71 research outputs found

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network

    Fiber-to-the-Home System with Remote Repeater

    Get PDF

    Dynamic bandwidth management with service differentiation over ethernet passive optical networks

    Get PDF
    Ethernet passive optical networks (EPONs) address the first mile of the communication infrastructure between the service provider central offices and the customer sites. As a low-cost, high speed technology, EPONs are deemed as the solution to the bottleneck problem of the broadband access network. A major feature of EPONs is the utility of a shared upstream channel among the end users. Only a single optical network unit (GNU) may transmit during a timeslot to avoid data collisions. In order to provide diverse quality of service (QoS), the bandwidth management of the upstream channel is essential for the successful implementation of EPONs, and thus, an efficient medium access control is required to facilitate statistical multiplexing among local traffics. This dissertation addresses the upstream bandwidth allocation over EPONs. An efficient mechanism, i.e., limited sharing with traffic prediction (LSTP), has been proposed to arbitrate the upstream bandwidth among ONUs. The MultiPoint Control Protocol (MPCP) messages, which are stipulated by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force, are adopted by LSTP to facilitate the dynamic bandwidth negotiation between an GNU and the OLT. The bandwidth requirement of an ONU includes the already enqueued frames and the predicted incoming frames during the waiting time. The OLT arbitrates the bandwidth assignment based on the queue status report from an GNU, the traffic prediction, and the agreed service contract. With respect to the performance evaluation, theoretical analysis on the frame loss, the frame delay, and the queue length has been conducted. The quantitative results demonstrate that 1) the innovative LSTP mechanism dynamically allocates the upstream bandwidth among multiple ONUs; 2) the traffic predictor at the OLT delivers satisfactory prediction for the bursty self-similar traffic, and thereby, contributing to the reduction of frame loss, frame delay, and queue length; and 3) the bandwidth arbitration at the OLT effectively restricts the aggressive bandwidth competition among ONUs by adopting the service level agreement (SLA) parameter as the upper bound. Aside from analysis, the LSTP mechanism has been substantiated by experimental simulations. In order to differentiate the service provisioning among diverse users, LSTP is further enhanced with the support of dynamic bandwidth negotiation based on multiple queues. The incoming traffics are first classified into three classes, and then enqueued into the corresponding queues. A traffic predictor is dedicated to one class of traffic from an GNU. Service differentiation among classes are provided by the combination of queuing and scheduling at the GNU side. At the OLT side, the bandwidth allocation for each class of traffic is based on the reported queue status and the traffic prediction, and is upper-bounded by the SLA parameter. Experimental simulations have justified the feasibility of providing service differentiation over the broadband EPONs

    Femtocell Performance Over Non-SLA xDSL Access Network

    Get PDF
    Environmental medicin

    Resource management research in ethernet passive optical networks

    Get PDF
    The last decades, we have witnessed different phenomenology in the telecommunications sector. One of them is the widespread use of the Internet, which has brought a sharp increase in traffic, forcing suppliers to continuously expand the capacity of networks. In the near future, Internet will be composed of long-range highspeed optical networks; a number of wireless networks at the edge; and, in between, several access technologies. Today one of the main problems of the Internet is the bottleneck in the access segment. To address this issue the Passive Optical Networks (PONs) are very likely to succeed, due to their simplicity, low-cost, and increased bandwidth. A PON is made up of fiber optic cabling and passive splitters and couplers that distribute an optical signal to connectors that terminate each fiber segment. Among the different PON technologies, the Ethernet-PON (EPON) is a great alternative to satisfy operator and user needs, due to its cost, flexibility and interoperability with other technologies. One of the most interesting challenges in such technologies relates to the scheduling and allocation of resources in the upstream (shared) channel, i.e., the resource management. The aim of this thesis is to study and evaluate current contributions and propose new efficient solutions to address the resource management issues mainly in EPON. Key issues in this context are future end-user needs, quality of service (QoS) support, energy-saving and optimized service provisioning for real-time and elastic flows. This thesis also identifies research opportunities, issue recommendations and proposes novel mechanisms associated with access networks based on optical fiber technologies.Postprint (published version

