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Abstract:  

Monitoring the natural environment is becoming increasingly important as habit 

degradation and climate change reduce the world’s biodiversity. We have developed 

tools, applications and processes to assist ecologists with the collection and analysis 

of acoustic data at large spatial and temporal scales. One of our key objectives is 

automated animal call recognition, and our approach has three novel attributes. First, 

we work with raw environmental audio, contaminated by noise and artefacts, and 

containing calls that vary greatly in volume depending the animal’s proximity to the 

microphone. Second, initial experimentation suggested that no single recogniser could 

deal with the enormous variety of calls. Therefore, we developed a toolbox of generic 

recognisers to extract invariant features for each call type. Third, many species are 

cryptic and offer little data with which to train a recogniser. Many popular machine 

learning methods (e.g. Hidden Markov Models, Neural Networks and Support Vector 

Machines) require large volumes of training and validation data, and considerable 

time and expertise to prepare. Consequently we adopt bootstrap techniques that can be 

initiated with little data and refined subsequently. In this paper, we describe the 

recognition algorithms in our toolbox and present results for their performance on real 

ecological problems. 

 



 1 

1 Introduction 1 

The increased availability, power and storage capacity of computing hardware have 2 

made it feasible to gather large volumes of audio data for ecological analysis. In 3 

addition, enhanced web services have made it possible to bring that audio data 4 

directly into the laboratory rather than have ecologists go into the field. However, it is 5 

impossible for ecologists to listen to even a small fraction of the audio data made so 6 

easily available (Agranat 2009). Some degree of automated assistance is essential. In 7 

conjunction with ecologists, our laboratory has developed an online service 8 

<http://sensor.mquter.qut.edu.au> that offers a variety of tools for the analysis of 9 

environmental recordings. In a previous report, we described various aspects of our 10 

sensor network for collecting audio data (Lau et al. 2008). In this report we describe 11 

our approach to the problem of automated analysis and, in particular, to automated 12 

animal call recognition.  13 

 14 

Perhaps due to the importance of birds as indicator species of environmental health, 15 

there is already a considerable body of work published on the detection of bird 16 

vocalisations (Acevedo et al. 2009; Anderson et al. 1996; Brandes 2008; Cai et al. 17 

2007; Chen & Maher 2006; Juang & Chen 2007; Kwan et al. 2004; McIlraith & Card 18 

1997; Somervuo et al. 2006). A common approach has been to adopt the well-19 

developed tools of Automated Speech Recognition (ASR), which extract Mel-20 

Frequency Cepstral Coefficients (MFCCs) as features and use Hidden Markov 21 

Models (HMMs) to model the vocalisations. Unfortunately it is not so easy to 22 

translate ASR to the analysis of environmental recordings because there are far fewer 23 

constraints in the latter task. Two issues are noise and variability. ASR tasks are 24 

typically restricted to environments where noise is tightly constrained, e.g. over the 25 

telephone. By contrast, environmental acoustics contain a wide variety of non-26 

biological noises having a great range of intensities and a variety of animal sounds 27 
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that have nothing to do with the task at hand. Furthermore, the sources can be located 1 

any distance from the microphone. Secondly, despite its difficulty, ASR applied to the 2 

English language requires the recognition of about 50 phonemes. By contrast, bird 3 

calls offer endless variety; variety of call structure between species, variety between 4 

populations of the one species and variety within and between individuals of the one 5 

population. Many species have multiple calls (in this paper we do not distinguish bird 6 

calls form bird songs) and many are mimics. To give some indication of the difficulty 7 

of bird call recognition, a state-of-the-art commercial system using an ASR approach 8 

that has been under development for more than a decade, achieves, on unseen test 9 

vocalisations of 54 species, an average accuracy (defined as the average of precision 10 

and recall) of 65% to 75% (Agranat 2009). This accuracy may not be sufficient for 11 

some applications. Furthermore, the software requires the user to tune many 12 

parameters which require a good understanding of the underlying algorithms. Some 13 

work has been done in the urban setting on the recognition of acoustic events in 14 

auditory scene analysis but these tasks suffer from exactly the same difficulties 15 

(Cowling & Sitte 2003; Temko et al. 2006; Zhuang et al. 2008). 16 

 17 

Our approach to animal call recognition has three attributes which help to distinguish 18 

it from many previous approaches to the same problem: real world data, multiple 19 

recognition methods and limited training data. 20 

 21 

1. Real world data 22 

The results we describe are obtained with real world data that has not been cleaned of 23 

artefacts. There is a world of difference between reporting classification results on 24 

carefully cleaned data with balanced training and test sets versus the raw recordings to 25 

which ecologists actually listen. Constructing a data set containing equal numbers of 26 

each call type that have been manually cut from recordings to exclude extraneous 27 
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noise is not a realistic approximation to the real situation of very uneven class 1 

numbers and low call density in arbitrary background noise.  2 

 3 

2. Multiple recognition methods 4 

After an initial period where we adapted ASR methods to animal call detection, we 5 

came to the conclusion that a one-algorithm-fits-all approach could not deal with the 6 

enormous variety of environmental acoustic events. To address this issue, we 7 

developed a toolbox of generic recognisers that identify invariant features in calls of 8 

interest. For bird calls consisting of a single syllable (e.g. the currawong, see Figure 9 

1(a)), extracting MFCCs and training HMMs may still be a suitable choice. However 10 

the ‘tool-box’ approach allows us to mix and match feature extraction with classifiers 11 

to suit generic call types. 12 

 13 

3. Limited training data 14 

Despite the demonstrated accuracy of machine learning methods such as Neural 15 

Networks (NN) and Hidden Markov Models (HMM) on standard datasets, these 16 

methods do not necessarily adapt well to the real world of environmental recordings. 17 

Many bird species are cryptic and the large amounts of data required to train a NN or 18 

HMM are not available. It is more practical to adopt methods that require just one or a 19 

few instances of a call type. This approach is effective for species whose calls vary 20 

little within and between populations (e.g. the Lewin’s Rail (Lau et al. 2008)). 21 

Another consideration is the practicality of training of multi-class classifiers. Training 22 

a 50 bird-call classifier for a given locality may be possible but it is not practical if it 23 

must be repeated every time the ecologist wishes to incorporate a new call instance or 24 

call class. 25 

 26 
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In this paper we describe a ‘toolbox’ of animal call recognition techniques developed 1 

in our laboratory. (It is available at <http://sensor.mquter.qut.edu.au/>.) The main 2 

motivation for our work has been to provide tools that are easy to use (compared to 3 

the more sophisticated techniques of ASR) and which are well adapted to the real 4 

problems confronted by ecologists wishing to process many hours of environmental 5 

recordings. This is not to say that the more sophisticated tools have no value. Rather 6 

our tools could be viewed as filters to highlight points of interest in long recordings. 7 

