37,786 research outputs found

    Fade Depth Prediction Using Human Presence for Real Life WSN Deployment

    Get PDF
    Current problem in real life WSN deployment is determining fade depth in indoor propagation scenario for link power budget analysis using (fade margin parameter). Due to the fact that human presence impacts the performance of wireless networks, this paper proposes a statistical approach for shadow fading prediction using various real life parameters. Considered parameters within this paper include statistically mapped human presence and the number of people through time compared to the received signal strength. This paper proposes an empirical model fade depth prediction model derived from a comprehensive set of measured data in indoor propagation scenario. It is shown that the measured fade depth has high correlations with the number of people in non-line-of-sight condition, giving a solid foundation for the fade depth prediction model. In line-of-sight conditions this correlations is significantly lower. By using the proposed model in real life deployment scenarios of WSNs, the data loss and power consumption can be reduced by the means of intelligently planning and designing Wireless Sensor Network

    Techno-economic evaluation of cognitive radio in a factory scenario

    Get PDF
    Wireless applications gradually enter every aspect of our life. Unfortunately, these applications must reuse the same scarce spectrum, resulting in increased interference and limited usability. Cognitive Radio proposes to mitigate this problem by adapting the operational parameters of wireless devices to varying interference conditions. However, it involves an increase in cost. In this paper we examine the economic balance between the added cost and the increased usability in one particular real-life scenario. We focus on the production floor of an industrial installation where wireless sensors monitor production machinery, and a wireless LAN is used as the data backbone. We examine the effects of implementing dynamic spectrum access by means of ideal RE sensing, and model the benefit in terms of increased reliability and battery lifetime. We estimate the financial cost of interference and the potential gain, and conclude that cognitive radio can bring business gains in real-life applications

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks

    Full text link
    In this paper, we experimentally investigate the combined effect of human, antenna orientation in elevation direction and the ground effect on the Received Signal Strength Indicator (RSSI) parameter in the Wireless Sensor Network (WSN). In experiment, we use MICAz motes and consider different scenarios where antenna of the transmitter node is tilted in elevation direction. The motes were placed on the ground to take into account the ground effect on the RSSI. The effect of one, two and four persons on the RSSI is recorded. For one and two persons, different walking paces e.g. slow, medium and fast pace, are analysed. However, in case of four persons, random movement is carried out between the pair of motes. The experimental results show that some antenna orientation angles have drastic effect on the RSSI, even without any human activity. The fluctuation count and range of RSSI in different scenarios with same walking pace are completely different. Therefore, an efficient human activity algorithm is need that effectively takes into count the antenna elevation and other parameters to accurately detect the human activity in the WSN deployment region.Comment: 10th IEEE International Conference on Frontiers of Information Technology (FIT 12), 201

    People-Sensing Spatial Characteristics of RF Sensor Networks

    Full text link
    An "RF sensor" network can monitor RSS values on links in the network and perform device-free localization, i.e., locating a person or object moving in the area in which the network is deployed. This paper provides a statistical model for the RSS variance as a function of the person's position w.r.t. the transmitter (TX) and receiver (RX). We show that the ensemble mean of the RSS variance has an approximately linear relationship with the expected total affected power (ETAP). We then use analysis to derive approximate expressions for the ETAP as a function of the person's position, for both scattering and reflection. Counterintuitively, we show that reflection, not scattering, causes the RSS variance contours to be shaped like Cassini ovals. Experimental tests reported here and in past literature are shown to validate the analysis

    Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks

    Get PDF
    Wireless energy harvesting can improve the performance of cognitive wireless sensor networks (WSNs). This paper considers radio frequency (RF) energy harvesting from transmissions in the primary spectrum for cognitive WSNs. The overall success probability of the energy harvesting cognitive WSN depends on the transmission success probability and energy success probability. Using the tools from stochastic geometry, we show that the overall success probability can be optimized with respect to: 1) transmit power of the sensors; 2) transmit power of the primary transmitters; and 3) spatial density of the primary transmitters. In this context, an optimization algorithm is proposed to maximize the overall success probability of the WSNs. Simulation results show that the overall success probability and the throughput of the WSN can be significantly improved by optimizing the aforementioned three parameters. As RF energy harvesting can also be performed indoors, hence, our solution can be directly applied to the cognitive WSNs that are installed in smart buildings

    Mathematical modeling of ultra wideband in vivo radio channel

    Get PDF
    This paper proposes a novel mathematical model for an in vivo radio channel at ultra-wideband frequencies (3.1–10.6 GHz), which can be used as a reference model for in vivo channel response without performing intensive experiments or simulations. The statistics of error prediction between experimental and proposed model is RMSE = 5.29, which show the high accuracy of the proposed model. Also, the proposed model was applied to the blind data, and the statistics of error prediction is RMSE = 7.76, which also shows a reasonable accuracy of the model. This model will save the time and cost on simulations and experiments, and will help in designing an accurate link budget calculation for a future enhanced system for ultra-wideband body-centric wireless systems
    corecore