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Abstract — This paper is concerned with the assessment of models of Doppler spectra, derived from high range 

resolution X-band radar sea clutter observed from an airborne platform over the range of grazing angles, 15 to 45. When 

looking up or downwind these models represent the strong correlation between mean Doppler shift and local spectrum 

intensity.  When combined with random fluctuations of spectrum width, these characteristics give the spectra a temporal 

and spatial variability.  The models are used to predict clutter spectrum statistics as a function of Doppler frequency and 

these are compared with statistics derived from the original data.  It is also shown how realistic range-varying coherent 

clutter returns can be simulated using the models. 
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1.  Introduction 

In Part 1 of this paper [1] coherent data from the Ingara radar [2] was analysed to assess the characteristics of the 

Doppler spectra of the returns.  Ingara is a fully-polarimetric X-band radar system maintained and operated within the 

Defence Science and Technology (DST) Group1 in Australia [2]. The dataset comprises two trials on separate 

occasions and in two distinctly different regions. The first sea-clutter trial was conducted in 2004 in the Southern 

Ocean approximately 100 km south of Port Lincoln, South Australia. The site chosen was at the edge of the South 

Australian continental shelf where there was little chance of shallow water affecting the wave field. During the trial, 

ocean backscatter was collected for a range of different geometries on eight separate days with different ocean 

conditions. The second trial in 2006 was conducted in littoral and open ocean environments near Darwin in the 

Northern Territory.  It was shown in [1] that the modelling approach originally described in [3,4] for lower grazing 

angle data was likely to be a good fit to the medium grazing angle data from Ingara.  The Doppler spectra of sea clutter 

at medium grazing angles can be expected to be highly variable, both spatially and temporally, for a wide range of 

                                                           
1 Formerly Defence Science and Technology Organisation (DSTO) 
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environmental conditions and radar polarisations.  This variability can be described in terms of two main 

characteristics, as observed in [3,4] and shown in the results presented in [5,6] and in this paper.  Firstly, the width of 

the power spectra, expressed as the standard deviation of the Doppler frequencies, fluctuates over range and time in a 

manner that is mainly independent of the local spectrum intensity.  Secondly, the mean Doppler shifts of the local 

spectra show a distinct correlation with local spectrum intensity.  This is particularly evident when looking up or 

downwind, but is also observed to varying degrees for most look directions.  This variation of mean Doppler shift for 

low grazing angle clutter has been reported by various researchers over many years [7-10].  In [3,4], a model was 

developed to capture this behaviour so that it could be applied to the modelling and simulation of sea clutter Doppler 

spectra at low grazing angles.  In this paper, it is shown how models for Doppler spectra based on observations at 

medium grazing angles have been developed and how they can be exploited in the design and development of radar 

systems.  Some initial results of this work were presented in [5].  A summary of the model, described in detail in [1], 

is given in Section 2, defining the various parameters of the model.  An important aspect of the modelling method is 

to be able to predict the values of the parameters of the models under different viewing geometries, radar polarisations 

and environmental conditions.  In Section 3, a general model is described and then used to capture the parameters 

associated with the bimodal behaviour of Doppler spectra. 

When the local intensity is modelled with a suitable probability density function (PDF), such as the compound K 

distribution, with added thermal noise, it is possible to predict the typical amplitude statistics in individual Doppler 

bins, as observed over a period of time or over a range interval.  In Section 4, the performance or accuracy of these 

models are then analytically assessed.  With the addition of suitable models of temporal or spatial correlation of the 

intensity, the Doppler spectrum models can be exploited to simulate realistic Doppler spectra.  Some work on the 

simulation of Doppler spectra had been previously reported in [11] and other potential methods have also previously 

been proposed, such as [12].  Those methods can go some way towards reproducing examples of Doppler spectra but 

do not allow the generation of continuous coherent returns from which realistic spectra can be derived.  The generation 

of realistic range-varying coherent data is described in Section 5.  Finally, in Section 6 there is a discussion of the 

comparison between these results and those previously developed for low grazing angle clutter. 

2. Summary of the model 

In [1], a general model for the power spectrum of the clutter alone (i.e. without the added thermal noise) is given by a 

mixture model of two Gaussian-shaped power spectra: 
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where  +  = 1 (, > 0), xn is the local clutter intensity with range index n and s1 and s2 are the standard deviations 

of the spectrum components.  The mean Doppler shifts of the two spectrum components are modelled by 
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The parameters A and B, for a given set of environmental conditions and radar parameters, represent the intercept and 

slope of a linear fit to the variation of measured values of mf(xn) as a function of xn for those spectra with xn less than 

the threshold t.  This threshold is defined as the intensity above which the rate of variation of mf(xn) with xn changes 

(see [1]).  The parameters A, B and t will have values that are dependent on the environmental conditions and radar 

parameters, as discussed later.  The dependence of mean Doppler shift on the local intensity for xn > t, as modelled in 

(2), has the effect of broadening the spectrum if   0 (or   1) and xn exceeds some threshold, t, providing a 

representation of the bimodal behaviour seen in some data, as illustrated in [1].  The use of a threshold is suggested by 

the distinct change above some intensity level in the dependence of mf(xn) on xn seen in some data sets.  The parameter 

r is the difference between the actual value mf(xn) and the value represented by a fit based on A, B and t in (2).  This 

parameter is modelled as a Gaussian random variable with zero mean and standard deviation, 𝜎𝑟, having a PDF, pr(r).  

