775 research outputs found

    Amplitude characteristics of littoral sea clutter data at K-band and W-band

    Get PDF
    Funding: UK Engineering and Physical Sciences Research Council under grant EP/S032851/1.Sea clutter data at millimeter wave frequencies are quite limited in the literature. Recent advancements in millimeter wave radar technology have created a potential for its use in maritime surveillance and autonomy. Hence, collecting data at this frequency range is of great interest to both academia and industry. This study reports on a field trial conducted at St Andrews in winter 2020 to collect littoral sea clutter data using K-band (24 GHz) and W-band (94 GHz) radar systems. Extensive data collection was done during the trial, where this work specifically concentrates on analysis of the amplitude characteristics of the sea clutter returns. Analysis of the dataset shows that the radar backscatter was heavily dominated by sea-spikes. The modal normalized radar cross section (NRCS) values for Bragg, burst and whitecap scattering are measured to be -47, -30 and -17 dB respectively at 24 GHz in horizontal polarization and -48, -26 and -12 dB respectively at 94 GHz in circular polarization, measured at grazing angles of 1-3°. The backscatter from the smooth surface is found to be below the noise floor equivalent NRCS (-65 dB). Also, the power spectrum analysis of range-time intensity plots is discussed, revealing information on the sea surface dynamics.Postprin

    Measurement and modelling of bistatic sea clutter

    Get PDF
    There is a growing interest in bistatic radars; however, such systems cannot reach their full potential unless the designer has a proper understanding of the environment in which they operate. Rather little information has been published on bistatic clutter and out-of-plane bistatic sea clutter in particular. This is due to a number of factors including the inherent complexity of conducting bistatic radar trials and the resulting lack of high quality bistatic data. In this thesis the collection and analysis of a unique set of bistatic sea clutter data is described. To achieve this objective a novel multistatic radar system was developed. The nodes do not need to be physically connected. This system has a peak transmitted power of more than 500 W. Synchronisation in time and frequency was achieved using GPS disciplined oscillators built and designed at the University of Cape Town. Using the above system simultaneous bistatic and monostatic sea clutter and target signatures were recorded in the UK and South Africa at various geometries and weather conditions. Parts of this unique data set related to out-of-plane bistatic sea clutter was analysed in this thesis. The data covered both co- and cross-polarised sea clutter data at low grazing angles with bistatic angles between 30° and 120°. Data sets covering a range of conditions with sea states from 2 – 5. Using the recorded data it was shown that the ratio of the bistatic normalised radar cross section to the monostatic normalised radar cross section dropped as the scattering angle was increased until the scattering angle was around 90°. Furthermore, the cross-polarised bistatic normalised radar cross section was found to be larger than the cross-polarised monostatic normalised radar cross section when the scattering angle was around 90°. A new empirical model for predicting bistatic normalised radar cross section has been developed. The model is applicable to both in-plane and out-of-plane geometries. The model was able to provide a good fit to both UCL and external data. The temporal correlation properties of both monostatic and bistatic data were studied. It was found that the speckle component of both bistatic and monostatic clutter decorrelated in tens of milliseconds, with the decorrelation time longer for bistatic clutter. The texture of both bistatic and monostatic clutter had similar autocorrelation functions and had similar decorrelation times. By comparing the texture and intensity autocorrelation functions it was concluded that the compound model still holds. It was also found that bistatic clutter was less ‘spiky’ than monostatic clutter particularly at horizontal polarisation. This was due to the reduction in the intensity of the spikes due to specular reflections. By combing the effects of the reduction in reflectivity and spikiness it was shown that a bistatic radar would require a smaller signal to interference ratio than a monostatic radar for the same probability of detection and probability of false alarm. This was more evident at angles close to 90° and for horizontal polarisation. In summary this thesis reports the collection and analysis of novel simultaneous monostatic and bistatic sea clutter and target data. This was achieved by the development of a unique multistatic radar system. This work has resulted in significant advances in both netted radar technology and understanding of bistatic sea clutter

    The Doppler Spectra of Medium Grazing Angle Sea Clutter; Part 1: Characterisation

    Get PDF
    This paper is concerned with the characterisation of Doppler spectra from high range resolution X-band radar sea clutter observed from an airborne platform over the range of grazing angles, 15° to 45°. It is observed that when looking up or down wind there is a strong correlation between mean Doppler shift and local spectrum intensity. When combined with random fluctuations of spectrum width, these characteristics give the spectra a temporal and spatial variability. This behaviour has previously been observed in low grazing angle data and these results confirm the wider applicability of the models developed using that data. The modelling method is also extended here to capture the bimodal behaviour observed with high intensity returns from breaking waves looking up or down-wind

    Correlation Analysis of Simultaneously Collected Bistatic and Monostatic Sea Clutter

    Get PDF
    In this work we analyse the correlation properties of simultaneous bistatic and monostatic polarimetric sea clutter data, collected by the NetRAD multistatic radar system. In particular, we study the temporal autocorrelation and cross-correlation functions of the texture and speckle samples, as a function of the system geometry and of the polarization of the transmitter and receiver antennas. These features can vary significantly as a function of bistatic angle and the goal of this paper is to quantify these variations and extract any trends that are observed

    Основные характеристики морского клатера, влияющие на обнаружение малоразмерных малоподвижных целей морскими РЛС

