107 research outputs found

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Efficient Transmission of H.264 Video over Multirate IEEE 802.11e WLANs

    Get PDF
    The H.264 video encoding technology, which has emerged as one of the most promising compression standards, offers many new delivery-aware features such as data partitioning. Efficient transmission of H.264 video over any communication medium requires a great deal of coordination between different communication network layers. This paper considers the increasingly popular and widespread 802.11 Wireless Local Area Networks (WLANs) and studies different schemes for the delivery of the baseline and extended profiles of H.264 video over such networks. While the baseline profile produces data similar to conventional video technologies, the extended profile offers a partitioning feature that divides video data into three sets with different levels of importance. This allows for the use of service differentiation provided in the WLAN. This paper examines the video transmission performance of the existing contention-based solutions for 802.11e, and compares it to our proposed scheduled access mechanism. It is demonstrated that the scheduled access scheme outperforms contention-based prioritized services of the 802.11e standard. For partitioned video, it is shown that the overhead of partitioning is too high, and better results are achieved if some partitions are aggregated. The effect of link adaptation and multirate operation of the physical layer (PHY) is also investigated in this paper

    The VPQ scheduler in access point for VoIP over WLAN

    Get PDF
    The Voice over Internet Protocol (VoIP) application has observed the fastest growth in the world of telecommunication.VoIP is seen as a short-term and long-trem transmission for voice and audio traffic. Meanwhile, VoIP is moving on Wireless Local Area Networks (WLANs) based on IEEE 802.11 standards.Currently, there are many packet scheduling algorithms for real-time transmission over network.Unfortunately, the current scheduling will not be able to handle the VoIP packets with the proper manner and they have some drawbacks over real-time applications.The objective of this research is to propose a new Voice Priority Queue (VPQ) packet scheduling and algorithm to ensure more throughput, fairness and efficient packet scheduling for VoIP performance of queues and traffics.A new scheduler flexible which is capable of satisfying the VoIP traffic flows.Experimental topologies on NS-2 network simulator were analyzed for voice traffic. Preliminary results show that this can achieve maximum and more accurate VoIP quality throughput and fairness index in access point for VoIP over WLANs.We verified and validated VPQ an extensive experimental simulation study under various traffic flows over WLANs

    A Greedy Reclaiming Scheduler for IEEE 802.11e HCCA Real-Time Networks

    Get PDF
    The IEEE 802.11e standard introduces Quality of Service (QoS) support for wireless local area networks and suggests how to design a tailored HCF Controlled Channel Access (HCCA) scheduler. However the reference scheduling algorithm is suitable to assure service guarantees only for Constant Bit Rate traffic streams, whereas shows its limits for Variable Bit Rate traffic. Despite the numerous alternative schedulers proposed to improve the QoS support for multimedia applications, in the case of VBR traffic satisfactory real-time performance has not been yet achieved. This paper presents a new scheduling algorithm, Unused Time Shifting Scheduler (UTSS). It integrates a mechanism for bandwidth reclaiming into a HCCA real-time scheduler. UTSS assigns the unused portion of each transmission opportunity to the next scheduled traffic stream. Thanks to such feature, traffic variability is absorbed, reducing the waste of resources. The analytical evaluation, corroborated by the simulation results, shows that UTSS is suitable to reduce the delay experienced by VBR traffic streams and to increase the maximum burstiness sustainable by the network

    Greediness control algorithm for multimedia streaming in wireless local area networks

    Get PDF
    This work investigates the interaction between the application and transport layers while streaming multimedia in a residential Wireless Local Area Network (WLAN). Inconsistencies have been identified that can have a severe impact on the Quality of Experience (QoE) experienced by end users. This problem arises as a result of the streaming processes reliance on rate adaptation engines based on congestion avoidance mechanisms, that try to obtain as much bandwidth as possible from the limited network resources. These upper transport layer mechanisms have no knowledge of the media which they are carrying and as a result treat all traffic equally. This lack of knowledge of the media carried and the characteristics of the target devices results in fair bandwidth distribution at the transport layer but creates unfairness at the application layer. This unfairness mostly affects user perceived quality when streaming high quality multimedia. Essentially, bandwidth that is distributed fairly between competing video streams at the transport layer results in unfair application layer video quality distribution. Therefore, there is a need to allow application layer streaming solutions, tune the aggressiveness of transport layer congestion control mechanisms, in order to create application layer QoE fairness between competing media streams, by taking their device characteristics into account. This thesis proposes the Greediness Control Algorithm (GCA), an upper transport layer mechanism that eliminates quality inconsistencies caused by rate / congestion control mechanisms while streaming multimedia in wireless networks. GCA extends an existing solution (i.e. TCP Friendly Rate Control (TFRC)) by introducing two parameters that allow the streaming application to tune the aggressiveness of the rate estimation and as a result, introduce fair distribution of quality at the application layer. The thesis shows that this rate adaptation technique, combined with a scalable video format allows increased overall system QoE. Extensive simulation analysis demonstrate that this form of rate adaptation increases the overall user QoE achieved via a number of devices operating within the same home WLAN

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it “in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better results

    Real-time support for HCCA function in IEEE 802.11e networks: a performance evaluation

    Get PDF
    The IEEE 802.11 standard for wireless networks has been recently enhanced with the IEEE 802.11e amendment which introduces Quality of Service support. It provides differentiation mechanisms at the Medium Access Control layer, using two additional access functions: the Enhanced Distributed Channel Access (EDCA) function and the HCF Controlled Channel Access (HCCA) function. Only the HCCA mechanism is suitable for serving traffic streams with real-time requirements such as multimedia applications and Voice Over IP. The IEEE 802.11e standard does not specify a mandatory HCCA scheduling algorithm, but it offers a reference scheduler as the guideline in the resources scheduling design.In this paper we analyze four HCCA alternative schedulers to the reference one. They offer real-time guarantees proposing different solutions to the request of QoS and real-time support expressed by the increasing diffusion of multimedia applications. A performance evaluation is conducted to show the main differences between the considered schedulers, including the reference one.The results show that under several scenarios there is not a unique best scheduler, but there exists a variety of solutions depending on the specified requirements. The conclusions of the paper offer some guidelines in the choice of the scheduler tailored for a particular scenario of interest

    Weighted proportional fairness and pricing based resource allocation for uplink offloading using IP flow mobility

    Get PDF
    Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. However, the majority of the state-of-the-art is focused on the downlink offloading, while the change of mobile user habits, like mobile content creation and uploading, makes uplink offloading a rising issue. In this work we focus on the uplink offloading using IP Flow Mobility (IFOM). IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF by employing the CSMA/CA scheme with a binary exponential backoff algorithm. In this paper, we propose a weighted proportionally fair bandwidth allocation algorithm for the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. We aim to improve the energy efficiency of the UEs and to increase the offloaded data volume under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, we consider both the different upload data needs of the UEs, along with their LTE spectrum efficiency and propose an access mechanism that improves the use of WiFi access in uplink offloading. In the LTE part, we propose a two-stage pricing-based rate allocation under both linear and exponential pricing approaches, aiming to satisfy all offloading UEs regarding their LTE uplink access. We theoretically analyse the proposed algorithms and evaluate their performance through simulations. We compare their performance with the 802.11 DCF access scheme and with a state-of-the-art access algorithm under different number of offloading UEs and for both linear and exponential pricing-based rate allocation for the LTE uplink. Through the evaluation of energy efficiency, offloading capabilities and throughput performance, we provide an improved uplink access scheme for UEs that operate with IFOM for uplink offloading.Peer ReviewedPreprin
    • …
    corecore