In the results presented here, the model is developed using a parameter s = s1 = s2.  This assumption was found to be 

appropriate for our data, but clearly other fits to the model could be attempted with s1  s2, if evidence for that were 

found.  However, as discussed in [1], the normalised spectra were observed to be a good fit to a Gaussian shape at lower 

values of intensity (i.e. xn  t) and the combined spectra modelled using (1) would no longer have an average Gaussian 

shape for xn  t if s1  s2. 

The standard deviation of the spectrum width is modelled as being a random variable, s, which is independent of xn.  In 

[4], the PDF of s, ps(s), is modelled as having a normal distribution, with mean ms and variance 
2
s .  The values of s 

must of course be restricted to s > 0.  In practice it is found that ssm   and so modelling s in this way does not 

cause any problems.  Now 
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Alternatively, the spectrum width can be modelled as having a gamma distribution, which is also a good fit to the data.  

Now 

 










 

c

s
s

c
sps exp

)(
)(

11 


 ( 4 ) 

where the shape,
22

ssm    and scale, ss mc 2 . 



  

 4 

 

3. General modelling of parameters 

In order to characterise the bi-modal modelling scheme presented in this paper, there are a large number of input 

parameters required. In previous publications [4,5,13] these have been extracted directly from example data. However, 

Rosenberg et al. [6] has recently presented an empirical model which relates these input parameters to the polarisation, 

collection geometry and sea-state. This model was influenced by the work of Crisp et al. [14] who proposed a similar 

model specifically for the K distribution shape parameter. The new version is a variation designed to better model 

other parameters of interest which have a stronger component due to the swell.  This section provides a brief summary 

of this model with further details given in [6].  In this recent publication, the new model was applied to both the K and 

Pareto distribution shape parameters, the two components of the linear frequency centroid model, the mean and 

standard deviation of the spectral width Gaussian model and the spatial correlation. For the work in this paper, the 

model has now been applied to capture the spread of the fluctuations around the mean Doppler, 𝜎𝑟 and the four bi-

modal model components. These include the y-intercept, A, the initial slope, B, the threshold, t and the ratio, β between 

the two components. Section 3.1 describes further details about how these parameters were adapted to the parameter 

model.   

 

The model here is defined in terms of a generic parameter X, defined for an azimuth look direction, , and a grazing 

angle, .  Now the dependence of this generic parameter on wind and swell directions is modelled as the weighted 

sum of two components which represent the wind and swell directions. Assuming the data has been rotated so the 

upwind azimuth is now at  = 0o, 

 𝑿(𝜽,𝝓) = 𝒂𝟎𝜽
𝜸[𝟏 + 𝒂𝟏𝒄𝒐𝒔𝝓 + 𝒂𝟐𝐜𝐨𝐬⁡(𝟐𝝓) + 𝒂𝟑𝐜𝐨𝐬⁡(𝝓 − 𝝍) + 𝒂𝟒𝐜𝐨𝐬⁡(𝟐(𝝓 − 𝝍)] ( 5 ) 

where  is the swell direction relative to upwind and , 𝑎0, … 𝑎4 are the model coefficients. Representing the ocean 

conditions is difficult and the new model uses only the wind speed, U and the significant wave height H1/3, 

 𝒀 = 𝒃𝟎 + 𝒃𝟏𝐥𝐨𝐠𝟏𝟎(⁡𝑼) + 𝒃𝟐𝑯𝟏/𝟑 ( 6 ) 

where 𝑏0, 𝑏1, 𝑏2 are the model coefficients. To relate these two models, the coefficients in (5) must be altered so they 

are independent of grazing angle. This is achieved by introducing a normalisation factor, 𝜃0 and then redefining (5) 

as 

 𝑿(𝜽,𝝓) = (
𝜽

𝜽𝟎
)
𝜸

[𝜶𝟎 + 𝜶𝟏𝒄𝒐𝒔𝝓 + 𝜶𝟐𝐜𝐨𝐬⁡(𝟐𝝓) + 𝜶𝟑𝐜𝐨𝐬⁡(𝝓 − 𝝍) + 𝜶𝟒𝐜𝐨𝐬⁡(𝟐(𝝓 − 𝝍)] ( 7 ) 

where the new coefficients are related by 

 𝜶𝟎 = 𝒂𝟎𝜽𝟎
𝜸
, 𝜶𝟏 = 𝒂𝟎𝒂𝟏𝜽𝟎

𝜸
,⁡⁡⁡… , 𝜶𝟒 = 𝒂𝟎𝒂𝟒𝜽𝟎

𝜸
⁡. ( 8 ) 
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Implementing the model involves matching  and each of the  coefficients in (7). This in turn requires 6 sets of the 

b parameters or 18 coefficients in total for each polarisation. Once the new coefficients in (8) are evaluated, they can 

be substituted into (7) with the normalising grazing angle 𝜃0 set to 30o to derive the final model value.  It should be 

noted that this model is wholly empirical and has no known physical basis, but has been found to be able to represent 

the various parameters of interest here over a wide range of conditions. 