 8 

We limit ourselves to terrestrial animals – more specifically we exclude marine 9 

animals whose calls present a different set of problems (Rickwood & Taylor 2008). In 10 

addition we avoid birds that mimic. In theory, any animal call used for 11 

communication purposes should contain invariant features but in practice the 12 

recognition of mimics can be a very difficult task, even for humans. 13 

 14 

In Section 2, we describe some different call structures, their invariant features and 15 

the recognition algorithms appropriate for them. In Section 3 we describe experiments 16 

with datasets obtained for selected animal calls and present our results. We conclude 17 

the paper with a discussion of our ongoing work in expanding the toolbox. 18 

 19 

2 Call Detection Algorithms 20 

2.1 Call Structures 21 

Many animal calls have a hierarchical structure. A complex bird call, for example, 22 

may be divided into phrases, the phrases into syllables and the syllables into one or 23 

more elements (Catchpole & Slater 1995). Each element may take the form of a 24 

whistle (single tone), chirp (slowly modulated tone), whip (rapidly modulated tone), 25 

click (vertical line in spectrogram), vibrato, shriek, stacked harmonics (simultaneous 26 
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multiple tones) or buzz (rapidly repeated click) (Catchpole & Slater 1995). The same 1 

syllable can be repeated multiple times. Figure 1 illustrates the structure of calls used 2 

in this work. Each image has been extracted from a spectrogram - the x-axis 3 

represents time, the y-axis frequency, and the grey scale represents acoustic intensity. 4 

 5 

The currawong call (Figure 1(a)) consists of a frequency modulated whistle. The 6 

curlew call consists of multiple syllables having simple to complex structure, with or 7 

without harmonics. The example shown in (Figure 1(b) is a simple modulated tone. 8 

The male koala has a complexly structured call consisting of inhalations and 9 

exhalations lasting for 30 seconds or more. A small portion of its call (illustrating 10 

three oscillatory exhalations) is shown in Figure 1(c)). The cane toad and gecko have 11 

multi-syllable calls. The former consists of a click rapidly repeated for 20 seconds or 12 

more and the latter consists of some five to six clicks slowly repeated (Figure 1(d-e)). 13 

The ground parrot call consists of about 10-13 syllables, each one a descending chirp. 14 

Successive syllables increase in pitch (Figure 1(f)). The whistle and whip of a whip 15 

bird call is illustrated in Figure 1(g)). The whip may be either ascending or 16 

descending. Three examples of stacked harmonic calls are shown in Figure 1(h-j)). 17 

Human vowels typically display a dense stack of harmonics in a spectrogram.  18 

 19 

While all calls exhibit some form of variability (e.g. the periodicity of the gecko call 20 

depends on temperature (Marcellini 1974), each call type nevertheless has one or 21 

more invariant features on which recognition can depend. The same can even be said 22 

of certain diffuse, apparently structureless events such as wind (Figure 1(k)) and 23 

canopy rain (Figure 1(l)).  24 

 25 
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Our toolbox contains a suite of classifiers each of which we have found appropriate 1 

for different call structures and syllable types (see list in Table I). Call structure 2 

dictates feature selection, which in turn dictates the classification algorithm. For 3 

example to detect calls (or parts of calls) consisting of a single-syllable frequency-4 

modulated whistle, we use its STFT spectral image for template matching. Spectral 5 

templates are of limited use, however, if the call is variable and in these cases the 6 

invariant features of a call must be found. The whistle in a whipbird call, for example, 7 

varies in pitch but always consists of a horizontal ‘track’ found within a defined 8 

frequency band. The following section describes the variety of recognition algorithms 9 

in our toolbox in more detail. 10 

 11 

2.2 Feature Extraction and Classification 12 

Calls are recorded using the hardware described in Section 3.1. Recordings are 13 

sampled at 22,050 Hz (or subsequently down-sampled to this value) and a bit rate of 14 

16. We outline the steps used by each recognition algorithm below. 15 

 16 

2.2.1 MFCCs and Hidden Markov Models  17 

As noted in the introduction we did not find the use of MFCC features and HMMs to 18 

work well for our recognition tasks. Yet we started with this approach because it has 19 

been reported in the literature for bird call recognition. We include it in this report 20 

simply to compare its performance with other methods. 21 

 22 

We implemented the Hidden Markov Model Toolkit (HTK, 23 

<http://htk.eng.cam.ac.uk/>), a freely available software library for designing, training 24 
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and testing HMMs (Young et al. 2006). Although tailored for speech recognition 1 

tasks, HTK has also been applied to biological sequences (Akhtar et al. 2007) and bird 2 

call recognition (Trifa et al. 2008). HTK automatically extracts MFCC features before 3 

training the HMMs. We use most of the default parameter settings, in particular 50% 4 

frame-overlap and 12 cepstral coefficients. The frequency band is constrained to 5 

match the call to be recognized. Rather surprisingly, we obtain best results when 6 

omitting signal energy, and the dynamic delta and acceleration features. 7 

 8 

This method represents calls as sequences of observations, each observation (a vector 9 

of cepstral coefficients derived from a frame) being treated as an emission from a 10 

dynamical system whose state transitions are described by a Markov process. In a 11 

simple Markov process each observation would be assigned to a unique system state 12 

but animal calls are too variable for such a restrictive model. In an HMM each 13 

observation is modelled as a probabilistic function of system state and each call type 14 

is modelled as a sequence of states. An HMM classifier returns the probability that the 15 

observed sequence would be emitted by a given call model. 16 

 17 

Important parameters are the number of model states, the number of emission 18 

categories, the number of training iterations and the estimation of an HMM 19 

representing background noise. There are two possibilities for this last: 1) estimate a 20 

noise model from the silence periods in the training instances, or 2) estimate a noise 21 

model from separate recordings appropriate to the operational environment. We tried 22 

both approaches and had more success with the latter. 23 

 24 
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2.2.2 Spectrograms 1 

All the remaining call recognition algorithms employ features derived from 2 

spectrograms prepared using the Short-Time Fourier Transform (STFT). The choice 3 

of parameters is guided by those typically used in ASR and by (Brandes 2008; 4 

Brandes et al. 2006). The signal is framed using a window of 512 samples (23.2ms) 5 

which offers a reasonable compromise between time and frequency resolution. A 6 

Hamming window function is applied to each frame prior to performing a Fast Fourier 7 

Transform (FFT), which yields amplitude values for 256 frequency bins, each 8 

spanning 43.07 Hz. The spectrum is smoothed with a moving average filter (window 9 

width = 3). The amplitude values (A) are converted to decibels (dB) using dB = 10 

20.log10(A). Note that the dB values at this stage are with respect to a hypothetical 11 

signal having unit amplitude in each frequency bin. Frame overlap varies from 0 to 12 

