8 research outputs found

    Leveraging Wireless Broadband to Improve Police Land Mobile Radio Programming: Estimating the Resource Impact

    Get PDF
    Despite rapid growth in criminological studies of police technology, examinations of police land mobile radios are absent in the literature. This is troubling given the central role mobile radios serve in police operations and their significant management costs. The present study seeks to fill this gap by introducing the functionality of wireless broadband radio programming. Current practice requires a police officer to physically drive to a radio programming location to manage their mobile radio. Wireless programming remedies this burdensome reality, thereby saving officer time and cost. Geospatial analyses are used to estimate distance saved associated with wireless programming. We then conduct a number of calculations to determine time and cost savings related to the observed differences between existing and wireless radio programming within the context of the North Carolina State Highway Patrol. Results suggest wireless radio programming can save significant personnel and financial resources. Implications are discussed

    STOCHASTIC MODELING AND TIME-TO-EVENT ANALYSIS OF VOIP TRAFFIC

    Get PDF
    Voice over IP (VoIP) systems are gaining increased popularity due to the cost effectiveness, ease of management, and enhanced features and capabilities. Both enterprises and carriers are deploying VoIP systems to replace their TDM-based legacy voice networks. However, the lack of engineering models for VoIP systems has been realized by many researchers, especially for large-scale networks. The purpose of traffic engineering is to minimize call blocking probability and maximize resource utilization. The current traffic engineering models are inherited from the legacy PSTN world, and these models fall short from capturing the characteristics of new traffic patterns. The objective of this research is to develop a traffic engineering model for modern VoIP networks. We studied the traffic on a large-scale VoIP network and collected several billions of call information. Our analysis shows that the traditional traffic engineering approach based on the Poisson call arrival process and exponential holding time fails to capture the modern telecommunication systems accurately. We developed a new framework for modeling call arrivals as a non-homogeneous Poisson process, and we further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic condition on large-scale networks. In the second phase of the research, we followed a new time-to-event survival analysis approach to model call holding time as a generalized gamma distribution and we introduced a Call Cease Rate function to model the call durations. The modeling and statistical work of the Call Arrival model and the Call Holding Time model is constructed, verified and validated using hundreds of millions of real call information collected from an operational VoIP carrier network. The traffic data is a mixture of residential, business, and wireless traffic. Therefore, our proposed models can be applied to any modern telecommunication system. We also conducted sensitivity analysis of model parameters and performed statistical tests on the robustness of the models’ assumptions. We implemented the models in a new simulation-based traffic engineering system called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic techniques were used in building VSIM system. The core of VSIM is a simulation system that consists of two different simulation engines: the NHPP parametric simulation engine and the non-parametric simulation engine. In addition, VSIM provides several subsystems for traffic data collection, processing, statistical modeling, model parameter estimation, graph generation, and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network, processing and storing the extracted information, and then feeding it into one of the simulation engines which in turn provides resource optimization and quality of service reports

    Miniaturized Radio Repeater Design for Enhanced Ad-hoc Wireless Communication.

    Full text link
    In complex communication channel environments the radio-link coverage at microwave frequencies is mainly restricted by the exorbitant path-loss between communication nodes due to non-line-of-sight propagation and multi-path communication. Radio repeaters are commonly used to enhance the signal coverage, but the current systems are bulky and power hungry as the received signal is down-converted, amplified and retransmitted at a different frequency. This thesis deals with development of a low-power subwavelength radio repeater that can handle multiple channels simultaneously without requiring a specific communication protocol. First, a metamaterial-based electromagnetic band-gap isolator is introduced, which prohibits substrate mode propagation between two low-profile miniaturized antennas. This isolator achieves 24dB of isolation improvement between the transmit and receive antennas that are a quarter-wavelength apart and allows for 32dB of active amplifier gain between the antennas. Also using a novel near-field cancellation technique an electromagnetic null-plane between two antennas of a transmit array is created, which reduces the mutual coupling by -86dB. This radio repeater can achieve more than 50dB of active amplification. Lastly, a dual-channel radio repeater with a radar cross section of more than 26dBsm for both channels is developed.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/97901/1/yjsong_1.pd