3.1. Modelling of bi-modal spectra 

 

Similar to the work in [6], modelling the parameters of interest requires estimates over a wide range environmental 

conditions and azimuth and grazing angles.  To estimate the Doppler parameter models, a CPI of 64 pulses has been 

chosen, giving a 0.2 s observation time. This is repeated for each 5o in azimuth and 2o in grazing in order to limit the 

variation of the clutter-to-noise ratio (CNR) across the swath. Twelve days of data have been included covering sea-

states between 2 and 6. This data comes from a fully-polarimetric collection with a PRF reduced to approximately 

300 Hz.  Also due to the problems of estimating spectrum parameters in low CNR, only data regions with a CNR > 3 

dB have been included (see [1], Section 2.4).  

For a given set of conditions, the parameter mf(xn) is estimated from the data for each power spectrum using the 

methods described in [1].  The parameters A and B are then estimated from linear fits to the variation of mf(xn) with xn 

for those spectra with xn less than the threshold t.  When modelling these parameters the intensity xn is normalised to 

have a mean of unity.  Once A, B and t have been estimated, the parameters  and r can be determined.  The parameter 

r and is modelled as a Gaussian random variable with zero mean and standard deviation, 𝜎𝑟. The parameter  (see (1)) 

is determined by matching the observed rate of variation of mf(xn) for xn > t, with that predicted by applying (2) (see 

discussion in [1]).  Finally, the parameter s is derived for each spectrum as described in [1] and then ms and s are 

estimated by fitting a normal distribution to the measured mean and standard deviations of all range cells in the data 

block.  Further discussion of the methods used to estimate parameter values can be found in Part 1 of this paper [1] 

and in [6].   

To further improve the parameter modelling, it is useful to identify those fits where a linear model is sufficient to 

describe the spectrum (i.e. bimodal behaviour is not observed and mf(xn) = A + Bxn + r for all values of xn, or  =1 in 

(1)). For this purpose, the following criteria can be used: 

 A threshold level at the minimum or maximum of the normalised intensity. 

 A root mean square difference between the linear and bi-modal centre frequency fits of less than 2 Hz. 

 A ratio of components,   1. 
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It was found that fits of the bimodal model to the data often returned extreme values of either   0 or   1. Therefore 

to improve the bi-modal parameter modelling, all apparent bi-modal fits which pass the criteria for linear behaviour 

given above have been modified to have  = 1 (i.e. a linear fit) and an undefined threshold so they do not influence 

the bi-modal parameter model fit. To ensure that essentially linear behaviour is appropriately captured by the model, 

the modelled  is further modified so any values that are above a defined threshold are also set to 1. A threshold of 

0.8 was determined by carefully comparing with the original data and minimising the fitting error.  The sets of model 

coefficients for the mean Doppler spread, r, the spatial de-correlation length, R (described below), the four bi-modal 

parameters, A, B, t and  and the mean and standard deviation of the spectrum width, ms and s, are shown in Tables 

A.1-A.4 in the appendix.  These were derived using all the available Ingara data. The coefficients of the K and Pareto 

shape parameters were given in [6]. 

 

To demonstrate the parameter modelling, the F35 flight has been used with the model applied independently to each 

polarisation and compared with the original data. This flight has a sea-state of 4-5 with a swell direction of 135 

relative to upwind. The wind speed was 10.2 m/s and the wave height was 1.21 m which is relatively low given the 

wind speed.  Examples of the fits of various parameters are shown in Figs. 1 to 5, where the azimuth angles are rotated 

so the upwind direction is centred at 0o, the downwind direction at 180 and the cross wind directions at 90 and 270.  

Regions with missing or poor data are shown with diagonal lines/shading.  In general, the model captures the behaviour 

of HH and HV polarised data quite well.  The fit to VV data is not as good for some parameters, but is still able to 

reproduce much of the observed behaviour.  It may also be noted that the VV data was in general much less spiky (see 

[6] and Table 1, below) and exhibited smaller variations of values of the spectrum model parameters than the other 

polarisations. The y-intercept and slope parameters, A and B are shown in Figs. 1 and 2. For the HH and HV 

polarisations, all 12 days have a periodicity across azimuth with a peak at upwind and small variation across grazing, 

confirming that the scattering from these channels are primarily wind driven. The results for the VV polarisation are 

more complicated with the slope peaking at downwind and also in regions corresponding to the swell or upwind 

directions.  The average normalised root mean square errors for the three polarisations are 33.2%, 22.6% and 23.8% 

for the y-intercept, A and 17.2%, 25% and 15.1% for the slope B. 