75% depending on the amount of fine structure in the call. 13 

 14 

2.2.3 Binary Template Matching 15 

Some calls, in particular frequency modulated whistles (Figure 1(a-b)), can be 16 

recognised using a simple binary template. The user marquees the call of interest in a 17 

noise reduced spectrogram and extracts a binary representation using an intensity 18 

threshold (typically around 4 dB above background). The template’s on-cells define 19 

the call of interest and its off-cells contribute to an error function. Our template 20 

extraction tool allows manual editing to clean up background noise and to idealize the 21 

shape. 22 

 23 



 9 

Although a binary template does not model the variations in acoustic intensity 1 

distributed through time and frequency, this lack of specificity can be an advantage if 2 

it generalises over irrelevant call variability.  3 

 4 

The template is passed over all the frequency bins in a user specified band and a score 5 

is calculated for each temporal location (i.e. frame). The score may be calculated in a 6 

number of ways. To pick out faint calls from background noise (that is, to minimise 7 

false negatives), we use the difference in mean intensity between template on-cells 8 

and off-cells: 9 

Score = ∑onintensity/con – ∑offintensity/coff, 10 

where ∑onintensity and ∑offintensity are the sums of the acoustic intensity in the on 11 

and off cells respectively and con and coff are the count of on and off cells respectively. 12 

1-2 dB is a minimum perceptible difference and we find a suitable threshold score to 13 

adjust the recall/sensitivity trade-off lies in the 2.0 to 5.0 dB range. 14 

Alternatively, we have used:  15 

Score = ( ∑onintensity – ∑offintensity )/con, 16 

which has the advantage that it imposes stricter penalties on the noise intensity in the 17 

off-cells (assuming coff > con) and can be used to lessen false positive errors. Both 18 

metrics work on the principle of matching shape and intensity profiles in images 19 

(Brunelli 2009). 20 

 21 

2.2.4 Oscillation Detection 22 

Many animal calls consist of a repeating or oscillating single syllable, for example the 23 

Lewin’s Rail and the gecko. Even the male koala bellow has a characteristic 24 
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oscillatory structure that can be used for identification purposes. Oscillation Detection 1 

(OD) is performed on the spectrogram using the Discrete Cosine Transform (DCT). 2 

 3 

The DCT is a highly effective and sensitive technique, but should be used with 4 

appropriate caution. We apply it to the time series in each frequency bin of the 5 

spectrogram prior to noise removal since our noise removal algorithm tends to remove 6 

faint oscillations that are nevertheless detectable by DCT (Towsey et al. 2010). The 7 

same limitations apply to the DCT as to the FFT, in particular the requirement for 8 

signal stationarity over the duration of the DCT. In addition, brief acoustic impulses 9 

cause the DCT to return spurious oscillatory content.  10 

 11 

Two significant parameters for the DCT are the time duration and threshold amplitude 12 

required to register a ‘hit’. The optimum value for time duration will depend on the 13 

expected oscillation rate and stationarity of the call to be detected. The maximum 14 

DCT amplitude is obtained after normalisation of the DCT coefficients to unit length. 15 

Experimentation has shown that threshold values between 0.4 and 0.6 are suitable. In 16 

practice, it is not difficult to determine appropriate parameter values using training 17 

data as long as call variability (e.g. the oscillation rate) is within definable limits. 18 

 19 

Call identification depends on recognising concentrations of oscillation ‘hits’ within 20 

the user-defined constraints of frequency band, time duration and oscillation rate. 21 

These constraints are essential to cull false positive detections and are effective if the 22 

sought call falls within characteristic bounds. Typical parameter values for male 23 

koala, gecko and cane toad are shown in Table II.  The recall/sensitivity trade-off is 24 

controlled by adjusting the fraction of ‘hit’ bins (within the call’s frequency band) 25 
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required for a positive detection. For a more detailed description of this method see 1 

(Towsey et al. 2010). 2 

 3 

2.2.5 Segmentation 4 

The speed of the OD algorithm can be significantly improved by avoiding periods of 5 

silence. Our segmentation algorithm extracts acoustic content by calculating the 6 

acoustic energy in each signal frame in the frequency band of interest. We determine a 7 

baseline (modal) frame-energy and its standard deviation using the method described 8 

in (Towsey et al. 2010). Segmentation involves retaining consecutive frames whose 9 

energy exceeds a user-threshold (defined in terms of noise standard deviations above 10 

the modal noise level). These are expected to be frames that contain potential calls of 11 

interest. In this work, we apply segmentation only in conjunction with OD, in which 12 

context a filter is required to smooth over oscillatory gaps. The width of the 13 

smoothing window is given by: 14 

width = 1 / minimum expected oscillation rate for calls of interest 15 

To further reduce computation, frame energy is calculated only for the middle quarter 16 

of the user-defined frequency band. 17 

 18 

2.2.6 Acoustic Event Detection  19 

We developed Acoustic Event Detection (AED) to extract information about the 20 

distribution of acoustic energy in a spectrogram using the minimum of prior 21 

knowledge. AED processes the spectrogram like an image and returns rectangular 22 

marquees around isolated acoustic events.  23 

 24 
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For a spectrogram: 1 

Step 1: Apply a 2D smoothing Wiener filter. 2 

Step 2: Noise reduce by removing the modal noise intensity calculated for each 3 

frequency band. 4 

Step 3: Convert the noise-reduced spectrogram to a binary image with a user-defined 5 

intensity threshold. An effective threshold typically ranges from 6-9 dB, which 6 

corresponds to values in the literature (Brandes 2008). Note that a minimum 7 

perceptible acoustic difference is around 1-2 dB. 8 

Step 4: Because a single threshold may fragment low intensity events, we join event 9 

pixels separated by N or fewer pixels in the vertical or horizontal directions. By 10 

default, N = 1.  11 

Step 5: Place a rectangular marquee around the outer limit of each event, defined as 12 

any group of contiguous (in 8 directions) black pixels in a white background. 13 

Step 6: The previous steps will incorrectly join acoustic events that overlap, but 14 

which, to both ear and eye, are due to separate sources. We are able to detect and 15 

separate most overlapping events by examining intensity distributions within 16 

anomalously large events. 17 

Step 7: Cull small events - those whose area falls below a user defined threshold (a 18 

default value of 200 pixels was usually satisfactory for a typical spectrogram with 256 19 

frequency bins and a frame rate of 86 per second). 20 

 21 

Note that there are two important user defined parameters in this algorithm: the 22 

intensity threshold used to convert the spectrogram to binary form and the small area 23 

threshold, below which events are eliminated. Other thresholds were estimated from 24 

the data itself. 25 
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2.2.7 Event Pattern Recognition  1 

Some multi-syllable animal calls can be modelled by the 2D distribution of their 2 

component syllables in the spectrogram rather than by the actual content of those 3 

syllables. We applied this technique, which we termed Event Pattern Recognition 4 

