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A B S T R A C T

We review several developments in fluid flow models: feedback fluid models, linear stochastic fluid networks and bandwidth sharing networks. We also mention
some promising new research directions.

1. Introduction

A key concept in the performance analysis of computer and com-
munication networks is time-scale separation. A separation of time
scales enables to analyse different dynamics in a tractable way, dis-
tinguishing between fast dynamics and slow dynamics. In the context of
computer and communication networks, fast dynamics are often asso-
ciated with the behavior of data packets, while slow dynamics (some-
times called burst scale) are associated with files or users, often called
flows. When the number of flows is fixed, it is often possible to analyze
the long-term behavior of protocols that are designed to deal with
packets. The steady-state behavior of these packet-level dynamics is
then assumed to be achieved instantaneously and deterministically
when looking at the system at a slow time scale, in which the main
source of randomness is not associated with packet-level dynamics, but
with arrivals and departures of flows. This gives rise to fluid flow
models.

The survey paper Fluid queues with long-tailed activity period dis-
tributions [13], which appeared in this journal 20 years ago, was de-
voted to a particular class of fluid flow models, viz., fluid queues fed by
a number of on/off sources. A fluid queue is a buffer that receives fluid
input from a number, say N, of sources, and from which fluid drains at a
constant rate. Source ∈ ⋯i N{1, 2, , } alternates between activity (on)
periods ⋯A A, ,i i,1 ,2 during which it generates fluid at a constant rate ri,
and silence (off) periods ⋯S S, ,i i1 2 during which it generates no fluid.
The successive activity periods of a source are assumed to be i.i.d.
(independent, identically distributed) random variables, and the same
holds for the silence periods. Furthermore, independence is assumed
between all activity and all silence periods of all sources.

Such a fluid queue model fed by on/off sources has been used to
capture the behaviour of a wide range of computer and communication
networks at the burst scale. Initially, all on- and off-period distributions
were assumed to have exponential tails. Triggered by a host of

measurements of actual communication traffic, the focus in [13] was on
the situation in which at least one source has activity periods which do
not have an exponential tail, but instead are long-tailed. Such activity
periods, which behave fundamentally different from exponentially
distributed activity periods, may have a severe impact on the tail be-
haviour of the buffer content and the busy period (non emptiness)
distribution of the buffer. That impact was qualitatively described in
[13].

After the appearance of [13], much research has been devoted to a
further study of the impact of heavy-tailed – in particular, regularly
varying – on-periods on the buffer content distribution of which we
mention the most general results that exist to date. In [60] it is shown
that the buffer content distribution is asymptotically equivalent to that
in a reduced system. The reduced system consists of a ‘dominant’ subset
of the flows, with the original service rate subtracted by the mean rate
of the other flows. The dominant set is shown to be determined via a
knapsack formulation. The dominant set consists of a ‘minimally cri-
tical’ set of on-off flows with regularly varying on-periods. A related
result for a model where flows are initiated by a Poisson process is [12],
while analogous results for finite buffers have been considered in [24].

In the present note, the focus is on two related topics regarding flow
level models. The first topic concerns the exact analysis of two families
of fluid queueing systems, viz., feedback fluid queues and linear sto-
chastic fluid networks. The second topic is bandwidth sharing net-
works. Bandwidth networks are related to fluid queues, but explicitly
take into account the feedback loop that exists in congestion-aware
packet level protocols. In each of these two topics, the idea of time-scale
separation is directly used in stochastic modeling. We would like to
remark that it is also very well possible to start with a more compre-
hensive model, and establish a time-scale separation in a more formal,
endogenous way. In the context of applied probability and stochastic
networks, one typically begins with a detailed ‘intractable’ model, and
then applies probabilistic scaling techniques, which lead to the
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identification of relevant time scales, and the associated reduction in
model complexity in an endogenous way [55].

In this brief note, lack of space forces us to largely ignore several
interesting areas of research on fluid queues. To mention a few: (i) The
idea of replacing a stochastic model with its associated deterministic
dynamics (called fluid model) is quite useful to determine whether or
not a stochastic model is positive recurrent. These ideas are not treated
here; we refer to the groundbreaking papers of Rybko and Stolyar [47]
and Dai [20], and to [16] for a textbook treatment. (ii) Efficient com-
putational and matrix-analytic [2–4,50,51] methods for the steady-state
and transient analysis of fluid flow models, mostly based on a con-
nection between fluid queues and quasi birth-death processes. (iii)
Studies on stochastic storage and dam processes, which may be viewed
as (predecessors of) fluid flow models; see, e.g., [44]; see also the
mountain processes as discussed, a.o., in [15].

