323 research outputs found

    From 6LoWPAN to 6Lo: expanding the universe of IPv6-supported technologies for the Internet of Things

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksLeveraging 6LoWPAN, the IETF 6Lo Working Group has targeted adaptation of IPv6 over a new generation of communication technologies for the IoT. These comprise Bluetooth LE, ITU-T G.9959, DECT ULE, MS/TP, NFC, IEEE 1901.2, and IEEE 802.11ah. This article comprehensively analyzes the 6Lo technologies and adaptation layers, giving the motivation for critical design decisions, highlighting crucial aspects for performance, and presenting main challenges.Postprint (author's final draft

    IoT DEVICE MANAGEMENT AND CONFIGURATION

    Get PDF
    As the number of IoT devices grows, the management and configuration of IoT devices becomes crucial in resource constraint networks. It is hard to manage and configure a large amount of heterogeneous resource constraint IoT devices because people need to know how they connect to each other, what internet-enabled services are available to provide, and how people interact with things through the internet. The thing-centric approach focuses on user experience when engaging things, but the cloud- centric approach switch the focus to IoT services that can process data streams collected from things and applications that help get people joined in the IoT world. To manage IoT populations effectively in a centralized manner, not only does it mean that moving computational power closer to the edge is a way to reduce bandwidth and latency, but it also implies that it is necessary to build an architecture which can scale and manage tons of connected devices by a uniform interface. In particular, RESTful Web services can provide a uniform interface that operates resources by HTTP methods. For example, users can read and write data by a uniform interface, and a flowerpot can write data and be triggered to water plants by a uniform interface. Thus, in the scope of IoT, embedded middleware can implement uniform interface by REST model. Virtualizing physical things has emerged as a design pattern to build IoT systems. Resource less constraint devices are capable of being virtualized with enough CPU power, memory, networking, but they are more expensive and power consuming. However, resource highly constraint devices take advantage of low energy consumption and cheaper price, but they cannot be virtualized because they do not have ability to even run a single multi-threaded program. Therefore, it is very important to select the right platforms for the right roles. In our case, we use Raspberry Pi 3 as a middleware and Nordic nRF52832 as a BLE endpoint. In this thesis, a REST-based IoT management system based on Service-Oriented Architecture is built, and the performance of the system has been tested, including the response time of HTTP GET and POST requests of the centralized server in a Fog domain and a script engine onto a BLE-enabled endpoint

    Bluetooth Low Energy Based CoAP Communication in IoT CoAPNonIP: An Architecture Grants CoAP in Wireless Personal Area Network

    Get PDF
    In recent years, the development of smart devices has led to the Internet of Things (IoT). In IoT, the Constrained Application Protocol (CoAP) is a well-known protocol used in constrained networks. CoAP aims to work in IP-based networks. However, there are many constrained devices using different scenarios to transfer data. For example, Bluetooth Low Energy (BLE) devices use the Media Access Control (MAC) address as an identifier and use Generic Attribute Profile (GATT) to transfer data. Therefore, how to overcome those barriers is an important topic. There are several approaches to overcome those barriers. For example, a new hardware component can be added to make those devices support TCP/IP protocol stacks, then CoAP can easily be implemented in those devices. On the other hand, an application layer architecture can be added upon existing communication technologies to support CoAP. Considering to minimize the changes of underlying communication infrastructure, the second approach can achieve the goal with less effort. This thesis proposes an architecture that apply CoAP to different Non-IP based communication technologies. Meanwhile, Bluetooth Low Energy is used to explore how to overcome limitations of underlying technology. By adopting the proposed architecture, existing devices can participate in the IoT through CoAP without extra hardware upgrade or hardware modification. Although experiments show that the current implementation of the proposed architecture has relatively low data rate, the problem can be solved via ​changing the factory settings of BLE devices. Compared with the hardware solution, the proposed architecture takes less effort to support different underlying technologies and platforms

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    Glowbal IP: An Adaptive and Transparent IPv6 Integration in the Internet of Things

    Get PDF
    • …
    corecore