(EPR), to the recognition of ground parrot calls for which it proved effective even 5 

when the spectrogram was contaminated by numerous other ‘noise’ events. This 6 

would not be possible using MFCC features. 7 

 8 

A single training example is sufficient to define a call in terms of its component 9 

events (see Figure 2). In recognition mode, this call template is passed over the 10 

acoustic events extracted from a test signal (hereafter referred to as the ‘test’ events) 11 

using the AED algorithm in Section 2.2.6. To limit unnecessary computation, only 12 

‘test’ events were considered whose centroid lay within a user defined frequency band 13 

(3.5 - 4.5 kHz for ground parrots). For any match between template and test-events, 14 

the match-score is calculated as the average overlap between the template events and 15 

the closest ‘test’ events whose centroids fall within the bounds of the template. The 16 

fractional overlap between a single template event and its closest ‘test’ neighbour is 17 

given by:  18 

Overlap = ½(x/T + x/E) 19 

where x = the overlapped area (in pixel units), T = the (pixel) area of the template 20 

event and E = the (pixel) area of the ‘test’ event. The overlap fraction lies between 0.0 21 

(no overlap) and 1.0 (exact coincidence). The average overlap of all the events in the 22 

template gives rise to a score between 0.0 (complete mismatch of all events—actually 23 

not possible because at least the first template event must find some overlap)—and 24 

1.0 (complete coincidence of ‘test’ and template events). 25 
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The recall/sensitivity trade-off can be adjusted using an overlap threshold in the range 1 

[0, 1]. The optimum value for this threshold should be derived from an ROC curve 2 

and strictly speaking the data required to obtain the ROC curve has the status of 3 

training data. In our case we had so few calls, even in a 6 hour recording, that the 4 

results described in Section 3.3.7 were obtained by optimizing the threshold on the 5 

available data. 6 

 7 

2.2.8 Spectral Peak Tracking and Syntactic Pattern Recognition 8 

Spectral Peak Tracking (SPT) isolates the traces of spectral ridges in a spectrogram 9 

(Chen & Maher 2006). It is most useful for the recognition of acoustic events defined 10 

by clean whistles. Fortunately many bird calls have this characteristic. SPT is not 11 

useful to detect parrot shrieks or diffuse events such as made by wind and rain.  12 

 13 

As originally published, SPT was not well equipped to detect near-vertical tracks or 14 

whips such as made by several Australian birds (for example the whipbird, Figure 15 

1(d) and the Golden Whistler). Here we describe a modification to the SPT algorithm 16 

for the better detection of whips. 17 

 18 

Step 1: Smooth the input spectrogram using a 2D Wiener filter. 19 

Step 2: Noise reduce the spectrogram. (Towsey & Planitz 2010). 20 

Step 3: Identify (near-) horizontal tracks by identifying maxima in the spectral frame. 21 

Step 4: Identify (near-) vertical tracks by identifying maxima in the time series for 22 

each frequency bin.  23 

Step 5: Overlap the resulting horizontal and vertical tracks. 24 



 15 

Step 6: Remove tracks (any arbitrarily branched set of 8-directionally consecutive 1 

pixels) whose total pixel count is less than a threshold (default value = 15 pixels for 2 

spectrograms prepared with default parameter values). 3 

 4 

The two important parameters are the dB threshold for noise removal (step 2) and the 5 

short-track threshold (step 6). A difficulty with the algorithm is that it tends to 6 

highlight echoes (as wisps trailing a call) not otherwise obvious in the original 7 

spectrogram. 8 

 9 

Syntactic Pattern Recognition (SPR) depends on the ability to represent a pattern as a 10 

sequence of symbols selected from a finite alphabet, each symbol representing a 11 

‘primitive’ element of the composite pattern (Bunke & Sanfeliu 1990). This permits 12 

the representation of complex sequential patterns more accurately than can be 13 

achieved with ‘flat’ feature vectors of fixed dimensionality. The whipbird call has a 14 

simple two component structure (whistle followed by whip; see Figure 1(g)) that 15 

suggests the possibility for two primitives, a horizontal line segment and a near-16 

vertical line segment. Recognition depends on detecting a sequence of horizontal 17 

primitives (the whistle) followed by vertical primitives (the whip) where the whistle 18 

can be of varying durations and frequency and the whip can be either ascending or 19 

descending. In our implementation, the notion of a whipbird grammar is implicit in 20 

the scoring algorithm. 21 

 22 

Step 1: The input to SPR is a spectrogram in which spectral tracks have been 23 

highlighted using SPT as described above. 24 
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Step 2: Apply a user-defined intensity threshold to convert the spectrogram to a binary 1 

matrix. 2 

Step 3: Identify the location of horizontal and vertical line primitives in the 3 

spectrogram. The identification of line primitives depends on an additional two 4 

parameters, the length of the line primitive and a sensitivity threshold. A primitive is 5 

found when the per cent of on-cells in a line segment exceeds a threshold. 6 

Step 4: Assign a horizontal line-primitive score to each frame. We search within a 7 

user-defined bandwidth and time-period for horizontal primitives. The horizontal 8 

score for frame N is the fraction of frames over a previous (user-specified) time period 9 

traversed by a horizontal primitive. 10 

Step 5: Assign a vertical line-primitive score to each frame. The vertical score for 11 

frame N is the fraction of cells in the subsequent rectangle (enclosed by the user-12 

specified time period and frequency band of a whip) traversed by a vertical primitive. 13 

Step 6: The whipbird score for frame N is the average of its horizontal and vertical 14 

scores. Since both scores lie in the interval [0, 1] a threshold in [0, 1] can be used to 15 

adjust the recall/sensitivity trade-off for the combined score. 16 

Step 7: A hit is predicted where the score exceeds the user defined threshold (as 17 

described in step 6) for the number of consecutive frames set by the user for a whip 18 

duration (in step 5). 19 

 20 

2.2.9 Harmonic Detection 21 

Many animal calls display harmonics above a fundamental tone. Furthermore, the 22 

harmonic tracks often trace paths nearly parallel to the fundamental. Typical examples 23 

are the female koala (Figure 1(h)), human vowels (Figure 1(i)), crows (Figure 1(j)) 24 

and squeaky door hinges. A serious difficulty with using harmonics as a feature for 25 
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call recognition in environmental recordings is that higher harmonics drop out at a 1 

distance. Consequently the spectral pattern of a nearby bird is very different from that 2 

of the same bird at a distance. In ASR this problem does not arise because the speaker 3 

talks into a microphone. In environmental recordings, calls will be uttered at any 4 

distance. Nevertheless, Harmonic Detection (HD) can be useful if one knows the calls 5 

will be uttered close by or if one wishes to determine the proximity of a source by the 6 

number of high frequency harmonics.  7 

 8 

Although the DCT is used in ASR to extract cepstral coefficients from spectra, we did 9 

not find this approach suitable for environmental recordings. For bird calls consisting 10 

of a pure whistle (one frequency), the whistle presents to the DCT like an impulse and 11 