Figures 3-5 then show example fits for the mean Doppler spread 𝜎𝑟, the threshold t and the component ratio, . While 

the results for the threshold, t, and ratio, , are quite noisy, the main trends have been captured by the model. Some 

of the modelled values are also slightly lower than the data due to the low wave height used for the modelling which 

has been balanced over the 12 days. Consequently, the average normalised root mean square errors for the three 

polarisations are 12.4%, 13.5% and 13.9% for the spread about the mean Doppler, r, 18.5%, 17.2% and 17.2% for 
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the threshold, t, and 47.1%, 44.4% and 32.9% for . Observed trends include a slightly higher values for r and t for 

the HH and HV grazing regions above 30. There is also a clear increase in r and t for the HH polarisation in the 

swell direction. For the VV polarisation, there are clear peaks for t along the crosswind directions, which also 

correspond to lower values of , thus indicating bi-modal regions. For the HH polarisation, high  values which 

correspond to linear fits are shown in the crosswind direction, while for HV, the high  values are in the upwind 

direction. To demonstrate the variation of model parameters, Table 1 provides a complete set of parameter models 

which form the basis of the simulation examples presented in Section 5.  Two extra additions include the spatial 

decorrelation length, R, and the time domain CNR.  The decorrelation length is a measurement of when the spatial 

autocorrelation coefficient decays to 1/e, while the CNR is modelled using the radar range equation with parameters 

defined in Table 2 and the IRSG-lin model for the mean backscatter [15,16]. Note that no multi-path or atmospheric 

effects have been included in this model. The impact of the platform motion can be included by adjusting the spectral 

width, f , as discussed in [1]. With these example parameters, the additional spectrum spreading due to platform 

motion is calculated as antenna  = 49.64 Hz. The sea state, S, in Table 2 was used to derive wind speed, U, and 

significant wave height, H1/3, using the relationships [17] 
8023 .

. SU  and 
2

31 0240 UH ./  . 

 

 

Figure 1  Variation of y-intercept, A with azimuth and grazing. Data on left, parameter model on right. 
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Figure 2  Variation of slope, B with azimuth and grazing. Data on left, parameter model on right. 

 

 

Figure 3  Variation of mean Doppler spread, 𝝈𝒓 with azimuth and grazing. Data on left, parameter model on 

right. 
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Figure 4  Variation of parameter t with azimuth and grazing. Data on left, parameter model on right. 

 

 

Figure 5  Variation of parameter β with azimuth and grazing. Data on left, parameter model on right. 
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Table 1  Modelled spectrum parameters 

Direction Pol. 
mf(x) 

𝝈𝒓 (Hz) ms (Hz)
 

s (Hz)
 

CNR (dB)  R (m) 
A (Hz) B (Hz) t β 

 Up-wind 

HH -25.63 41.44 1.84 0.12 25.30 53.60 14.80 22.58 2.62 3.16 

HV -24.40 56.29 - 1.0 22.19 55.40 11.44 11.30 7.18 1.98 

VV -6.18 10.54 - 1.0 17.87 50.93 12.55 28.90 31.78 3.48 

Cross-wind 

HH -0.49 14.36 1.28 0.48 26.58 52.67 13.01 17.21 1.51 2.47 

HV -6.09 14.43 1.09 0.66 24.08 50.77 10.12 8.61 1.36 3.91 

VV 3.56 -0.07 - 1.0 14.51 47.79 9.26 23.71 16.52 6.57 

Down-wind 

HH 91.80 -58.23 1.14 0.38 19.07 43.59 13.04 18.65 3.28 2.90 

HV 33.36 -76.24 1.22 0.52 19.79 43.23 9.23 10.66 5.62 2.03 

VV -0.32 2.00 - 1.0 12.29 40.99 8.35 27.77 36.07 5.83 

 

Table 2  Simulation parameters 

Parameter Value 

  

Centre frequency  10 GHz 

Bandwidth 200 MHz 

Pulse width 5 µs 

PRF 700 Hz 

Transmitter power 5 kW 

Antenna gain (one way) 27 dB 

Combined losses 7 dB 

Noise figure 4 dB 

System temperature 290 K 

Beamwidth (two-way, 3dB - az. / el.) 1o / 10o 

Platform velocity 100 m/s 

Range 20 km 

Elevation / grazing angle (o) 30o 

Wind swell angle 0o 

Sea state 3 

4. Assessment of models 

 

