1,213 research outputs found

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    4. generĂĄciĂłs mobil rendszerek kutatĂĄsa = Research on 4-th Generation Mobile Systems

    Get PDF
    A 3G mobil rendszerek szabvĂĄnyosĂ­tĂĄsa a vĂ©gĂ©hez közeledik, legalĂĄbbis a meghatĂĄrozĂł kĂ©pessĂ©gek tekintetĂ©ben. EzĂ©rt lĂ©tfontossĂĄgĂș azon technikĂĄk, eljĂĄrĂĄsok vizsgĂĄlata, melyek a következƑ, 4G rendszerekben meghatĂĄrozĂł szerepet töltenek majd be. Több ilyen kutatĂĄsi irĂĄnyvonal is lĂ©tezik, ezek közĂŒl projektĂŒnkben a fontosabbakra koncentrĂĄltunk. A következƑben felsoroljuk a kutatott terĂŒleteket, Ă©s röviden összegezzĂŒk az elĂ©rt eredmĂ©nyeket. SzĂłrt spektrumĂș rendszerek KifejlesztettĂŒnk egy Ășj, rĂĄdiĂłs interfĂ©szen alkalmazhatĂł hĂ­vĂĄsengedĂ©lyezĂ©si eljĂĄrĂĄst. SzimulĂĄciĂłs vizsgĂĄlatokkal tĂĄmasztottuk alĂĄ a megoldĂĄs hatĂ©konysĂĄgĂĄt. A projektben kutatĂłkĂ©nt rĂ©sztvevƑ Jeney GĂĄbor sikeresen megvĂ©dte Ph.D. disszertĂĄciĂłjĂĄt neurĂĄlis hĂĄlĂłzatokra Ă©pĂŒlƑ többfelhasznĂĄlĂłs detekciĂłs technikĂĄk tĂ©mĂĄban. Az elĂ©rt eredmĂ©nyek Imre SĂĄndor MTA doktori disszertĂĄciĂłjĂĄba is beĂ©pĂŒltek. IP alkalmazĂĄsa mobil rendszerekben TovĂĄbbfejlesztettĂŒk, teszteltĂŒk Ă©s ĂĄltalĂĄnosĂ­tottuk a projekt keretĂ©ben megalkotott Ășj, gyƱrƱ alapĂș topolĂłgiĂĄra Ă©pĂŒlƑ, a jelenleginĂ©l nagyobb megbĂ­zhatĂłsĂĄgĂș IP alapĂș hozzĂĄfĂ©rĂ©si koncepciĂłt. A tĂ©makörben Szalay MĂĄtĂ© Ph.D. disszertĂĄciĂłja mĂĄr a nyilvĂĄnos vĂ©dĂ©sig jutott. Kvantum-informatikai mĂłdszerek alkalmazĂĄsa 3G/4G detekciĂłra Új, kvantum-informatikai elvekre Ă©pĂŒlƑ többfelhasznĂĄlĂłs detekciĂłs eljĂĄrĂĄst dolgoztunk ki. Ehhez Ășj kvantum alapĂș algoritmusokat is kifejlesztettĂŒnk. Az eredmĂ©nyeket nemzetközi folyĂłiratok mellett egy sajĂĄt könyvben is publikĂĄltuk. | The project consists of three main research directions. Spread spectrum systems: we developed a new call admission control method for 3G air interfaces. Project member Gabor Jeney obtained the Ph.D. degree and project leader Sandor Imre submitted his DSc theses from this area. Application of IP in mobile systems: A ring-based reliable IP mobility mobile access concept and corresponding protocols have been developed. Project member MĂĄtĂ© Szalay submitted his Ph.D. theses from this field. Quantum computing based solutions in 3G/4G detection: Quantum computing based multiuser detection algorithm was developed. Based on the results on this field a book was published at Wiley entitled: 'Quantum Computing and Communications - an engineering approach'

    Personal area technologies for internetworked services

    Get PDF
    • 

    corecore