therefore returns spurious ‘high harmonic’ content. Instead we counted the number of 12 

harmonic tracks appearing within a user defined bandwidth. The score for a given 13 

frame is a measure of the average intensity of the harmonic peaks (dB above 14 

background) in a noise reduced spectrum (Towsey & Planitz 2010) discounted by a 15 

function of the difference between the number of observed and expected harmonic 16 

peaks: 17 

Frame HD score = (∑nan / N).w, 18 

where an is the amplitude of the n
th
 spectral peak, N is the number of observed 19 

spectral peaks in the user defined bandwidth, and w is a weighting factor that is a 20 

function of the difference between the observed number of peaks, N, and the expected 21 

number E:  22 

w = 1.0   if (abs(N - E)) < 3 23 

        = 3 / abs(N - E)  otherwise. 24 



 18 

The score array is smoothed with a moving average filter (window = 5) and a hit is 1 

predicted where the score exceeds a user defined threshold for a number of 2 

consecutive frames within a user defined minimum and maximum duration. 3 

 4 

2.2.10 Wind: AED and Diagonal Linear Classifier 5 

Wind and rain are frequent acoustic ‘contaminants’ of environmental recordings. 6 

There are two reasons why automated recognition of these episodes might be useful. 7 

First, in most cases the user will want to minimise storage and computation by 8 

avoiding wind and rain events that mask useful information. Second, although wind 9 

and rain can be detected using meteorological instruments, hardware security is a 10 

problem in many locations—indirect evidence of wind and rain could help to interpret 11 

other features of a recording. While foam baffles can be used to cover microphones 12 

and reduce the effect of wind, in practice we have found that once wet they retain 13 

moisture. 14 

 15 

We approached wind detection as a classification task, where the entities being 16 

classified are acoustic events extracted using AED as described above. Gusting wind 17 

events (e.g. Figure 1(k)) are found in the low frequency range and AED is able to 18 

marquee those that would hinder further analysis. We explored a range of event 19 

features and adopted four; two describing the distribution of acoustic intensity and 20 

two describing acoustic entropy.  21 

 22 

Wind Feature 1: Step 1: Calculate the mean pixel intensity for each frequency bin in 23 

the event. Step 2: Calculate the difference, in decibels, between two mean intensity 24 

values—the maximum value for any bin located below 500Hz and the minimum value 25 
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in those bins above the maximum bin (see Figure 3(b)). The intensity difference is 1 

greater for wind events. 2 

 3 

Wind Feature 2: Calculate the difference, in Hertz, between two frequency values—4 

the frequency at which the maximum mean intensity is located and the frequency at 5 

which the minimum mean intensity is located (Figure 3(b)). The frequency difference 6 

is greater for wind events. 7 

 8 

Wind Feature 3: Step 1: Calculate the entropy of the pixel intensity values in each 9 

frequency bin. Step 2: Calculate the difference between two entropy values—the 10 

minimum entropy value for any frequency bin located below 500Hz and the 11 

maximum entropy value for any bin above the location of the minimum (see Figure 12 

3(c)). The entropy difference is greater for wind events. 13 

 14 

Wind Feature 4: Calculate the difference, in Hertz, between two frequency values—15 

the frequency at which the maximum entropy is located and that at which the 16 

minimum entropy is located (Figure 3(c)). The frequency difference is greater for 17 

wind events. 18 

 19 

For training and test data we extracted all events whose minimum and maximum 20 

frequencies were <500 Hz and <2 kHz respectively. Events had to be longer than one 21 

second for reliable tagging but the extracted features are duration independent and 22 

therefore the trained classifier is able to label events shorter than one second. 23 

 24 
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2.2.11 Rain: AED and Linear Classifier 1 

As with wind detection, we approached rain detection as a task to classify AED 2 

events. The selected rain events consisted of heavy canopy rain. In particular, they 3 

excluded light rain and drizzle. During canopy rain, broadband percussive effects 4 

arise from the striking of large rain drops on surfaces near the microphone (e.g., 5 

Figure 4(a)). The following three features were found to offer reasonable detection 6 

accuracy. Two describe acoustic intensity and the third describes acoustic entropy.  7 

 8 

Rain Feature 1: The selected canopy rain events included discernible raindrops which 9 

left a trace of about ten intensity peaks per second (Figure 4(b)). Feature 1 is the mean 10 

interval in seconds between the intensity peaks. 11 

 12 

Rain Feature 2: The difference between the minimum and maximum raindrop interval 13 

Figure 4(b). The difference is less for canopy rain events. 14 

 15 

Rain Feature 3: Observation revealed that canopy rain events have higher entropy 16 

values in the 8.5-10.5 kHz frequency bins than do non-rain events. Therefore feature 3 17 

is the mean entropy value of frequency bins in the range 8.5–10.5 kHz (Figure 4(c)). 18 

 19 

For training and test data we extracted all events whose minimum and maximum 20 

frequencies were >1 kHz and >8.5 kHz respectively and whose bandwidth was greater 21 

than 2 kHz. Reliable tagging required events of duration longer than three seconds but 22 

once again, the features are duration independent (for events longer than 0.5 seconds) 23 

and therefore the trained classifier can be used to label events shorter than 3 seconds. 24 

 25 
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3 Experiments 1 

In this section we demonstrate the above techniques on a variety of animal calls that 2 

are representative of those of interest to the ecologists with whom we are working. 3 

We describe the hardware, data preparation and the recognition accuracy for the 4 

various techniques.  5 

 6 

3.1 Hardware 7 

3.1.1 Networked Sensors 8 

These devices provide a near real-time sensing in locations with 3G connectivity. Due 9 

to bandwidth constraints and 3G transmission costs, they are configured to activate at 10 

regular intervals (typically two to four minutes at half hourly intervals), upload data to 11 

a central repository and then deactivate until the next scheduled recording. These 12 

networked sensors consist of a 3G smartphone (HTC), an electret-style external 13 

microphone, pre-amplifier, DC-DC converter and an external power supply (solar 14 

panel). The system is capable of operating continuously and autonomously for months 15 

at a time with minimal maintenance. Uninterrupted, continuous deployments of 18 16 

months have been achieved to date (Wimmer et al. 2010). 17 

 18 

3.1.2 Acoustic Loggers 19 

Acoustic loggers are designed to provide a short term or ad hoc high resolution 20 

acoustic sensing capability but can be configured to record continuously for extended 21 

periods (Wimmer et al. 2010). Recorded acoustic data is stored internally and the 22 

device provides up to 14 days continuous recording. These sensors are highly portable 23 
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and powered by batteries for ad hoc deployments or externally using a solar power 1 

supply for fixed deployments. As with the networked devices, these sensors are self-2 

contained in an all-weather container. 3 

 4 

3.2 Experimental Design 5 

All recordings were obtained from various locations on the east coast of Queensland, 6 

