584 research outputs found

    Analysis of path following and obstacle avoidance for multiple wheeled robots in a shared workspace

    Get PDF
    The article presents the experimental evaluation of an integrated approach for path following and obstacle avoidance, implemented on wheeled robots. Wheeled robots are widely used in many different contexts, and they are usually required to operate in partial or total autonomy: in a wide range of situations, having the capability to follow a predetermined path and avoiding unexpected obstacles is extremely relevant. The basic requirement for an appropriate collision avoidance strategy is to sense or detect obstacles and make proper decisions when the obstacles are nearby. According to this rationale, the approach is based on the definition of the path to be followed as a curve on the plane expressed in its implicit form f(x, y) = 0, which is fed to a feedback controller for path following. Obstacles are modeled through Gaussian functions that modify the original function, generating a resulting safe path which - once again - is a curve on the plane expressed as f\u2032(x, y) = 0: the deformed path can be fed to the same feedback controller, thus guaranteeing convergence to the path while avoiding all obstacles. The features and performance of the proposed algorithm are confirmed by experiments in a crowded area with multiple unicycle-like robots and moving persons

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    Motion Planning and Posture Control of Multiple n-link Doubly Nonholonomic Manipulators

    Get PDF
    The paper considers the problem of motion planning and posture control of multiple n-link doubly nonholonomic mobile manipulators in an obstacle-cluttered and bounded workspace. The workspace is constrained with the existence of an arbitrary number of fixed obstacles (disks, rods and curves), artificial obstacles and moving obstacles. The coordination of multiple n-link doubly nonholonomic mobile manipulators subjected to such constraints becomes therefore a challenging navigational and steering problem that few papers have considered in the past. Our approach to developing the controllers, which are novel decentralized nonlinear acceleration controllers, is based on a Lyapunov control scheme that is not only intuitively understandable but also allows simple but rigorous development of the controllers. Via the scheme, we showed that the avoidance of all types of obstacles was possible, that the manipulators could reach a neighborhood of their goal and that their final orientation approximated the desired orientation. Computer simulations illustrate these results. KEYWORDS: Lyapunov-based control scheme; Doubly nonholonomic manipulators; Ghost parking bays; Minimum distance technique; Stability; Kinodynamic constraints

    A framework for safe human-humanoid coexistence

    Get PDF
    This work is focused on the development of a safety framework for Human-Humanoid coexistence, with emphasis on humanoid locomotion. After a brief introduction to the fundamental concepts of humanoid locomotion, the two most common approaches for gait generation are presented, and are extended with the inclusion of a stability condition to guarantee the boundedness of the generated trajectories. Then the safety framework is presented, with the introduction of different safety behaviors. These behaviors are meant to enhance the overall level of safety during any robot operation. Proactive behaviors will enhance or adapt the current robot operations to reduce the risk of danger, while override behaviors will stop the current robot activity in order to take action against a particularly dangerous situation. A state machine is defined to control the transitions between the behaviors. The behaviors that are strictly related to locomotion are subsequently detailed, and an implementation is proposed and validated. A possible implementation of the remaining behaviors is proposed through the review of related works that can be found in literature

    Multirobot heterogeneous control considering secondary objectives

    Full text link
    Cooperative robotics has considered tasks that are executed frequently, maintaining the shape and orientation of robotic systems when they fulfill a common objective, without taking advantage of the redundancy that the robotic group could present. This paper presents a proposal for controlling a group of terrestrial robots with heterogeneous characteristics, considering primary and secondary tasks thus that the group complies with the following of a path while modifying its shape and orientation at any time. The development of the proposal is achieved through the use of controllers based on linear algebra, propounding a low computational cost and high scalability algorithm. Likewise, the stability of the controller is analyzed to know the required features that have to be met by the control constants, that is, the correct values. Finally, experimental results are shown with di erent configurations and heterogeneous robots, where the graphics corroborate the expected operation of the proposalThis research was funded by Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDI

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Reachability-based Trajectory Design

    Full text link
    Autonomous mobile robots have the potential to increase the availability and accessibility of goods and services throughout society. However, to enable public trust in such systems, it is critical to certify that they are safe. This requires formally specifying safety, and designing motion planning methods that can guarantee safe operation (note, this work is only concerned with planning, not perception). The typical paradigm to attempt to ensure safety is receding-horizon planning, wherein a robot creates a short plan, then executes it while creating its next short plan in an iterative fashion, allowing a robot to incorporate new sensor information over time. However, this requires a robot to plan in real time. Therefore, the key challenge in making safety guarantees lies in balancing performance (how quickly a robot can plan) and conservatism (how cautiously a robot behaves). Existing methods suffer from a tradeoff between performance and conservatism, which is rooted in the choice of model used describe a robot; accuracy typically comes at the price of computation speed. To address this challenge, this dissertation proposes Reachability-based Trajectory Design (RTD), which performs real-time, receding-horizon planning with a simplified planning model, and ensures safety by describing the model error using a reachable set of the robot. RTD begins with the offline design of a continuum of parameterized trajectories for the plan- ning model; each trajectory ends with a fail-safe maneuver such as braking to a stop. RTD then computes the robot’s Forward Reachable Set (FRS), which contains all points in workspace reach- able by the robot for each parameterized trajectory. Importantly, the FRS also contains the error model, since a robot can typically never track planned trajectories perfectly. Online (at runtime), the robot intersects the FRS with sensed obstacles to provably determine which trajectory plans could cause collisions. Then, the robot performs trajectory optimization over the remaining safe trajectories. If no new safe plan can be found, the robot can execute its previously-found fail-safe maneuver, enabling perpetual safety. This dissertation begins by presenting RTD as a theoretical framework, then presents three representations of a robot’s FRS, using (1) sums-of-squares (SOS) polynomial programming, (2) zonotopes (a special type of convex polytope), and (3) rotatotopes (a generalization of zonotopes that enable representing a robot’s swept volume). To enable real-time planning, this work also de- velops an obstacle representation that enables provable safety while treating obstacles as discrete, finite sets of points. The practicality of RTD is demonstrated on four different wheeled robots (using the SOS FRS), two quadrotor aerial robots (using the zonotope FRS), and one manipulator robot (using the rotatotope FRS). Over thousands of simulations and dozens of hardware trials, RTD performs safe, real-time planning in arbitrary and challenging environments. In summary, this dissertation proposes RTD as a general purpose, practical framework for provably safe, real-time robot motion planning.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162884/1/skousik_1.pd

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper
    corecore