14,094 research outputs found

    Physical Layer Security: Coalitional Games for Distributed Cooperation

    Full text link
    Cooperation between wireless network nodes is a promising technique for improving the physical layer security of wireless transmission, in terms of secrecy capacity, in the presence of multiple eavesdroppers. While existing physical layer security literature answered the question "what are the link-level secrecy capacity gains from cooperation?", this paper attempts to answer the question of "how to achieve those gains in a practical decentralized wireless network and in the presence of a secrecy capacity cost for information exchange?". For this purpose, we model the physical layer security cooperation problem as a coalitional game with non-transferable utility and propose a distributed algorithm for coalition formation. Through the proposed algorithm, the wireless users can autonomously cooperate and self-organize into disjoint independent coalitions, while maximizing their secrecy capacity taking into account the security costs during information exchange. We analyze the resulting coalitional structures, discuss their properties, and study how the users can self-adapt the network topology to environmental changes such as mobility. Simulation results show that the proposed algorithm allows the users to cooperate and self-organize while improving the average secrecy capacity per user up to 25.32% relative to the non-cooperative case.Comment: Best paper Award at Wiopt 200

    Coalition Formation Games for Collaborative Spectrum Sensing

    Full text link
    Collaborative Spectrum Sensing (CSS) between secondary users (SUs) in cognitive networks exhibits an inherent tradeoff between minimizing the probability of missing the detection of the primary user (PU) and maintaining a reasonable false alarm probability (e.g., for maintaining a good spectrum utilization). In this paper, we study the impact of this tradeoff on the network structure and the cooperative incentives of the SUs that seek to cooperate for improving their detection performance. We model the CSS problem as a non-transferable coalitional game, and we propose distributed algorithms for coalition formation. First, we construct a distributed coalition formation (CF) algorithm that allows the SUs to self-organize into disjoint coalitions while accounting for the CSS tradeoff. Then, the CF algorithm is complemented with a coalitional voting game for enabling distributed coalition formation with detection probability guarantees (CF-PD) when required by the PU. The CF-PD algorithm allows the SUs to form minimal winning coalitions (MWCs), i.e., coalitions that achieve the target detection probability with minimal costs. For both algorithms, we study and prove various properties pertaining to network structure, adaptation to mobility and stability. Simulation results show that CF reduces the average probability of miss per SU up to 88.45% relative to the non-cooperative case, while maintaining a desired false alarm. For CF-PD, the results show that up to 87.25% of the SUs achieve the required detection probability through MWCComment: IEEE Transactions on Vehicular Technology, to appea

    Coalition Formation Games for Distributed Cooperation Among Roadside Units in Vehicular Networks

    Get PDF
    Vehicle-to-roadside (V2R) communications enable vehicular networks to support a wide range of applications for enhancing the efficiency of road transportation. While existing work focused on non-cooperative techniques for V2R communications between vehicles and roadside units (RSUs), this paper investigates novel cooperative strategies among the RSUs in a vehicular network. We propose a scheme whereby, through cooperation, the RSUs in a vehicular network can coordinate the classes of data being transmitted through V2R communications links to the vehicles. This scheme improves the diversity of the information circulating in the network while exploiting the underlying content-sharing vehicle-to-vehicle communication network. We model the problem as a coalition formation game with transferable utility and we propose an algorithm for forming coalitions among the RSUs. For coalition formation, each RSU can take an individual decision to join or leave a coalition, depending on its utility which accounts for the generated revenues and the costs for coalition coordination. We show that the RSUs can self-organize into a Nash-stable partition and adapt this partition to environmental changes. Simulation results show that, depending on different scenarios, coalition formation presents a performance improvement, in terms of the average payoff per RSU, ranging between 20.5% and 33.2%, relative to the non-cooperative case.Comment: accepted and to appear in IEEE Journal on Selected Areas in Communications (JSAC), Special issue on Vehicular Communications and Network

    A Coalition-Formation Game Model for Energy-Efficient Routing in Mobile Ad-hoc Network

    Get PDF
    One of the most routing problems in Mobile Ad-hoc Network is the node’s selfishness. Nodes are generally selfish and try to maximize their own benefit; hence these nodes refuse to forward packet on behalf of others to preserve their limited energy resources. This selfishness may lead to a low efficiency of routing. Therefore, it is important to study mechanisms which can be used encourage cooperation among nodes, to maintain the network efficiency. In this paper, we propose a cooperative game theoretic model to support more energy-aware and available bandwidth routing in MANET. We introduce a novel framework from coalitional-formation game theory, called hedonic coalition-formation game. We integrate this model to OLSR protocol that is an optimization over the classical link state protocol for the MANETs. Within each coalition, a coalition coordinator acts as a special MPR node to improve the energy efficient and the packet success rate of the transmission. Simulation results show how the proposed algorithm improve the performance in terms of the percentage of selected MPR nodes in the network, the percentage of alive nodes by time, and the Packet Delivery Ratio. Which prove that our proposed model leads, to better results compared to the classical OLSR

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Coalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks

    Full text link
    Cooperative transmission in vehicular networks is studied by using coalitional game and pricing in this paper. There are several vehicles and roadside units (RSUs) in the networks. Each vehicle has a desire to transmit with a certain probability, which represents its data burtiness. The RSUs can enhance the vehicles' transmissions by cooperatively relaying the vehicles' data. We consider two kinds of cooperations: cooperation among the vehicles and cooperation between the vehicle and RSU. First, vehicles cooperate to avoid interfering transmissions by scheduling the transmissions of the vehicles in each coalition. Second, a RSU can join some coalition to cooperate the transmissions of the vehicles in that coalition. Moreover, due to the mobility of the vehicles, we introduce the notion of encounter between the vehicle and RSU to indicate the availability of the relay in space. To stimulate the RSU's cooperative relaying for the vehicles, the pricing mechanism is applied. A non-transferable utility (NTU) game is developed to analyze the behaviors of the vehicles and RSUs. The stability of the formulated game is studied. Finally, we present and discuss the numerical results for the 2-vehicle and 2-RSU scenario, and the numerical results verify the theoretical analysis.Comment: accepted by IEEE ICC'1

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201
    corecore