The remainder of this note is organized as follows. Section 2 is
devoted to exact results for feedback fluid queues and linear stochastic
fluid networks. Flow level models for bandwidth sharing are discussed
in Section 3. Section 4 mentions interesting new developments and
contains some suggestions for further research.

2. Exact analysis of feedback fluid queues and linear stochastic
fluid networks

Origin. Pioneering work concerning the probabilistic analysis of
fluid queues fed by on/off sources was done by Kosten [34–36]; in those
three papers he considered an infinite number of sources, successively
taking exponential, Erlang and hyperexponential on-period distribu-
tions. Several years later it was followed by the breakthrough paper [5],
which triggered intensive research on all kinds of extensions; some of
these are summarized in the COST report [19] and the survey [37].

Model and results: (i) Feedback fluid queues. Anick, Mitra and Sondhi
(AMS) [5] consider a buffer that is fed by N on/off sources. It is as-
sumed that all N on- and off periods are exponentially distributed. The
steady-state buffer content distribution is described in terms of a set of
differential equations, using spectral analysis. This AMS model may be
viewed as a Markov modulated fluid model (MMFM): If an underlying
Markov process is in state, say, j, then the input rate into the buffer is rj.
In several studies, Scheinhardt et al. (see, e.g., [1]) consider extensions
of such MMFM by allowing a form of feedback: Not only is the beha-
viour of the buffer content determined by some background process,
but also does the behaviour of the background process depend on the
current buffer level. The rates rj become rates rj(y) when the buffer
content equals y, and the matrix Q that determines the transitions be-
tween different background states becomes Q(y). Due to this feedback,
the background process no longer is a Markov process.

Such feedback fluid queues may represent the behaviour of certain
production- and communication systems in which the network and the
sources interact. In [40], feedback fluid queues are used to study
feedback schemes in access networks; the functions Q(y) and rj(y) are
here taken piecewise constant. In [49], Q(y) and the rj(y) are allowed to
depend continuously on y. The stationary distribution for the two-di-
mensional process consisting of background state and buffer content is
described by a set of ordinary differential and algebraic equations; this
set of equations is solved explicitly for the case of only two background
states. The buffer size is assumed to be finite in [49]; in [14] the buffer
size is allowed to be infinite, and the background process has only two
states.

Feedback fluid queues with piecewise constant functions Q(y) and
rj(y) have recently also been used for performance modelling in various
other areas than access networks, such as optical buffering using fiber
delay lines [57] and battery life times under stochastic charging/dis-
charging periods [25].

Model and results: (ii) Linear stochastic fluid networks. In a series of
papers [28–30], Kella and Whitt have developed the elegant theory of
linear stochastic fluid networks. Such fluid networks have random

external inputs, but all internal flows are deterministic and continuous
like fluid. We focus in particular on the linear stochastic fluid networks
introduced in [30]. Linear stochastic fluid networks arise as the limit of
normalized networks of infinite server queues with batch arrivals, in
which the batch sizes grow. In those fluid networks, just like in net-
works of infinite server queues, the movement of separate particles can
be thought of as being mutually independent, conditional on the time
and place of entering the network. The resulting tractability makes
linear stochastic fluid networks a strong candidate for approximations
of discrete queueing networks. Kella and Whitt do not consider sto-
chastic behaviour of individual particles, but specify what happens to
deterministic proportions of the arriving fluid. Instead of independent,
identically distributed service times with distribution G( · ), the fol-
lowing service mechanism is employed. Let �= ∈G G x t x t{ ( , ) ( , ) }2 be
a stochastic process with 0≤G( · , · )≤ 1 and G(x, t) non-decreasing in
t. The meaning of the stochastic process is the following: A proportion
G(x, t) of any input arriving at time x leaves at time t. A(s, t) denotes the
external input in a fluid queue during (s, t]. Very detailed buffer content
results can be obtained when there is a proportional release rate r
(which, in a discrete setting, can be interpreted as departure rate which
is proportional to the number of jobs) and the input process has sta-
tionary and independent increments, i.e., it is a Lévy process. Let η( · )
denote the Laplace exponent of the Lévy process. Kella and Whitt [30]
prove that the Laplace-Stieltjes transform of the steady-state buffer
content W is given by

