5,994 research outputs found

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    Iris Recognition: The Consequences of Image Compression

    Get PDF
    Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected

    Optimal load shedding for microgrids with unlimited DGs

    Get PDF
    Recent years, increasing trends on electrical supply demand, make us to search for the new alternative in supplying the electrical power. A study in micro grid system with embedded Distribution Generations (DGs) to the system is rapidly increasing. Micro grid system basically is design either operate in islanding mode or interconnect with the main grid system. In any condition, the system must have reliable power supply and operating at low transmission power loss. During the emergency state such as outages of power due to electrical or mechanical faults in the system, it is important for the system to shed any load in order to maintain the system stability and security. In order to reduce the transmission loss, it is very important to calculate best size of the DGs as well as to find the best positions in locating the DG itself.. Analytical Hierarchy Process (AHP) has been applied to find and calculate the load shedding priorities based on decision alternatives which have been made. The main objective of this project is to optimize the load shedding in the micro grid system with unlimited DG’s by applied optimization technique Gravitational Search Algorithm (GSA). The technique is used to optimize the placement and sizing of DGs, as well as to optimal the load shedding. Several load shedding schemes have been proposed and studied in this project such as load shedding with fixed priority index, without priority index and with dynamic priority index. The proposed technique was tested on the IEEE 69 Test Bus Distribution system

    A statistical multiresolution approach for face recognition using structural hidden Markov models

    Get PDF
    This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT) with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the traditional hidden Markov model with a 73% increase in accuracy
    corecore