    Wavelength reconfigurability for next generation optical access networks

    Get PDF
    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONU). In this dissertation, I propose a novel concept named cyclic-linked flexibility to address the cost-prohibitive problem. By using the cyclic-linked flexibility, the ONU needs to switch only within a subset of two pre-planned wavelengths, however, the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. Rearrangement algorithm are developed to demonstrate that the cyclic-linked flexibility performs close to the fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, the evaluation shows that the rearrangement process has a minimum impact to in-service ONUs. To realize the cyclic-linked flexibility, a family of four physical architectures is proposed. PRO-Access architecture is suitable for new deployments and disruptive upgrades in which the network reach is not longer than 20 km. WCL-Access architecture is suitable for metro-access merger with the reach up to 100 km. PSB-Access architecture is suitable to implement directly on power-splitter-based PON deployments, which allows coexistence with current technologies. The cyclically-linked protection architecture can be used with current and future PON standards when network protection is required

    Analysis of the impact of impulse noise in digital subscriber line systems

    Get PDF
    In recent years, Digital subscriber line (DSL) technology has been gaining popularity as a high speed network access technology, capable of the delivery of multimedia services. A major impairment for DSL is impulse noise in the telephone line. However, evaluating the data errors caused by this noise is not trivial due to its complex statistical nature, which until recently had not been well understood, and the complicated error mitigation and framing techniques used in DSL systems. This thesis presents a novel analysis of the impact of impulse noise and the DSL framing parameters on transmission errors, building on a recently proposed impulse noise model. It focuses on errors at higher protocol layers, such as asynchronous transfer mode (ATM), in the most widely used DSL version, namely Asymmetric DSL (ADSL). The impulse noise is characterised statistically through its amplitudes, duration, inter-arrival times, and frequency spectrum, using the British Telecom / University of Edinburgh / Deutsche Telekom (BT/UE/DT) model. This model is broadband, considers both the time and the frequency domains, and accounts for the impulse clustering. It is based on recent measurements in two different telephone networks (the UK and Germany) and therefore is the most complete model available to date and suited for DSL analysis. A new statistical analysis of impulse noise spectra from DT measurements shows that impulse spectra can be modelled with three spectral components with similar bandwidth statistical distributions. Also, a novel distribution of the impulse powers is derived from the impulse amplitude statistics. The performance of a generic ADSL modem is investigated in an impulse noise and crosstalk environment for different bit rates and framing parameters. ATM cell and ADSL frame error rates, and subjective MPEG2 video quality are used as performance metrics. A new modification of a bit loading algorithm is developed to enable stable convergence of the algorithm with trellis coding and restricted subtone constellation size. It is shown that while interleaving brings improvement if set at its maximum depth, at intermediate depths it actually worsens the performance of all considered metrics in comparison with no interleaving. No such performance degradation is caused by combining several symbols in a forward error correction (FEC) codeword, but this burst error mitigation technique is only viable at low bit rates. Performance improvement can also be achieved by increasing the strength of FEC, especially if combined with interleaving. In contrast, trellis coding is ineffective against the long impulse noise error bursts. Alien as opposed to kindred crosstalk degrades the error rates and this is an important issue in an unbundled network environment. It is also argued that error free data units is a better performance measure from a user perspective than the commonly used error free seconds. The impact of impulse noise on the errors in DSL systems has also been considered analytically. A new Bernoulli-Weibull impulse noise model at symbol level is proposed and it is shown that other models which assume Gaussian distributed impulse amplitudes or Rayleigh distributed impulse powers give overly optimistic error estimates in DSL systems. A novel bivariate extension of the Weibull impulse amplitudes is introduced to enable the analysis of orthogonal signals. Since an exact closed-form expression for the symbol error probability of multi-carrierQAM assuming Bernoulli-Weibull noise model does not exist, this problem has been solved numerically. Multi-carrier QAM is shown to perform better at high signal-to-noise ratio (SNR), but worse at low SNR than single carrier QAM, in both cases because of the spreading of noise power between subcarriers. Analytical expressions for errors up to frame level in the specific case of ADSL are then derived from the impulse noise model, with good agreement with simulation results. The Bernoulli-Weibull model is applied to study the errors in single-pair highspeed DSL (SHDSL). The performance of ADSL is found to be better when the burst error mitigation techniques are used, but SHDSL has advantages if low bit error rate and low latency are required
    corecore