∫⎜ ⎟= ⎛
⎝

− ⎞
⎠

− ∞ −E η α s[e ] exp (e )d .αW rs
0 (1)

They also provide a matrix form of this result, for the case of a network
of m fluid queues, m-dimensional Lévy input process, proportional re-
lease rate vector, and proportional routing matrix.

A generalization to Markov-modulated linear fluid networks is
presented by Kella and Stadje [27]. Under the assumption that the
external input is a multivariate Markov additive process, they provide
stability conditions and show how to compute transient and stationary
characteristics of the networks under consideration.

For the case of stochastic fluid networks with a tree structure, driven
by a multidimensional Lévy process, Debicki et al. [21] obtain elegant
results for the joint distribution of the buffer contents and the ages of
the busy periods (uninterrupted period of time a buffer has been non-
empty) and of the idle periods. These and other results for Lévy-driven
fluid queues are also discussed in [22].

While linear stochastic fluid models can be regarded as continuous
analogs or fluid limits of open networks of infinite-server queues, they
also appear in different applications; for an application to power sys-
tems we refer to [52].

3. Bandwidth sharing network models for internet congestion

Origin. The TCP/IP protocol has been an important building block of
the modern internet. Within the context of performance analysis, both
packet-level models and flow-level models for TCP exist. The key idea,
proposed by Kelly [31], is that packet-level mechanisms can be inter-
preted as implementation of decentralized solutions of optimization
problems, i.e., the TCP protocol can be seen as a distributed way of
solving a particular optimization problem. This ’reversed engineering’
point of view gave rise to the field of network utility maximization
[17,58]. These developments led to a class of stochastic processes on
networks called bandwidth sharing networks. In a bandwidth sharing
network, flows with random duration arrive according to a random
process and need to be processed along different routes. The bandwidth
available at the bottlenecks of these routes (each bottleneck may cor-
respond to multiple routes) is shared in a way that extends processor
sharing in a single-node case [42].

Model. In its simplest form, a bandwidth sharing network can be
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described as follows. Consider a network with J links, and suppose that
link j, = …j J1, , , can process work at rate Cj. There are R classes of
users called routes. A flow on route r uses a subset of the links, encoded
by a −0 1 matrix A with 0-1 elements Ajr. Flows on route r arrive ac-
cording to a Poisson arrival process of rate λr and have service re-
quirements that are exponential with rate μr. Consider now a static si-
tuation in which the number of flows along each route is given by a
vector n. The connection with packet-level dynamics is now modeled by
assuming that flows along route r are served with rate Λr(n), where Λ(n)
can be characterized as the solution of a concave programming problem
of the form

∑=n n U nΛ( ) arg max (Λ / ),
r

r r r r
(2)

subject to the network capacity constraints AΛ≤ C and possibly addi-
tional individual rate constraints Λr/nr≤ dr. Ur(x) is the utility for a
user of route r if its service rate equals x. When the system is single node
and single class, this reduces to a processor sharing queue. In the net-
work set-up, the choice =U x w x( ) log ,r r called weighted proportional
fairness, is the most popular, though different choices of utility function
correspond to different packet-level dynamics - we refer to [33] for a
textbook treatment.

Results. Like in the case of fluid queues, much of the initial work
focused on exact analysis, and on determining whether results for ex-
ponential processing times can be extended to more general distribu-
tions. This can be related to the analysis of insensitivity in classical
product-form queueing networks in the following illustrative way.
Consider a network topology with J links and = +R J 1 routes, where
one route (number 0) is using all links, and route r≥ 1 is using link r.
When also =C 1,j and =U x x( ) log ,r the optimization problem (2) can
be solved explicitly, leading to the expression

=
∑

= − ≥
=

n n
n

n n rΛ ( ) , Λ ( ) 1 Λ ( ), 1.
r
J

r
r0

0

0
0

(3)

One can then apply existing results on classical product-form queueing
networks dating back to [7,18] to conclude that the invariant dis-
tribution π(n) is given by
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(4)

with =ρ λ μ/r r r - see Chapter 8.5 of [33] for a textbook treatment. An
appealing property of these results is that the assumption of ex-
ponentially distributed flow sizes can be relaxed towards a dense class
of distributions.