    Get PDF
    В роботі здійснюється пошук математичної моделі морського клатера, придатної для створення на її основі алгоритму виявлення малорозмірних малорухомих цілей морськими РЛС. В результаті аналізу джерел для моделювання стохастичного розподілу амплітуди морського клатера обирається компонована Гаусова модель, оскільки її адекватність підтверджена найбільшою кількістю дослідників. В якості перспективної альтернативи стохастичній моделі обирається обговорювана в останнє десятиліття в літературі модель, основана на теорії хаосу, перевага використання якої для вирішення даного класу задач потребує остаточного підтвердження або заперечення.Searching of the sea clutter mathematical model is carried out in this paper. It is suitable to create based on it algorithm for small slow moving targets detection by marine radars. The compound Gaussian model for modeling sea clutter amplitude stochastic distribution is selected as a result of the sources analysis, because it was confirmed by most of researches. The discussed in the literature model based on chaos theory is choosen as perspective alternative for stochastic model; its advantage of using it for such problems solution must be definitively proved or denied. It was proposed many different distributions for high resolution sea clutter amplitude data modeling. The most frequently reported in the literature are K, Log-Normal and Weibull distributions. K distribution belonging to a compound-Gaussian model has the most significant theoretical and experimental background. This distribution choice is physically explained basing on the processes taking place when electromagnetic waves scattered from capillarity and gravity sea waves create a composed echo. Signal representing this echo is the product of two random components, called texture and speckle. Texture is the result of scattering from gravity waves, has a Gamma pdf (in case of K distribution) and corresponds to slow-varying large-scale structure. Speckle is the result of scattering from isolated scatterers (capillarity waves), has a Rayleigh pdf and corresponds to rapid varying small-scale structure. So, K distribution envelope is a compound distribution consisting of a locally Rayleigh distribution speckle whose mean is modulated by a gamma distribution texture. All researches consider Rayleigh pdf for speckle. The lognormal, generalized Gaussian, inverse gamma and some other distributions were proposed for the texture. Due to literature analyses it is seen that texture distribution depends on radar range resolution, but strong dependence is not proved. Some scientists modified K distribution to K-A distribution consisting of the Rayleigh, gamma and Poisson distributions to describe better spikes appearence caused by whitecaps and bursts. Using of Weibull-Weibull (WW) and KK distributions was proposed for high grazing angle and high resolution sea clutter. Doppler characteristics of the sea clutter has been investigated by many researchers and now we have well developed theory. It is known empirical behavior of sea clutter doppler spectrum for different conditions – grazing angle, resolution, wind speed, polarisation and others. Lee, Walker and Ward models are used for sea clutter doppler spectrum describing. Fast moving targets can be effectively detected in heavy sea clutter by doppler radars. But existing theory cannot improve detection of slow moving small targets in heavy sea clutter, because slow moving targets have doppler shift compared to doppler shift of sea clutter. Correlation properties of high resolution sea clutter cannot be derived from its doppler spectrum. In alternative to stohastic model, many researches prefer deterministic model and use chaos theory to describe sea clutter. This choise is based on the fact that both hydrodynamic and electromagnetic therory relying on deterministic models only. If deterministic theory usefulness in applying to high resolution see clutter description be proved completely, it can lead to great progress for small targets in heavy sea clutter detection; because in this case sea clutter behavior can be predicted if initial conditions are precisely known. Using chaotic model for high resolution sea clutter description is highly disputed in recent years, and many researches have questioned first results of high resolution sea clutter describing with chaotic theory usage by Haykin. But great possibilities can give deterministic model for small targets detection definitively proving its ability to describe high resolution sea clutter data precisely causes different scientists to return to chaos theory again and again. Promising results in this field was obtained by using multifractal theory, but still there are not strong methodological background of using deterministic models for small slow moving targets in sea clutter detection, so it is required to make research to prove or deny deterministic models usefulness for high resolution sea clutter data description.В работе осуществляется поиск математической модели морского клатера, пригодной для создания на ее основе алгоритма обнаружения малоразмерных малоподвижных целей морскими РЛС. В результате анализа источников для моделирования стохастического распределения амплитуды морского клатера избирается составная Гауссова модель, поскольку ее состоятельность подтверждена наибольшим количеством исследователей. В качестве перспективной альтернативы стохастической модели избирается обсуждаемая в литературе модель, основанная на теории хаоса, преимущество использования которой для решения данного класса задач требует окончательного подтверждения или отрицания

    Analysis of sea spikes in NetRad clutter

    Get PDF
    In this work our attention is focused on the statistical and spectral analysis of sea clutter spikes recorded by the netted radar system, NetRad, which works in both monostatic and bistatic configurations. Once separated the spikes from the background, we examine their properties, focusing on the spike width and on the interval which separates two consecutive spikes. The spectral properties of the sea spikes are also examined and compared with the background

    The Doppler Spectra of Medium Grazing Angle Sea Clutter; Part 2: Model Assessment and Simulation

    Get PDF
    This paper is concerned with the assessment of models of Doppler spectra, derived from high range resolution X-band radar sea clutter observed from an airborne platform over the range of grazing angles, 15 to 45. When looking up or downwind these models represent the strong correlation between mean Doppler shift and local spectrum intensity. When combined with random fluctuations of spectrum width, these characteristics give the spectra a temporal and spatial variability. The models are used to predict clutter spectrum statistics as a function of Doppler frequency and these are compared with statistics derived from the original data. It is also shown how realistic range-varying coherent clutter returns can be simulated using the models

    Coherent Multilook Radar Detection for Targets in KK-Distributed Clutter

    Get PDF
    corecore