    Analysis of public safety traffic on trunked land mobile radio systems

    No full text
    Abstract—Mobile radio systems for public safety and agencies engaged in emergency response and disaster recovery operations must support multicast voice traffic. In this paper, we analyze the distribution of call inter-arrival and call holding times for multicast voice (talk group) traffic on a transmission trunked mobile radio system. In such systems, the channel is held only while a user is making a call (while the push-to-talk key is pressed and the radio is transmitting). We find that the call inter-arrival time distributions are exponential and exhibit tendency toward long-range dependence. The call holding times best fit lognormal distributions and are not correlated. A potentially important implication of these findings is that performance estimation methods that assume memoryless Markov arrival and departure processes may not be viable approaches. Index Terms—Mobile communications, radio systems, public safety networks, analysis of voice traffic. M I

    Spectrum Allocation in Networks with Finite Sources and Data-Driven Characterization of Users\u27 Stochastic Dynamics

    Get PDF
    During emergency situations, the public safety communication systems (PSCSs) get overloaded with high traffic loads. Note that these PSCSs are finite source networks. The goal of our study is to propose techniques for an efficient allocation of spectrum in finite source networks that can help alleviate the overloading of PSCSs. In a PSCS, there are two system segments, one for the system-access control and the other for communications, each having dedicated frequency channels. The first part of our research, consisting of three projects, is based on modeling and analysis of finite source systems for optimal spectrum allocation, for both access-control and communications. In the first project, Chapter 2, we study the allocation of spectrum based on the concept of cognitive radio systems. In the second project, Chapter 3, we study the optimal communication channel allocation by call admission and preemption control. In the third project, Chapter 4, we study the optimal joint allocation of frequency channels for access-control and communications. Note that the aforementioned spectrum allocation techniques require the knowledge of the call traffic parameters and the priority levels of the users in the system. For practical systems, these required pieces of information are extracted from the call records meta-data. A key fact that should be considered while analyzing the call records is that the call arrival traffic and the users priority levels change with a change in events on the ground. This is so because a change in events on the ground affects the communication behavior of the users in the system, which affects the call arrival traffic and the priority levels of the users. Thus, the first and the foremost step in analyzing the call records data for a given user, for extracting the call traffic information, is to segment the data into time intervals of homogeneous or stationary communication behavior of the user. Note that such a segmentation of the data of a practical PSCS is the goal of our fourth project, Chapter 5, which constitutes the second part of our study

    Low-frequency Antennas, Transparent Ground Planes, and Transponders for Communication Enhancement in Unfavorable Environments

    Full text link
    The communication environment has a major influence on the performance of wireless networks. Unlike antennas, receivers, processors, and other components of a typical wireless system, the designer has almost no control over the communication channel. Therefore, it is imminent that the adverse effects of the communication channel such as path-loss, multi-path, lack of a clear line of sight, and interference are among the most limiting factors in designing and operating wireless networks. Recent investments in infrastructures such as cell-phone towers, communication satellites, routers, and networking devices have been aimed at reducing the aforementioned adverse effects. However, wireless ad hoc networks (WANET) cannot rely on pre-existing infrastructures such as access points or routers. In this thesis, a number of solutions are presented to enhance communication and navigation in harsh environments. 1) At lower frequencies, the defects of the communication channel are less prominent, which has led militaries to use UHF and VHF frequency bands for communication. A number of optically transparent UHF antennas are developed and embedded in the windows of military vehicles to reduce their visual signature. 2) Direction finding at low frequencies using baseline method results in an exorbitantly large array of sensors. However, a vector sensor consisting of three orthogonal two-port loop antennas can be used. A simple and accurate circuit model for the two-port loop antenna is developed for the first time that can be used for direction of arrival estimation over a wide range of frequencies and angles. 3) Using a conventional radio repeater with ad-hoc systems requires a communication protocol and decreases the throughput by a factor of two for every repeater in the chain. A full-duplex repeater, capable of simultaneously transmitting and receiving at the same frequency, is developed for the 2.4 GHz ISM band.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143898/1/manikafa_1.pd
    corecore