers the effect of the interfacial layer and also temperature, based on tunneling based thermally activated model. The simulation results of improved drain-current noise model agree well with the experimentally calculated values

    Work Function Setting in High-k Metal Gate Devices

    Get PDF
    As transistor size continues to shrink, SiO2/polysilicon gate stack has been replaced by high-k/metal gate to enable further scaling. Two different integration approaches have been implemented in high-volume production: gate first and gate last; the latter is also known as replacement gate approach. In both integration schemes, getting the right work functions and threshold voltages for N-type metal-oxide-semiconductor (NMOS) and P-type metal-oxide-semiconductor (PMOS) devices is critical. A number of recent studies have shown that the threshold voltage of devices is highly dependent on not just the deposited material properties but also on subsequent device processing steps. This chapter contains a description on the different mechanisms of work function setting in gate last and gate first technologies, the sensitivities to different process conditions and special measurement techniques for gate stack analysis is shown

    Characterisation of silicon carbide CMOS devices for high temperature applications

    Get PDF
    PhD ThesisIn recent years it has become increasingly apparent that there is a large demand for resilient electronics that can operate within environments that standard silicon electronics cease to function such as high power and high voltage applications, high temperatures, corrosive atmospheres and environments exposed to radiation. This has become even more essential due to increased demands for sustainable energy production and the reduction in carbon emissions worldwide, which has put a large burden on a wide range of industrial sectors who now have a significant demand for electronics to meet these needs including; military, space, aerospace, automotive, energy and nuclear. In extreme environments, where ambient temperatures may well exceed the physical limit of silicon-based technologies, SiC based technology offers a lower cost and a smaller footprint solution for operation in such environments due to its advantageous electrical properties such as a high breakdown electric field, high thermal conductivity and large saturation velocity. High quality material on large area wafers (150 mm) is now commercially available, allowing the fabrication of reliable high temperature, high frequency and high current power electronic devices, improving the already optimised silicon based structures. An important advantage of SiC is that it is the only wide band gap compound semiconductor that can be thermally oxidised to grow insulating, high quality SiO2 layers, which makes it an ideal candidate to replace silicon technologies for metal-oxide-semiconductor applications, which is the main focus of this research. Although the technology has made a number of major steps forward over recent years and the commercial manufacturing process has advanced significantly, there still remains a number of issues that need to be overcome in order to fully realise the potential of the material for electronic applications. This thesis describes the characterisation of 4H-SiC CMOS structures that were designed for high temperature applications and fabricated with varying gate dielectric treatments and process steps. The influence of process techniques on the characteristics of metal-oxide-semiconductor (MOS) devices has been investigated by means of electrical characterisation and the results have been compared to theoretical models. The C-V and I-V characteristics of both MOS capacitor and MOSFET structures with varying gate dielectrics on both n-type and p-type 4H-SiC have been analysed to explore the benefits of the varying process techniques that have been employed in the design of the devices. The results show that the field effect mobility characteristic of 4H-SiC MOSFETs are dominated at low perpendicular electric fields by Coulomb scattering and at high electric fields by low surface roughness mobility, which is due to the rough SiC-SiO2 interface. The findings also show that a thermally grown SiO2 layer at the semiconductor-dielectric interface is a beneficial process step that enhances the interfacial characteristics and increases the channel mobility of the MOSFETs. In addition to this it is also found that this technique provides the most beneficial characteristics on both n-type and p-type 4H-SiC, which suggests that it would be the most suitable treatment for a monolithic CMOS process. The impact of threshold voltage adjust ion implantation on both the MIS capacitor and MOSFET structures is also presented and shows that the increasing doses of nitrogen that are implanted to adjust the threshold voltage act to improve the device performance by acting to modify the charge at the interface or within the gate oxide and therefore increase the field effect mobility of the studied devices.Engineering and Physical Sciences Research Council (EPSRC) and Raytheon U

    TiN/HfO2/SiO2/Si gate stacks reliability : Contribution of HfO2 and interfacial SiO2 layer

    Get PDF
    Hafnium Oxide based gate stacks are considered to be the potential candidates to replace SiO2 in complementary metal-oxide-semiconductor (CMOS), as they reduce the gate leakage by over 100 times while keeping the device performance intact. Even though considerable performance improvement has been achieved, reliability of high-κ devices for the next generation of transistors (45nm and beyond) which has an interfacial layer (IL: typically SiO2) between high-κ and the substrate, needs to be investigated. To understand the breakdown mechanism of high-κ/SiO2 gate stack completely, it is important to study this multi-layer structure extensively. For example, (i) the role of SiO2 interfacial layers and bulk high-κ gate dielectrics without any interfacial layer can be investigated separately while maintaining same growth conditions; (ii) the evolution of breakdown process can be studied through stress induced leakage current (SILC); (iii) relationship of various degradation mechanisms such as negative bias temperature instability (NBTI) with that of the dielectric breakdown; and (iv) a fast evaluation process to estimate statistical breakdown distribution. In this dissertation a comparative study was conducted to investigate individual breakdown characteristics of high-κ/IL (ISSG SiO2)/metal gate stacks, in-situ steam generated (ISSG)-SiO2 MOS structures and HfO2-only metal-insulator-metal (MIM) capacitors. Experimental results indicate that after constant voltage stress (CVS) identical degradation for progressive breakdown and SILC were observed in high-κ/IL and SiO2-only MOS devices, but HfO2-only MIM capacitors showed insignificant SILC and progressive breakdown until it went into hard breakdown. Based on the observed SILC behavior and charge-to-breakdown (QBD), it was inferred that interfacial layer initiates progressive breakdown of metal gate/high-κ gate stacks at room temperature. From normalized SILC (ΔJg/Jg0) at accelerated temperature and activation energy of the timeto- breakdown (TBD), it was observed that IL initiates the gate stack breakdown at higher temperatures as well. A quantitative agreement was observed for key parameters of NBTI and time dependent dielectric breakdown (TDDB) such as the activation energies of threshold voltage change and SILC. The quality and thickness variation of the IL causes similar degradation on both NBTI and TDDB indicating that mechanism of these two reliability issues are related due to creation of identical defect types in the IL. CVS was used to investigate the statistical distribution of TBD, defined as soft or first breakdown where small sample size was considered. As TBD followed Weibull distribution, large sample size was not required. Since the failure process in static random access memory (SRAM) is typically predicted by the realistic TDDB model based on gate leakage current (IFAIL) rather than the conventional first breakdown criterion, the relevant failure distributions at IFAIL are non-Weibull including the progressive breakdown (PBD) phase for high-κ/metal gate dielectrics. A new methodology using hybrid two-stage stresses has been developed to study progressive breakdown phase further for high-κ and SiO2. It is demonstrated that VRS can be used effectively for quantitative reliability studies of progressive breakdown phase and final breakdown of high-κ and other dielectric materials; thus it can replace the time-consuming CVS measurements as an efficient methodology and reduce the resources manufacturing cost
    • …
    corecore