6 research outputs found

    Continuous feedback fluid queues

    Get PDF
    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with generator Q(y)Q(y) at times when the buffer level is yy, where the entries of Q(y)Q(y) are continuous functions of yy. Moreover, the flow rates for the buffer may also depend continuously on the current buffer level. Such models are interesting in the context of closed-loop telecommunication networks, in which sources interact with network buffers, but may also be deployed in the study of certain production systems. \u

    Fluid flow models in performance analysis

    Get PDF
    We review several developments in fluid flow models: feedback fluid models, linear stochastic fluid networks and bandwidth sharing networks. We also mention some promising new research directions

    Simple models of network access, with applications to the design of joint rate and admission control

    Get PDF
    At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small, which has network engineering implications that are investigated in this paper. We consider a single point in the access network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access multiplexer. Important parameters are the user's peak transmission rate p, which is the access line speed, the user's guaranteed minimum rate r, and the bound ε on the fraction of lost data. Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under the assumption that the users' job sizes and think times have exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection of the number of admissible users, to maximize throughput for given p, r, and ε. Next we consider the case in which the number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We discuss the extension to general distributions of user data and think times

    A feedback fluid queue with two congestion control thresholds

    Get PDF
    Feedback fluid queues play an important role in modeling congestion control mechanisms for packet networks. In this paper we present and analyze a fluid queue with a feedback-based traffic rate adaptation scheme which uses two thresholds. The higher threshold B1B_{1} is used to signal the beginning of congestion while the lower threshold B2B_{2} signals the end of congestion. These two parameters together allow to make the trade--off between maximizing throughput performance and minimizing delay. The difference between the two thresholds helps to control the amount of feedback signals sent to the traffic source. In our model the input source can behave like either of two Markov fluid processes. The first applies as long as the upper threshold B1B_{1} has not been hit from below. As soon as that happens, the traffic source adapts and switches to the second process, until B2B_{2} (smaller than B1B_1) is hit from above. We analyze the model by setting up the Kolmogorov forward equations, then solving the corresponding balance equations using a spectral expansion, and finally identifying sufficient constraints to solve for the unknowns in the solution. In particular, our analysis yields expressions for the stationary distribution of the buffer occupancy, the buffer delay distribution, and the throughput

    Queues with Congestion-dependent Feedback

    Get PDF
    This dissertation expands the theory of feedback queueing systems and applies a number of these models to a performance analysis of the Transmission Control Protocol, a flow control protocol commonly used in the Internet

    Analysis of a single server queue interacting with a fluid reservoir

    Get PDF
    We consider a single-server queueing system with Poisson arrivals in which the speed of the server depends on whether an associated fluid reservoir is empty or not. Conversely, the rate of change of the content of the reservoir is determined by the state of the queueing system, since the reservoir fills during idle periods and depletes during busy periods of the server. Our interest focuses on the stationary joint distribution of the number of customers in the system and the content of the fluid reservoir, from which various performance measures such as the steady-state sojourn time distribution of a customer may be obtained. We study two variants of the system. For the first, in which the fluid reservoir is infinitely large, we present an exact analysis. The variant in which the fluid reservoir is finite, is analysed approximatively through a discretization technique. The system may serve as a mathematical model for a traffic regulation mechanism -- a two-level traffic shaper -- at the edge of an ATM network, regulating a very bursty source. We present some numerical results showing the effect of the mechanism
    corecore