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A feedback fluid queue with two congestion control
thresholds

ABSTRACT
Feedback fluid queues play an important role in modeling congestion control mechanisms for
packet networks. In this paper we present and analyze a fluid queue with a feedback-based
traffic rate adaptation scheme which uses two thresholds. The higher threshold $B_{1}$ is used
to signal the beginning of congestion while the lower threshold $B_{2}$ signals the end of
congestion. These two parameters together allow to make the trade--off between maximizing
throughput performance and minimizing delay. The difference between the two thresholds helps
to control the amount of feedback signals sent to the traffic source. In our model the input
source can behave like either of two Markov fluid processes. The first applies as long as the
upper threshold $B_{1}$ has not been hit from below. As soon as that happens, the traffic
source adapts and switches to the second process, until $B_{2}$ (smaller than $B_1$) is hit
from above. We analyze the model by setting up the Kolmogorov forward equations, then
solving the corresponding balance equations using a spectral expansion, and finally identifying
sufficient constraints to solve for the unknowns in the solution. In particular, our analysis yields
expressions for the stationary distribution of the buffer occupancy, the buffer delay distribution,
and the throughput.
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A Feedback Fluid Queue with
Two Congestion Control Thresholds

R. Malhotra, M.R.H. Mandjes, W.R.W. Scheinhardt, J.L. van den Berg ∗

Abstract

Feedback fluid queues play an important role in modeling congestion control mechanisms for
packet networks. In this paper we present and analyze a fluid queue with a feedback-based traffic
rate adaptation scheme which uses two thresholds. The higher threshold B1 is used to signal the
beginning of congestion while the lower threshold B2 signals the end of congestion. These two
parameters together allow to make the trade–off between maximizing throughput performance
and minimizing delay. The difference between the two thresholds helps to control the amount of
feedback signals sent to the traffic source. In our model the input source can behave like either
of two Markov fluid processes. The first applies as long as the upper threshold B1 has not been
hit from below. As soon as that happens, the traffic source adapts and switches to the second
process, until B2 (smaller than B1) is hit from above. We analyze the model by setting up the
Kolmogorov forward equations, then solving the corresponding balance equations using a spectral
expansion, and finally identifying sufficient constraints to solve for the unknowns in the solution.
In particular, our analysis yields expressions for the stationary distribution of the buffer occupancy,
the buffer delay distribution, and the throughput.

FLUID QUEUES • FEEDBACK REGULATION • CONGESTION CONTROL • SPECTRAL EXPANSION

1 Introduction

In performance analysis of communication systems, fluid queues are a frequently used modeling

framework. These models approximate packet streams by flows of fluid. Feedback fluid queues are of
special significance whenmodeling congestion control mechanisms, in particular closed-loop controls

in which the input process is affected by the current value of the buffer content. Practical examples are

TCP congestion control, random early detection [8], explicit congestion notification [7] and Ethernet

congestion control mechanisms [13].
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Previous work on feedback fluid queues [15] predominantly focused on queues in which a single
buffer threshold signals both the onset and end of congestion. In thesemodels, depending onwhether

the buffer occupancy is below or above the threshold, the traffic source is allowed to transmit at a high

peak rate or slowed down to a (lower) guaranteed traffic rate, respectively. The special case at which

the threshold lies at 0 was also addressed in, e.g., [4, 17].
These ‘single-threshold systems’ have serious drawbacks. In the first place, in case the threshold is

crossed often, many feedback signals have to be sent to the traffic source, and these may consume a

significant part of the available bandwidth. In the second place, it can be argued that it is not optimal

that a single threshold performs the function of signaling the beginning and end of congestion: to
maximize throughput a full buffer is preferred (thus delaying the signal for the onset of congestion as

much as possible), whereas to minimize the buffer delay requires minimizing the buffer occupancy

(thus delaying the signal for the end of the congestion phase as much as possible). Therefore, to

find a good trade-off between throughput and buffer delay, there is a need for mechanisms with two
separate thresholds: one to signal the beginning of the congestion phase, and an other to signal the

end. In this paper we propose and analyze such a mechanism.

The model addressed in this paper belongs to the class of (Markovian) fluid models. The ‘classical’
fluid model [3, 11] is characterized by a generator matrix Q governing a Markovian background

process and a diagonal matrix R = diag{r1, ..., rd}: if the background process is in state i, traffic

is generated at a rate ri ≥ 0. It was shown that the steady-state buffer content distribution obeys a
system of linear differential equations, and after imposing the proper additional constraints these can
be solved. ¿From a methodological standpoint, an important contribution was due to Rogers [18],

who succeeded to express the steady-state buffer content distribution in terms of the fundamental

Wiener-Hopf factorization. Another key paper is by Ahn and Ramaswami [2], who explicitly exploit

relations with quasi-birth-death processes. We also mention that a nice (recent) literature overview
on Markov fluid queues is given in, e.g., [5].

In the second half of the 1990s models emerged in which the source behavior was influenced by the

buffer content; see for instance [1, 4, 15, 17]; in [9, 19],Q andR depend continuously on the buffer level.