This model for the time or range varying power spectrum can be used to predict characteristics such as the variation of 

clutter shape parameter and CNR, as a function of Doppler frequency, f.  As previously observed in [4], the PDFs of 

data in individual Doppler bins, observed over time or a range interval, are found to be well fitted by the K distribution 

family, with added thermal noise.  Using the model, the first and second moments of the clutter intensity in the Doppler 

domain can now be expressed as a function of Doppler frequency, F, at the centre of a Doppler bin of width f: 
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pc(x) is the gamma PDF of the intensity in the time domain, x, with shape and scale parameters  and b, associated with 

the compound K distribution: 
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In general, we have set s1 = s2 = s when modelling the data.  Further work is required to develop the modelling of the 

two components of a bimodal spectrum, to determine the appropriate relative values of s1 and s2 and the correlation 
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between them.  As it has already been determined that the average spectrum shape for low intensity clutter returns (xn 

 t in (2)) is a good fit to a Gaussian shape, it would seem appropriate to set s1 = s2, otherwise G(f,x,s1,s2) in (1) will 

not be a good fit to a Gaussian shape when xn  t (see discussion in Section 2).   

Fitting to the K distribution in each Doppler frequency, the shape parameter of the gamma-distributed component of 

the clutter as a function of Doppler frequency is then given by matching first and second intensity moments of the 

intensity at a given Doppler frequency [4]: 
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If the CNR of the time series data is C, then the noise power in each Doppler bin is given by: 
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where x,  and b are time-domain parameters and the mean power of a K-distributed variate is /b [4].  The CNR in 

each Doppler bin for an idealised filter with pass-band f and a centre frequency F is then given by 
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Fig. 6 shows an example of the variation of the K distribution shape parameter, (F), with Doppler frequency, for the 

HH upwind data.  For this plot, it is assumed that r = 0.  The results in Fig. 6 show clearly the effects of the range-

varying (non-stationary) Doppler spectra.  The variations in mean Doppler shift and the random fluctuations in spectrum 

width mean that, when observed over many range cells, the clutter returns in the outer Doppler bins appear very spiky, 

compared with those at the centre of the spectrum.  The ability to reproduce this behaviour was the driving force behind 

the development of this model [4]. Fig. 7 compares the actual C(F) with that predicted by the model.  When dealing 

with sampled data that has been processed with an FFT, it is possible that the spectrum will be aliased.  This can be 

easily modelled by restricting the value of F in (9) and (13) to  fr/2 and modelling (2m+1) aliased components of the 

spectrum as 



m

mn

r ssxnff ),,,G( 21
. Aliasing affects the results in Fig. 7, as indicated on the plot. 

The modelling method is not restricted to representing the clutter with a K distribution PDF of intensity in the time 

domain.  In (10), pc(x) could be any equivalent component of a compound Gaussian model, such as an inverse gamma 

distribution (for the Pareto model) or an offset gamma distribution (for the K-plus-Rayleigh model).  Fig. 6 also shows 

the simulation results achieved by representing the clutter with a K-plus-Rayleigh distribution [18]. It can be seen in 

both examples that the model reproduces the salient characteristics of the data quite well.   
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Correctly modelling any bimodal characteristics of the clutter will affect how accurately the behaviour at the edges of 

the spectrum are represented.  From inspection of (2), it can be seen that, if   0, applying a linear fit to the clutter 

mean Doppler, mf(x), would predict values that are either too low or high for intensity values above the threshold, t.  

The predicted values of (F) at the edge of the spectrum will be too low if the bimodal behaviour is ignored, although 

in many cases this effect will be quite small.  The spiky behaviour at the edges of the spectrum is caused by the 

fluctuations in the spectrum width and the change in mean Doppler shift.  However, in this case the change in predicted 

mean Doppler shift between the bimodal model and linear model (i.e. setting  = 1) has a relatively small effect 

compared with the fluctuations in spectrum width. The effects of modelling the additional fluctuations due to r are also 

shown in Fig. 8.  Including this parameter has the effect of predicting spikier behaviour in the edges of the spectrum, 

as well as in the centre of the spectrum.  When compared with the shape parameter of the real data near the centre of 

the spectrum, the predicted effect of r appears rather strong.  This may be because the parameters s, x and r are treated 

as independent variables in (9) and it is possible that these components are in fact partially correlated.  Also, direct 

comparisons with the original data are a guide to performance of the models but it must be remembered that the original 

data sets were not very large (about 1800 spectra in each group of 200 range cells by 9 pulse bursts).  This means that 

estimates of shape parameters from the original data may differ from predictions obtained by averaging over all possible 

parameter values in the model.  The simulations discussed in the Section 5 will equally show variation from batch to 

batch if comparably sized data sets are generated. 

 

Figure 6  K distribution shape parameter (f) for clutter component alone as a function of Doppler 

frequency (HH pol, upwind).   

a: HH pol data;  

b: model prediction assuming data has a K distribution in the time domain ( = 4.3) and with A=29 Hz, B= 28 

Hz, t=2.5,  = 0.5, ms = 55 Hz, s = 19 Hz;     

c: model prediction assuming data has a K-plus-Rayleigh distribution in the time domain. 