Australia, using either networked sensors or data loggers. Most of the recordings were 7 

obtained in the context of three research projects, one on koalas (FitzGibbon et al. 8 

2009), another on quolls (Belcher et al. 2008) and another at a university field station 9 

(Williamson et al. 2008). 10 

 11 

Networked sensors returned recordings of two or four minutes depending on the 12 

protocol requested by the ecologist. Data loggers returned recordings of several hours 13 

duration. These were split into lengths of two to four minutes.  14 

 15 

Much consideration needs to be given to the reporting of recognizer accuracy. In the 16 

absence of generally accepted standardised datasets, recognition accuracy can be 17 

made arbitrarily high depending on the selection and prior cleaning of the recordings. 18 

We have endeavoured in these experiments to construct datasets that reflect the ‘real-19 

world’ of sound which ecologists must process. Datasets were chosen according to 20 

their expected ecological significance rather than to obtain clean recordings. For 21 

example, recordings containing wind and rain ‘contaminants’ were not removed. 22 

Some of the recordings include the morning and evening chorus where there can be a 23 

cacophony of sound. Others contain traffic noises, air-conditioners (in city 24 

recordings), human speech, dogs barking and airplanes. Finally the tagging of calls 25 
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was done by ecologists whose trained ears could detect faint distant calls that one 1 

would not expect to detect by automated means. Only in this last case did we exclude 2 

from consideration calls whose intensity was less than 2 - 4 dB above the background 3 

noise level.  4 

 5 

Another issue in the context of our data was whether to express accuracy in terms of 6 

correctly identified calls or correctly identified recordings. We opted for the latter 7 

because the principle cost of an error is the time spent online by an ecologist loading a 8 

file and accessing the predicted call. Consequently we use the following standard 9 

definitions for recall and precision:  10 

Recall = TP/(TP+FN), 11 

and  12 

Precision = TP/(TP+FP), 13 

but define TP (true positives) as the number of short (2-4 minute) recordings correctly 14 

identified as containing one or more calls of interest; FN (false negatives) as the 15 

number of files containing positive calls none of which were identified; and FP (false 16 

positives) as the number of files incorrectly identified as containing one or more calls.  17 

Scoring on the basis of recordings has two effects on the reported accuracy. Where a 18 

recogniser detects a TP yet makes an FP or FN error in the same file, we label that file 19 

correctly classified. On the other hand we observed many instances where multiple 20 

TPs obtained in one recording were offset by a single error in another file. This 21 

situation arises because many bird calls appear in temporal clusters. In short, the 22 

accuracy figures presented below must therefore be regarded as indications of 23 

operational performance in a real problem as opposed to finely tuned estimates of 24 
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accuracy. Note that all the experiments were designed to produce a binary output – 1 

call identified/not identified. 2 

 3 

3.3 Calls 4 

3.3.1 Currawong (Strepera graculina) 5 

The currawong dataset consisted of 29 four-minute recordings taken at half-hourly 6 

intervals from midnight to 7am and 5pm to midnight on the 2
nd

 November 2009 at St 7 

Bees Island. This protocol was designed to encompass both sides of the morning and 8 

evening chorus. The dominant calling species is the curlew. However 5 of the 29 9 

recordings contained currawong calls and typically their calls are clustered suggesting 10 

flocks of the birds making an appearance during the recording.  11 

 12 

We compared two recognition techniques, HMMs trained on MFCC features and a 13 

simple binary template. As can be seen from the results in Table I, neither method 14 

performed well. However there are two points to note here: First much time was spent 15 

obtaining training and validation data for the HMM method while the binary template 16 

was quickly prepared from only one representative call, manually edited by the user to 17 

remove artefacts and echo. Second, the currawong calls were numerous but clustered 18 

into just five files. The binary template recognised the great majority of the calls and 19 

therefore on a call basis its recall would have far exceeded that of the HMM. The low 20 

recall of the HMM approach was due to the difficulty of training a suitable noise 21 

model that covered the range of ambient noise situations. The low precision of the 22 

binary template was primarily due to false positive identifications of the more 23 

numerous curlew calls which sit in the same frequency band. 24 
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3.3.2 Beach Stone-curlew (Esacus neglectus) 1 

The curlew dataset was the same as that used to test the currawong recognizer. 19 of 2 

the 29 recordings contain curlew calls, although 9 of them are of low intensity due to 3 

distance of the source. The curlew produces a variety of syllable types during one call 4 

but the syllable shown in Figure 1(b) is sufficiently well defined to warrant targeting. 5 

We employed a binary template and achieved an accuracy of 76% (Table I). The 6 

dominant errors were false negatives due to the large proportion of low intensity calls. 7 

 8 

3.3.3 Male Koala (Phascolarctos cinereus) 9 

The male koala bellow consists of a sequence of loud inhalations and exhalations. The 10 

exhalations have an oscillatory component which offers a suitable target for 11 

recognition. Training data (for tuning the OD parameters) consisted of 12 four-minute 12 

recordings, each containing a koala call. Test data, totalling 7 hours 40 mins (460 13 

minutes), were split into 115 four-minute recordings, 12 of which contained koala 14 

calls. There were 18 calls, ranging from high to low intensity. This selection of 15 

recordings having low call density is representative of the real world situation. 16 

 17 

Recall was 75% with the three false negative files containing distant bellows of very 18 

low intensity. To measure precision, we took into account that koala bellows contain 19 

multiple oscillatory exhalations which will be detected in clusters. Consequently files 20 

containing only a single hit are likely to be false positives. Ignoring recordings with 21 

fewer than two hits resulted in a precision of 75%. False positives were mostly due to 22 

a bird (the Orange Footed Scrub Fowl) with a deep, chattering call, producing 23 

oscillations in a frequency band overlapping that of the male koala. Although 24 
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precision and recall give some indication of accuracy of the detection, these metrics 1 

ignore the large volume of data that was scanned to get the result. Based on total files 2 

correctly classified, we obtain an accuracy of 95%. For the ecologist this is a large 3 

saving in time. 4 

 5 

3.3.4 Cane Toad (Bufo marinus) 6 

Cane toad data was collected in a suburban backyard (Brisbane, Queensland, January 7 

2010) and in rural farmland (near Gympie, South East Queensland). Both locations 8 

were in the vicinity of permanent or semi-permanent water bodies with known cane 9 

toad populations. A total of 674 minutes of recording were split into 337 two-minute 10 

files. The dataset contained 83 cane toad calls in 53 files. The suburban recordings 11 

were ‘contaminated’ with a wide variety of extraneous sounds including traffic, air-12 

conditioning, speech, dogs etc. 13 

 14 

The OD recogniser achieved a recall and precision of 93% and 98% respectively, and 15 

an accuracy of 99% over 337 files. These high accuracy rates are partly due to the fact 16 

that cane toads have very consistent call characteristics which make it possible to fine 17 

tune the recogniser parameters.  The false positives fall into two categories: 18 

kookaburra calls that oscillate in same frequency range as cane toads and very short 19 

hits due to background noise. The false negatives were all low intensity calls. 20 

