3,824 research outputs found

    Robust Sound Event Classification using Deep Neural Networks

    Get PDF
    The automatic recognition of sound events by computers is an important aspect of emerging applications such as automated surveillance, machine hearing and auditory scene understanding. Recent advances in machine learning, as well as in computational models of the human auditory system, have contributed to advances in this increasingly popular research field. Robust sound event classification, the ability to recognise sounds under real-world noisy conditions, is an especially challenging task. Classification methods translated from the speech recognition domain, using features such as mel-frequency cepstral coefficients, have been shown to perform reasonably well for the sound event classification task, although spectrogram-based or auditory image analysis techniques reportedly achieve superior performance in noise. This paper outlines a sound event classification framework that compares auditory image front end features with spectrogram image-based front end features, using support vector machine and deep neural network classifiers. Performance is evaluated on a standard robust classification task in different levels of corrupting noise, and with several system enhancements, and shown to compare very well with current state-of-the-art classification techniques

    A joint separation-classification model for sound event detection of weakly labelled data

    Get PDF
    Source separation (SS) aims to separate individual sources from an audio recording. Sound event detection (SED) aims to detect sound events from an audio recording. We propose a joint separation-classification (JSC) model trained only on weakly labelled audio data, that is, only the tags of an audio recording are known but the time of the events are unknown. First, we propose a separation mapping from the time-frequency (T-F) representation of an audio to the T-F segmentation masks of the audio events. Second, a classification mapping is built from each T-F segmentation mask to the presence probability of each audio event. In the source separation stage, sources of audio events and time of sound events can be obtained from the T-F segmentation masks. The proposed method achieves an equal error rate (EER) of 0.14 in SED, outperforming deep neural network baseline of 0.29. Source separation SDR of 8.08 dB is obtained by using global weighted rank pooling (GWRP) as probability mapping, outperforming the global max pooling (GMP) based probability mapping giving SDR at 0.03 dB. Source code of our work is published.Comment: Accepted by ICASSP 201

    Convolutional Gated Recurrent Neural Network Incorporating Spatial Features for Audio Tagging

    Get PDF
    Environmental audio tagging is a newly proposed task to predict the presence or absence of a specific audio event in a chunk. Deep neural network (DNN) based methods have been successfully adopted for predicting the audio tags in the domestic audio scene. In this paper, we propose to use a convolutional neural network (CNN) to extract robust features from mel-filter banks (MFBs), spectrograms or even raw waveforms for audio tagging. Gated recurrent unit (GRU) based recurrent neural networks (RNNs) are then cascaded to model the long-term temporal structure of the audio signal. To complement the input information, an auxiliary CNN is designed to learn on the spatial features of stereo recordings. We evaluate our proposed methods on Task 4 (audio tagging) of the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. Compared with our recent DNN-based method, the proposed structure can reduce the equal error rate (EER) from 0.13 to 0.11 on the development set. The spatial features can further reduce the EER to 0.10. The performance of the end-to-end learning on raw waveforms is also comparable. Finally, on the evaluation set, we get the state-of-the-art performance with 0.12 EER while the performance of the best existing system is 0.15 EER.Comment: Accepted to IJCNN2017, Anchorage, Alaska, US

    Eventness: Object Detection on Spectrograms for Temporal Localization of Audio Events

    Full text link
    In this paper, we introduce the concept of Eventness for audio event detection, which can, in part, be thought of as an analogue to Objectness from computer vision. The key observation behind the eventness concept is that audio events reveal themselves as 2-dimensional time-frequency patterns with specific textures and geometric structures in spectrograms. These time-frequency patterns can then be viewed analogously to objects occurring in natural images (with the exception that scaling and rotation invariance properties do not apply). With this key observation in mind, we pose the problem of detecting monophonic or polyphonic audio events as an equivalent visual object(s) detection problem under partial occlusion and clutter in spectrograms. We adapt a state-of-the-art visual object detection model to evaluate the audio event detection task on publicly available datasets. The proposed network has comparable results with a state-of-the-art baseline and is more robust on minority events. Provided large-scale datasets, we hope that our proposed conceptual model of eventness will be beneficial to the audio signal processing community towards improving performance of audio event detection.Comment: 5 pages, 3 figures, accepted to ICASSP 201

    A toolbox for animal call recognition

    Get PDF
    Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems
    corecore