 

 

300 100200 0 100 200 300
0

2

4

6

8

Doppler frequency, Hz

10

12

14

S
h
ap

e 
p
ar

am
et

er
, 


a

b

c



  

 13 

 

Figure 7  CNR as a function of Doppler frequency. a: HH pol data; b: model prediction. 

 

Figure 8  Modelled variation of shape parameter as a function of Doppler frequency for 

a: Bi-modal model prediction, r = 0 (see Fig. 6); 

b: Bi-modal model prediction, r = 10 Hz;  

c: Bi-modal model prediction, r = 25 Hz.  

5. Simulation 

 

An additional application for this modelling method is the simulation of coherent Doppler spectra and time domain data 

[4]. In addition to the parameters described above, the range correlation coefficients of the spectrum intensity, x, and 

the spectrum standard deviation, s, are required. Fig. 9 shows the correlation coefficients of intensity, x, and spectrum 

standard deviation, s, for data over range cells 1 – 200. The correlation coefficient of the spectrum centroid is very 

similar to that of the intensity. The data was simulated by generating correlated gamma samples with appropriate 

correlation in range. The intensity has a shape parameter  = 2.23 and the standard deviation, s, had shape and scale 

parameters derived from ms = 55.5 Hz and s = 19.6 Hz, as shown in (4). For each position in range, a complex spectrum 

is generated using the square root of a sampled version of the power spectrum given in (1), with s1 = s2 = s , A = -59.4 

Hz, B = 58.06 Hz, t = 2.21 and  = 0 (see Table 2 in [1]). The centre frequency of each spectrum is obtained from mf(xn) 
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combined with a sample from a correlated Gaussian sequence with zero mean and a standard deviation of σr = 30.47 Hz. 

The correlation coefficient of the intensity is also used for the centre frequency. Setting s1 = s2 has the effect of giving 

the two spectrum components the same standard deviation, consistent with the results of the data analysis. This voltage 

spectrum modulates random zero-mean complex Gaussian samples in each Doppler bin. The bi-modal spectra were 

then convolved with the azimuth beam pattern of the Ingara radar and uncorrelated complex normal variates were added 

to simulate thermal noise at the appropriate CNR. Fig. 10 compares measured and modelled power spectra over a range 

interval of 200 range samples for HH upwind data. The results are qualitatively similar and reproduce the same statistics 

in the Doppler domain, as shown in Fig.  11. 

 

Figure 9 Correlation coefficient of (a) clutter intensity, x, and (b) spectrum standard deviation, s, over range 

(HH Pol., up-wind, range cells 1 –200). 

 

 

Figure 10  Power spectra: left, HH pol up-wind, range cells 1 – 200; right: simulated data with model parameters 

taken from same data. 
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In order to characterise the model as a means of generating clutter spikes, a sequence of 106 correlated gamma variates 

was generated, using the parameters from the upwind HH polarisation case in Fig. 10 and the correlation coefficient 

shown in Fig. 9(a) (the correlation coefficient is set to zero for lags greater than 150 m.). Variates exceeding the 

bimodal model threshold t = 2.21 are considered spikes. The Doppler spectrum of the spikes is narrower than the 

overall mean Doppler spectrum (Fig. 11), with a higher centre frequency. The range extent of the spikes is measured 

as the number of consecutive variates above the threshold in the correlated gamma sequence. A large number of spikes 

appear in only one range bin, but there are also numerous spikes extending over two or more bins. On a log scale the 

number of spikes decreases approximately linearly with increasing length, consistent with a power law relationship 

(Fig. 12).   

 

Figure 11  Mean Doppler spectrum from data (a) and simulation (b) with spike Doppler spectrum from 

data(c) and simulation (d). 

 

Figure 12  Number of spikes vs spike extent in range. 
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To demonstrate the parameter models described in Section 3.1, a set of simulations based on the example parameters 

in Tables 1 and 2 was produced (Fig. 13). Each of the nine examples in Fig. 13 was constructed from three sequences 

of correlated random variates, one each for the spectrum intensity, width and centroid fluctuations about the mean. A 

Gaussian model was used for the correlation coefficient, A, over range y of each sequence, with the correlation length 

R from Table 1:  

 














2

2

R

y
yA exp)(  ( 14 ) 

The same random seed was used to construct the correlated sequences for the spectrum intensity in the different 

polarisations, as the spectra arise from the same underlying sea surface structure. Different random seeds were used 

for the different look directions. The spectrum intensity is gamma distributed with unit mean and shape parameter ν. 

The spectrum width is also gamma distributed, with the shape and scale derived from the mean ms and standard 

deviation σs in Table 1, following (4). The centroid fluctuations are normally distributed with standard deviation σr.  