Additionally, one call was masked by wind, an unwelcome contaminant that affects 21 

the accuracy of animal call recognition in all real world tasks.  22 

 23 
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3.3.5 Asian House Gecko (Hemidactylus frenatus) 1 

Asian house gecko recordings were recorded in January and February 2010 just 2 

outside a suburban house (Brisbane, Queensland). 540 minutes of recording were split 3 

into 270 two-minute files, 77 of which contained 84 calls. As shown in Figure 1(e), 4 

the gecko call consists of a succession of chirps which can be detected using the OD 5 

algorithm. Recall and precision were 91% and 90% respectively with an accuracy of 6 

94% over the 270 files. The high accuracies confirm that geckos, like cane toads, have 7 

very consistent call characteristics that are readily detectible by the OD recogniser. 8 

False negatives errors were due to missing calls of low intensity. 9 

 10 

3.3.6 Segmentation for OD Recognition Experiments 11 

Recognition efficiency can be greatly increased by ignoring those parts of a recording 12 

in which there is no acoustic activity in the bandwidth of interest. We repeated the 13 

recognition experiments for male koalas, cane toads and geckos using a segmentation 14 

algorithm to remove silence.  15 

 16 

Table II confirms that high accuracy rates can be retained when using the 17 

segmentation filter prior to OD recognition.  In the case of the gecko, accuracy 18 

actually increased due to the filtering out of false positives (‘noise’). However in the 19 

case of the cane toad data, segmentation removed some weak calls thus lowering 20 

recall. The main purpose of the segmentation filter however was to reduce processing 21 

time and in this it was successful - up to 87% time reduction in the case of the gecko 22 

data (Table II, bottom right cell). 23 

 24 
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3.3.7 Ground Parrot (Pezoporus wallicus) 1 

Ground parrot data was collected with data loggers placed in a nature reserve 100 km 2 

north of Brisbane. We acquired a total of 6 hours and 45 minutes of recordings, which 3 

were broken into one-minute sections.  An ecologist tagged the calls (see Figure 1(f)). 4 

Of the 405 one-minute files, 32 contained calls. However nine of these were barely 5 

audible. It should be noted that 1-2 dB is the minimum perceptible audible difference 6 

between signal and background noise (Lüscher 1951). Consequently ground parrot 7 

calls whose maximum intensity was less than 2 dB above background noise were 8 

ignored for testing purposes.  9 

 10 

We used EPR for detecting a specific type of ground parrot call, a stable pattern of 11 

short-duration, narrow-band, faint chirps that ascend in the frequency as shown in 12 

Figure 1(e) and Figure 2. Note that ground parrots have other vocalisations that differ 13 

from our call of interest.  14 

 15 

AED’s two default parameters were modified: the intensity threshold was reduced 16 

from 9 to 3 dB (because many of the calls were faint) and the small area threshold was 17 

lowered from 200 to 100 pixels (because the component syllables are small). The EPR 18 

algorithm overlays the ground parrot template (see Figure 2) on acoustic events 19 

detected by AED.  To limit unnecessary computation, only events were considered 20 

whose centroid lay within the 3.5 - 4.5 kHz bandwidth of interest. For each location, 21 

the bottom-left vertex of the template was aligned to the bottom-left vertex of the 22 

selected ‘test’ event. The precision and recall rates cited below were calculated using 23 

a threshold overlap of 27% determined on the total data. There was not enough data 24 

for a separate validation and test set.  25 
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Precision and recall for the 23 files with audible parrot calls were both 87%. Two of 1 

the three false negatives detected were faint calls (compared to the true positives), and 2 

the other was missed because of edge effects (i.e. only half a call was present at the 3 

end of a recording).  Three false positives resulted from incorrect detections due to 4 

rain which presented in the spectrogram as a random distribution of acoustic events. 5 

Total accuracy was 99%. We believe this is a particularly effective technique for 6 

multi-syllable calls which have a characteristic distribution of events in the 7 

spectrogram.  8 

 9 

3.3.8 Eastern Whipbird (Psophodes olivaceus) 10 

The whipbird has a two syllable call consisting of a whistle followed by a whip 11 

(Figure 1(g)). It is a good candidate for the Syntactic Pattern Recognition approach. 12 

The dataset consists of 38 two minute recordings, 14 of which contain whipbird calls. 13 

The accuracy of 82% shown in Table I is somewhat misleading in that whip bird calls 14 

are clustered and some of the recordings contained many true positive recognitions 15 

that counted only as one TP on a file basis. 16 

 17 

3.3.9 Torresian Crow (Corvus orru) 18 

The crow spectrogram has a set of stacked harmonics that extend up into the 8 kHz 19 

range depending on how close the bird is to the microphone. It is clearly a candidate 20 

for our HD algorithm. The crow dataset consisted of 20 four-minute recordings, 12 of 21 

which contained crow calls. Recall was 100% and precision was 71% with an 22 

accuracy of 75%. We have used the same algorithm (with different parameter values) 23 
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for recognition of female koala calls and the vowels in human speech but we do not 1 

present results due to lack of suitable data in our environmental recordings. 2 

 3 

3.3.10 Wind Events 4 

A classifier was trained with 142 ‘wind’ and 142 ‘not-wind’ events using Matlab’s 5 

classify.m class. ‘Not-wind’ events included low frequency rumbling due to traffic 6 

and aircraft. Best results on a validation set of 383 ‘wind’ events and 243 ‘not-wind’ 7 

events were obtained with a diagonal-linear classifier. The training and validation 8 

error rates were 10% and 14% respectively.   9 

 10 

We tested the diagonal-linear classifier on 1235 one-minute audio files (Table I), 11 

acquired with a variety of sensors at different locations. The recordings included koala 12 

bellows, ground parrot calls and many other kinds of acoustic events. The accuracy 13 

rate was 96% on a one-minute recording basis (Table I). False positive detections 14 

were due to male koala bellows that have low frequency content. The FP-FN trade-off 15 

for the wind detector could be adjusted using a constant which shifts the decision 16 

plane towards one class or the other. We used the default value of zero for this 17 

constant.  18 

 19 

3.3.11 Rain Events 20 

Canopy rain events were extracted from recordings taken at five different locations in 21 

Queensland, Australia. The events were classified as ‘rain’, ‘not-rain’ or ‘not-sure’; 22 

events needed to be longer than 3 seconds for reliable classification but even so, many 23 

events were classed as ‘not-sure’. The training and validation sets excluded ‘not-sure’ 24 
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events and consequently there was less data available than for the wind classifier. 1 

