552 research outputs found

    Digital flight control research

    Get PDF
    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator

    Design criteria for flight evaluation. Monograph 4 - Control system evaluation

    Get PDF
    Methods and analyses for flight evaluation of control systems for multistage launch vehicle

    Analysis and design of space vehicle flight control systems. Volume XIV - Load relief

    Get PDF
    Load relief autopilot for space vehicle control and stabilit

    On the applicability of integrated circuit technology to general aviation orientation estimation

    Get PDF
    The criteria of the significant value of the panel instruments used in general aviation were examined and kinematic equations were added for comparison. An instrument survey was performed to establish the present state of the art in linear and angular accelerometers, pressure transducers, and magnetometers. A very preliminary evaluation was done of the computers available for data evaluation and estimator mechanization. The mathematical model of a light twin aircraft employed in the evaluation was documented, the results of the sensor survey and the results of the design studies were presented

    A simulation of the instrument pointing system for the Astro-1 mission

    Get PDF
    NASA has recently completed a shuttle-borne stellar ultraviolet astronomy mission known as Astro-1. A three axis instrument pointing system (IPS) was employed to accurately point the science instruments. In order to analyze the pointing control system and verify pointing performance, a simulation of the IPS was developed using the multibody dynamics software TREETOPS. The TREETOPS IPS simulation is capable of accurately modeling the multibody IPS system undergoing large angle, nonlinear motion. The simulation is documented and example cases are presented demonstrating disturbance rejection, fine pointing operations, and multiple target pointing and slewing of the IPS

    Flight control systems development and flight test experience with the HiMAT research vehicles

    Get PDF
    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time

    The DAST-1 remotely piloted research vehicle development and initial flight testing

    Get PDF
    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented

    Applications of inertial navigation and modern control theory to the all weather landing problem

    Get PDF
    Inertial navigation and automatic landing control theory applied to instrument landing proble

    The Impact of GPS Velocity Based Flight Control on Flight Instrumentation Architecture

    Get PDF
    This thesis explores the use of velocity information obtained by a Global Positioning System (GPS) receiver to close the aircraft’s flight control loop. A novel framework to synthesize attitude information from GPS velocity vector measurements is discussed. The framework combines the benefits of high-quality GPS velocity measurements with a novel velocity vector based flight control paradigm to provide a means for the human operator or autopilot to close the aircraft flight control loop. Issues arising from limitations in GPS as well as the presence of a human in the aircraft control loop are addressed. Results from several flight tests demonstrate the viability of this novel concept and show that GPS velocity based attitude allows for equivalent aircraft control as traditional attitude. Two possible applications of GPS velocity based attitude, an autopilot and a tunnelin- the-sky trajectory guidance system, are demonstrated in flight. Unlike traditional autopilot and trajectory guidance systems, these applications rely solely on the information obtained from a single-antenna GPS receiver which makes them affordable to the larger General Aviation aircraft community. Finally, the impact of GPS velocity based flight control on the instrumentation architecture of flight vehicles is investigated.Rockwell-Collins, NASA/FAA Joint University Program for Air Transportation, Draper Laborator

    Design, implementation and flight testing of PIF autopilots for general aviation aircraft

    Get PDF
    The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented
    • …
    corecore