Thermal noise is represented by adding uncorrelated complex normal variates to produce the required CNR. The 

simulations reproduce the typical characteristics of clutter spectra. The HH polarisation spectra show the most spikes 

and the VV polarisation spectra the least. The CNR is noticeably lower in HV polarisation than in the other 

polarisations. In the upwind spectra the spikes are predominantly at positive Doppler frequencies whereas in the 

downwind spectra they occur at negative Doppler frequencies. In the crosswind case the Doppler shift associated with 

the spikes is smaller, with positive and negative displacements equally likely.  

 



  

 17 

 

 

Figure 13  Examples of simulated data 

 

6. Comparisons with low grazing angle results 

The original derivation of these models was based on analysis of the CSIR Fynmeet database [19], with X-band data 

collected at grazing angles of about 0.1. It has been shown here that the basic modelling method is equally applicable 

to data at both low and medium grazing angles.  In both cases a strong variation in the linear relationship of the PSD 

centre frequency with intensity was found as a function of bearing with respect to wind and wave direction. Relative 

increases in the shape parameter of the K distribution PDF, with added thermal noise, were also shown in the medium 

grazing angle Ingara data. In addition, analysis showed that the location of the peaks in the K distribution shape 

parameter, with respect to wind direction, were at comparable locations in both low and medium grazing data. 

Comparisons of the Ingara and CSIR data and their Doppler spectra were reported in [20].  One of the characteristics 

of the medium grazing angle Ingara data that was observed was an excellent fit of the intensity to a K-plus-Rayleigh 

compound distribution [18].  This model is very similar to a compound K distribution with added thermal noise, but 

it is found that in many cases the Rayleigh amplitude component is much greater than that which would be due to the 

known thermal noise level. The CSIR data has been assessed to see if it is also a good fit to this family of distributions.  

This was completed using moment analysis of the data to estimate the thermal noise component and comparing this 

to the actual thermal noise power. Significant increases in the estimated thermal noise component would indicate a 
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strong additional Rayleigh component. However, from this analysis it was found that in fact a standard compound K-

distribution, with added thermal noise as appropriate, was a much better fit to that data. 

7. Conclusions 

This paper, together with Part 1 [1], has shown that the Doppler spectra of radar sea clutter data collected at multiple 

polarisations, multiple look directions and at medium grazing angles can be well represented by the modelling method 

originally reported in [4].  This paper has shown how the essential characteristics of the Doppler spectra, including their 

correlations over range and time, can be represented realistically in a model.  It is further shown that these models can 

be used in analytic modelling of radar performance and in the simulation of realistic coherent clutter returns.   

As a refinement of the model, it was observed that in some conditions a further broadening of spectra was observed 

when the local clutter intensity exceeded some threshold level, resulting in apparently bimodal spectra.  This bimodal 

behaviour has also been captured in the model and the paper describes how these bimodal characteristics vary with 

clutter conditions and radar polarisation.  

To be of value to a radar designer, models of clutter must include any dependencies on radar parameters and 

environmental conditions.  The methodology for capturing this variation has been described in the paper and applied to 

the parameters used to model bimodal behaviour.   
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10. Appendix 

The sets of model coefficients for the parameters described in Section 3.1 are listed in Tables A1-A4. The coefficients 

for the K and Pareto shape parameters were given in [6]. 

Table A 1  Bi-modal parameter model coefficients for A and B. 

Polarisation Coeff. 
A B 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟎 𝒃𝟏 𝒃𝟐 

HH 

 -2.38 2.77 0.044 -1.88 1.44 0.059 

𝛼0 127.9 -125.1 -0.46 -1.98 5.62 -0.018 

𝛼1 -262.3 225.7 3.43 148.9 -103.6 -5.03 

𝛼2 126.1 -123.6 -1.29 -85.09 81.82 0.58 

𝛼3 6.81 -15.26 3.69 -28.09 38.42 -4.21 

𝛼4 6.71 -4.54 -0.38 4.50 -4.30 -0.26 

HV 

 5.85 -3.73 -0.54 2.65 -2.95 -0.094 

𝛼0 -18.1 19.57 -0.045 5.03 -2.05 -0.69 

𝛼1 -40.31 24.39 -2.56 147.3 -101.3 -1.34 

𝛼2 18.09 -16.47 -0.23 -47.33 45.75 -0.92 

𝛼3 -37.14 35.17 -0.43 49.71 -42.13 -1.14 

𝛼4 11.2 -10.07 -0.094 -21.95 21.32 -0.76 

VV 

 -3.01 3.86 -0.23 -2.79 3.22 -0.10 

𝛼0 0.24 -0.14 0.028 7.45 -6.87 1.22 

𝛼1 -8.63 -13.65 9.85 16.37 6.29 -9.86 

𝛼2 -4.33 5.26 -2.18 1.29 -2.37 2.23 

𝛼3 0.72 -2.75 3.85 -2.90 5.56 -3.97 

𝛼4 -2.08 3.93 -1.43 0.13 -1.15 1.19 

Table A 2 Bi-modal parameter model coefficients, for t and . 

