22,572 research outputs found

    Evolving temporal association rules with genetic algorithms

    Get PDF
    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty

    Web Usage Mining with Evolutionary Extraction of Temporal Fuzzy Association Rules

    Get PDF
    In Web usage mining, fuzzy association rules that have a temporal property can provide useful knowledge about when associations occur. However, there is a problem with traditional temporal fuzzy association rule mining algorithms. Some rules occur at the intersection of fuzzy sets' boundaries where there is less support (lower membership), so the rules are lost. A genetic algorithm (GA)-based solution is described that uses the flexible nature of the 2-tuple linguistic representation to discover rules that occur at the intersection of fuzzy set boundaries. The GA-based approach is enhanced from previous work by including a graph representation and an improved fitness function. A comparison of the GA-based approach with a traditional approach on real-world Web log data discovered rules that were lost with the traditional approach. The GA-based approach is recommended as complementary to existing algorithms, because it discovers extra rules. (C) 2013 Elsevier B.V. All rights reserved

    Mining Frequent Itemsets Using Genetic Algorithm

    Full text link
    In general frequent itemsets are generated from large data sets by applying association rule mining algorithms like Apriori, Partition, Pincer-Search, Incremental, Border algorithm etc., which take too much computer time to compute all the frequent itemsets. By using Genetic Algorithm (GA) we can improve the scenario. The major advantage of using GA in the discovery of frequent itemsets is that they perform global search and its time complexity is less compared to other algorithms as the genetic algorithm is based on the greedy approach. The main aim of this paper is to find all the frequent itemsets from given data sets using genetic algorithm

    Caregiver Assessment Using Smart Gaming Technology: A Preliminary Approach

    Get PDF
    As pre-diagnostic technologies are becoming increasingly accessible, using them to improve the quality of care available to dementia patients and their caregivers is of increasing interest. Specifically, we aim to develop a tool for non-invasively assessing task performance in a simple gaming application. To address this, we have developed Caregiver Assessment using Smart Gaming Technology (CAST), a mobile application that personalizes a traditional word scramble game. Its core functionality uses a Fuzzy Inference System (FIS) optimized via a Genetic Algorithm (GA) to provide customized performance measures for each user of the system. With CAST, we match the relative level of difficulty of play using the individual's ability to solve the word scramble tasks. We provide an analysis of the preliminary results for determining task difficulty, with respect to our current participant cohort.Comment: 7 pages, 1 figures, 6 table
    corecore