Non-rain events primarily consisted of percussive sounds resulting from construction 2 

and human activity. A classifier was trained with 54 ‘rain’ and 52 ‘not-rain’ events 3 

using Matlab’s classify.m function. A validation set of 19 ‘rain’ and 14 ‘not-rain’ 4 

events was used to determine that a Linear classifier provided best results. We tested 5 

the classifier on 247 one-minute files, 104 of which contained rain events and 6 

achieved recall, precision and accuracy rates of 75%, 75% and 79% respectively 7 

(Table I). 8 

 9 

It is worth noting that rain detection is the more difficult than wind detection, both for 10 

humans and for the machine classifier. Indeed, the poorer performance of the rain 11 

classifier was probably in part due to the prior inaccurate tagging of events that were 12 

used to train the classifier. 13 

 14 

4 Discussion and Conclusion 15 

In this work we have described a toolbox of call recognition techniques to detect 16 

animal calls in environmental recordings. Our objective was to report performance 17 

figures for experimental conditions that reflect the needs of ecologists having to 18 

process many hours of recordings. The work reported here arose out of an early 19 

realisation that a one-recogniser-fits-all approach would not cope with the 20 

unconstrained variety of acoustic events that appear in environmental recordings. In 21 

particular, the highly refined techniques of ASR using MFCCs and HMMs have been 22 

tailored to a very constrained audio environment and, even on theoretical grounds, 23 

they are ill-suited to unconstrained audio environments. Of course ASR techniques 24 
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can be made to perform well on datasets of animal calls that have been clipped from 1 

recordings to make a balanced N-class problem. But this is not the real world of 2 

ecology. 3 

 4 

Our recognisers have a number of features that reflect real world usage: 5 

1. With the exception of the MFCC-HMM approach, our recognisers can be 6 

trained in the first instance with just one or very few training instances. The 7 

recognisers can be refined when new instances become available. This is 8 

necessary because most often large numbers of training calls are not available 9 

and large training and tests sets are time consuming to curate. 10 

2. The recognisers are constructed as binary classifiers, i.e. they detect presence 11 

or absence. This is in contrast to an N-class classifier which must assign new 12 

instances to the most likely class. The difficulty with an N-class classifier is 13 

how to represent the null class when the audio content is unconstrained. 14 

3. An additional difficulty with the single N-class classifier is that typically the 15 

discovery of a new instance or class requires the retraining of the entire 16 

classifier. With N binary classifiers, only one of them needs retraining. 17 

4. In our experience successful classification depends more on extracting the 18 

appropriate features for a task than on the sophistication of the classifier. With 19 

the one-recogniser-fits-all approach the same feature set must be extracted for 20 

all calls and consequently a powerful classifier is required because it is 21 

difficult to separate the classes in feature space. By contrast, given a set of 22 

appropriate features, a linear classifier is often good enough. This was most 23 

obviously demonstrated in the wind and rain classification tasks where a linear 24 
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classifier was the best (of those offered by Matlab) at separating the two 1 

classes. 2 

5. For the most part our binary classifiers have tuning parameters whose function 3 

is intuitively clear for the non-technical ecologist. For example, calls have a 4 

minimum and a maximum duration and amplitude thresholds are represented 5 

in decibels. The obvious exception is the MFCC-HMM approach whose many 6 

parameters require a basic understanding of the theory. 7 

 8 

There are two obvious extensions to our work. The first is to construct classifiers for 9 

additional call types. The second is more challenging. At the present time our 10 

recognisers return a score either in dB units or normalised in [0, 1]. Therefore we are 11 

not able to make a choice between two simultaneous ‘hits’ if the score is in different 12 

units. We intend to normalise all scores so that it is possible to disambiguate cases 13 

where a single acoustic event returns positive to more than one classifier. This 14 

effectively offers the possibility of using the N binary classifiers to imitate an N-class 15 

nearest neighbour classifier. 16 

 17 
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Tables 
Table I. Toolbox for Call Recognition 

Generic Call Structure Call Features Extracted from 

Spectrograms 

Classification 

Algorithm 

Recordings (Files in 
Datasets) 

# Files 
with 

Calls 

Recall Precision Accuracy 

MFCC HMM 40% 100% 90% Currawong 

Binary template Template matching 

29 x 4-minutes 5 

100% 50% 83% 

Frequency-modulated whistle(s) 

Curlew Binary template  Template matching 29 x 4-minutes 19 63% 100% 76% 

Male Koala 115 x 4-minutes 12 75% 
 

75% 
 

95% 

Cane Toad 337 x 2-minutes 55 93% 98% 99% 

Oscillatory components 

Asian House Gecko 

Oscillation rate and 

amplitude using DCT. 

Threshold classifier 

270 x 2-minutes 77 91% 90% 94% 

Syllable events having fixed 

distribution in spectrogram 

Ground Parrot AED Event Pattern 

Recognition 

405 x 1-minute 23 87% 87% 99% 

Combinations of whistles, chirps, 

whips 

Whipbird Orientation of spectral 

tracks 

Syntactic Pattern 

Recognition 

38 x 2-mintues 14 100% 67% 82% 

Stacked harmonics Crow Frequency spacing of 

parallel spectral tracks. 

Threshold classifier 20 x 4-minutes 15 100% 71% 75% 

Wind AED/Image features Diag. linear classifier 1235 x 1-minute 792 99% 96% 96% Diffuse 

Rain AED/Image features Linear classifier 247 x 1-minute 104 75% 75% 79% 
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Table II. OD Parameter Settings and Recognition Results 

 Dataset 

 Male koala Cane toad Asian house 

gecko 

Parameter 

Frequency band 0.1 – 1.0 kHz 0.5 – 1.0 kHz 1.5 – 3.0 kHz 

Frame overlap 75% 75% 0% 

DCT duration 0.3 sec 0.5 sec 1.0 sec 

Oscillation bounds 20 – 50 Hz 10 – 20 Hz 3 – 7 Hz* 

Min DCT amplitude 0.6 0.6 0.5 

Call duration 0.5 – 2.5 sec 0.5 – 20.0 sec 1.0 – 6.0 sec 

% of freq. bins with oscillations  20% 40% 30% 

OD Recognition Results 

Total Number of Files 115 337 270 

True Positives Files 9 49 70 

False Positives Files 3 1 8 

False Negatives Files 3 4 7 

Recall 75% 93% 91% 

Precision 75% 98% 90% 

Accuracy 95% 99% 94% 

OD Recognition Results - With Segmentation 

Recall 75% 83% 91% 

Precision 75% 98% 93% 

Accuracy 95% 97% 96% 

Processing Time (% of the original 

time w/o segmentation) 

34% 56% 13% 

*Asian house gecko oscillation bounds were derived based on behavioural studies described in 

(Marcellini 1974). 
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Figure Captions 

Figure 1. Examples of animal vocalisations and other sounds. 

Figure 2. Example Ground Parrot template. 

Figure 3. Wind image features. 
 

Figure 4. Rain image features. 
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