Polarisation Coeff. 
t β 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟎 𝒃𝟏 𝒃𝟐 

HH 

 5.27 -4.48 -0.11 7.41 -5.96 -0.28 

𝛼0 -0.55 2.15 0.027 -0.21 0.65 0.0025 

𝛼1 -0.24 0.40 0.035 0.15 -0.25 -0.0098 

𝛼2 0.42 -0.45 0.045 0.25 -0.37 -0.024 

𝛼3 -0.21 0.45 0 0.069 -0.12 -0.0028 

𝛼4 -0.024 0.0016 0.024 -0.034 0.13 -0.066 

HV 

 0.41 0.25 -0.084 -1.96 2.03 -0.0048 

𝛼0 0.59 0.56 0.030 0.62 0.11 -0.018 

𝛼1 0.096 -0.22 0.020 0.019 0.15 -0.021 

𝛼2 0.026 0.11 -0.045 0.48 -0.54 0.026 

𝛼3 0.017 -0.031 0.012 0.76 -0.72 -0.026 

𝛼4 -0.31 0.35 -0.019 0.095 -0.11 0.0021 

VV 

 0.031 0.22 -0.065 0.097 -0.080 -0.0039 

𝛼0 1.00 0.11 0.031 0.89 0.18 -0.090 

𝛼1 0.10 -0.11 -0.0095 0.021 -0.06 0.025 

𝛼2 0.23 -0.31 -0.030 -0.043 0.016 0.059 

𝛼3 0.25 -0.40 0.053 0.059 -0.089 -0.0090 

𝛼4 0.13 -0.16 -0.0087 -0.038 -0.0058 0.061 

Table A 3  Parameter model coefficients for the mean Doppler spread, r and spatial decorrelation length, R. 

Polarisation Coeff. 
r R 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟎 𝒃𝟏 𝒃𝟐 

HH 

 -1.07 0.27 0.12 1.24 -1.32 0.11 

𝛼0 38.31 -16.22 1.42 -1.14       3.62      0.47 

𝛼1 -10.37 9.67 0.63 0.28 -0.098 0.093 

𝛼2 9.76 -12.71 0.27 -0.67 0.89      0.20 

𝛼3 -12.38 13.83 0.92 0.33     -0.50     -0.054 

𝛼4 5.48 -4.54 -0.33 0.30     -0.88      0.26 

HV 

 -0.0016 -0.39 0.055 -1.65       1.66 -0.11 

𝛼0 25.65 -5.35 1.31 -3.89       6.59      0.70 

𝛼1 4.83 -5.94 0.60 2.99      -3.61      0.62 

𝛼2 0.72 -3.57 0.24 -3.58 3.67 0.12 

𝛼3 -6.00 4.90 1.46 -3.10 2.58      0.082 

𝛼4 15.33 -14.05 -0.32 -7.44       8.23     -0.45 

VV 

 -0.22 0.23 0.0043 0.45 -0.57     -0.12 

𝛼0 10.14 1.28 2.50 2.52      0.66       1.76 

𝛼1 1.56 -1.34 0.58 1.55      -1.88     -0.34 

𝛼2 -0.94 1.63 0.22 1.07      -1.92     0.011 

𝛼3 -1.77 2.98 0.51 -0.30     -0.32    0.0043 

𝛼4 1.79 -3.73 0.76 -0.70       1.78     -0.86 
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Table A 4 Parameter model coefficients, for ms and s  

Polarisation Coeff. 
ms s 

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟎 𝒃𝟏 𝒃𝟐 

HH 

 0.49 -0.79     0.013 0.95 -1.27 0.056 

𝛼0 22.06   31.27      0.59 14.24 -2.23 0.84 

𝛼1 11.57       -12.50 1.30 -13.31 13.43 0.60 

𝛼2 -5.29       3.80 0.20 4.71        -4.60 0.026 

𝛼3 3.74      -3.73 1.56 -2.21       3.24 0.54 

𝛼4 -2.96       2.51 0.23 0.53      -1.15 0.20 

HV 

 1.14 -1.15 0.0030 2.28 -2.50     0.085 

𝛼0 37.44       13.76 0.28 4.61       4.91 0.88 

𝛼1 11.89      -11.65       1.01 7.95      -8.87 0.54 

𝛼2 -5.30 5.17 -0.17 -2.23 2.25 0.022 

𝛼3 -1.35      2.65       1.47 -4.33 4.12 0.65 

𝛼4 4.12     -4.73 0.21 3.78      -4.34 0.26 

VV 

 -0.20 0.16    0.0022 0.018      0.10    0.0016 

𝛼0 46.05 -0.16 0.68 4.91      3.52 1.28 

𝛼1 -4.19 6.26 0.61 0.39     0.071      0.35 

𝛼2 -1.24   0.62 -0.081 -1.03       1.92      0.13 

𝛼3 -4.04   6.70 0.59 -1.36       2.33      0.31 

𝛼4 0.32  -0.26 -0.14 0.21      -1.094      0.34 

 

 