This type of result can be generalized further to so-called hypercube
topologies. In [8] it is shown that the only instances yielding product-
form results are such topologies. Moreover, these networks need to
operate under the unweighted proportional fairness allocation me-
chanism =U x x( ) logr and have identical link capacities.

This has led to follow-up research focusing on bounds [9] as well as
modifications of proportional fairness [41]. Another line of more recent
research is aimed at simplifications using probabilistic model reduction
techniques such as fluid and diffusion (heavy traffic) approximations.
For the case of networks operating under proportional fairness, a
number of results has been obtained that lead to heavy-traffic approx-
imations that have a tractable limiting distribution. These results sug-
gest that proportional fairness is approximately insensitive if the net-
work operates in heavy traffic [26,53]. Bandwidth sharing networks in
overload have been studied in [10].

All of the above results hold under the assumption that there is no
upper bound on how fast a flow can be transmitted, i.e. = ∞dr . In
practice, it would take many flows to saturate a link, so that Ci can be
orders of magnitude bigger than dr. This leads to different scalings, and
nontrivial behavior of fluid approximations, especially when also
abandonments exist.

Nevertheless, it is still possible to come up with tractable approx-
imations of the performance in this case, even when service time and
deadline have a general joint distribution. To give a taste of the results
that can be obtained, assume that flows on route r have service re-
quirement Br and generic deadline Dr, with (Br, Dr) a general two-di-
mensional random vector. In this case, it can be shown that the fol-
lowing procedure leads to an accurate approximation of the expected
queue length vector in steady state. Define =g x λ E xD B( ) [min{ , }]r r r r

and let Gr be a function with derivative ′ = ′ −G x U g x( ) ( ( ))r r r
1 . Define now

Λ* as the solution of the concave continuous optimization problem

∑
≤ ≤

Gmin (Λ ).
A C g d j

j j
Λ: Λ ,Λ ( )r r r (5)

The expected queue length at route r can now be approximated by
solving

=z λ E D B z* [min{ , */Λ*}].r r r r r (6)

This procedure is developed rigorously using fluid limits in [45,46]. To
get some intuition, note that (5) emerges by combining the Karush-
Kuhn Tucker equations for Λ(z) with equation (6) which can be inter-
preted as Little’s law, where the RHS is an approximation of the ex-
pected sojourn time of a job, assuming its service rate is constant and
equal to zΛ*/ *r r .

4. Outlook

While the literature on exact analysis can be seen as comprehensive,
this is not the case for asymptotic methods, though the open issues
mentioned in e.g. [26] constitute very tough open problems in prob-
ability theory. Less work has been done on making the connection be-
tween packet-level models and flow-level models rigorous. The only
work we are aware of that rigorously connects such models is [39] for
fluid queues and [54] for bandwidth sharing models; a non-rigorous
approach can be found in [23]. More work would be welcome in this
direction. For a textbook discussion on connecting the shadow prices
appearing in flow level models (2) to packet-level models, see [33].

In view of the fact that only few fluid queue models succumb to an
exact analysis (cf. Section 2), there is a considerable need for asymp-
totic results. For feedback fluid queues, we refer to [40] for large de-
viation asymptotics in the case of a large number of users, and to [48]
for the asymptotic behavior of the loss probability when the buffer is
finite. For tandem fluid queues that do not fall in the class of linear
stochastic fluid networks as discussed in Section 2, interesting asymp-
totic studies are presented, a.o., by Lieshout and Mandjes [38] and
Miyazawa and Rolski [43]. To obtain exact results for the delay of users
in bandwidth sharing networks is quite hard (in Section 3 we focused
on queue length), but it is possible to develop tail asymptotics, as is
surveyed in [11].

Another appealing direction for future research is to consider the
above-mentioned classes of models in different application areas.
Examples so far are road traffic [32] and Electric Vehicle Charging [6].
Finally, we also feel that time-varying fluid models deserve much more
attention [56,59].
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