Importantly, in all these feedback fluid models the buffer content uniquely defines the probabilistic
properties of the source. The model analyzed in the present paper departs from this property. In fact

the input process has two ‘modes’. The first mode applies as long as the upper threshold B1 has not

been reached from below. As soon as that happens, we switch to the second mode, until the lower

thresholdB2, smaller than B1, is hit from above, i.e., the buffer occupancy falls below B2. In this way
the threshold B1 is used to signal the onset of congestion, and B2 to signal the end of congestion.

Important novelty of our model as compared to earlier feedback models is that the input process may

behave in two different ways between the two thresholds, depending on the past.

In this paper our goal is to find the steady-state buffer content distribution and associated perfor-
mance measures of the model with two thresholds, as was described above. The methodology used

involves the derivation of Kolmogorov equations and balance equations, which result in a solution in
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terms of a spectral expansion; then additional conditions are identified that solve for the unknowns
in the solution. Although this method is in principle similar to the approach in, e.g., [15], our model

poses new challenges, due to its specific features (i.e., the two thresholds, the two modes of the input

process). In the analysis particularly the behavior at the thresholds should be handled with care. As

a result, the derivation of the conditions to solve for the unknowns turns out to be substantially more
difficult than in the model of [15].

We mentioned above that the model we investigate can be useful in detecting congestion and can be

generically applied to any congestion control mechanism for packet networks such as [8], [7] and [13].
Here we explain how this kind of feedback control has special significance with respect to congestion

control in Ethernet metropolitan networks. The back-pressure scheme defined in IEEE 802.3x [10], is

intended to provide flow control on a hop-by-hop basis by allowing ports to turn off their upstream

link neighbors for a period of time. For a full-duplex connection, this mechanism is based on a special
frame called pause frame in which the pause period is specified. The end-station (or router) receiving

the pause frame looks at the pause period, and does not transmit or attempt transmission for that

amount of time. Alternatively, an ON/OFF pause message can be sent signaling the beginning and

end of the transmission pause phase. This congestion control method is usually implemented by
using a high and a low threshold in the (congested) queue. When the queue occupancy exceeds the

high threshold the PauseOn message is sent and when the queue occupancy drops below the low

threshold the PauseOff message is sent and consequently transmission is resumed. Previous works

[12, 13, 16] on the Ethernet congestion control have concentrated on the throughput gain which can
be achieved by using the scheme. We are not aware of any literature with an analytically tractable

model of the mechanism. The model presented in this paper can be used to optimally configure the

high and low thresholds and decide on when to initiate the transmission pause phase and when to

end it, consequently, addressing an essential design criterion for the Ethernet congestion avoidance
scheme.

The rest of the paper is organized as follows. In Section 2 we describe the model with two thresholds

in detail. In Section 3 we analyze the model and derive the equilibrium distribution of the buffer

content. This section consists of three parts. Section 3.1 gives the balance equations for the buffer
occupancy. Section 3.2 uses the spectral expansion method to provide the solution to the buffer oc-

cupancy in a compact form, which involves several unknown coefficients. In Section 3.3 we derive

as many constraints as there are unknowns, so that these coefficients can be identified. In Section 4

we demonstrate our analysis by considering a numerical example and graphically present the buffer
content distribution; we remark that a full numerical assessment of the back-pressure mechanism,

relying on the methods developed in this paper, is found in [14]. We do include here, however, nu-

merical evidence for the claim that the two-threshold mechanism leads to a reduction of the signaling

overhead. Finally in Section 5 we conclude the paper with a summary of our results, and a discussion
on future work.
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2 Model

In this section we provide the formal definition of the model. We consider a fluid queue with an

infinite buffer and constant output rate c. Let W (t) be the content of the queue at time t, which is a

stochastic process due to the probabilistic way in which fluid enters the queue. A popular model for

such an input process is a so-called Markov fluid source. This model prescribes that the rate at which
fluid enters the queue per unit time depends on the current state of some background irreducible

continuous-time Markov chain X(t), defined on a finite state-space {1, . . . , d}, for d ∈ N. At times

when X(t) = i, the current input rate is ri ≥ 0. When we let the corresponding generator matrix be
Q ≡ (qij)di,j=1, with

∑d
j=1 qij = 0 and qij ≥ 0 for i �= j, and define the d-dimensional traffic rate vector

r ≡ (r1, . . . , rd)T, we call this input process a Markov-fluid source with parametersQ and r.

In our feedback fluid model, the input stream alternates between two modes. In one mode the input

process behaves like a Markov fluid source with generatorQ+ (dimension d×d) and traffic rate vector

r+ (dimension d). Similarly, in the other mode it behaves like a Markov fluid source with generator
Q− (also dimension d × d) and traffic rate vector r− (also dimension d).

We introduce the indicator variable process I(·), taking values in {‘+′, ‘−′}, which gives the current
mode of operation of the input source. It is important to note that whenever I(t) switches from
one mode to another, the background process X(t) stays in the same state; only its dynamics will
from that time onwards behave according to the other generator matrix. However, the rate at which

the fluid buffer receives fluid does change instantaneously from r+
i to r−i (or vice versa), when the

background process X(t) is in state i at the switching instant. Which of the two modes is currently

valid at some time t depends on the behavior of the content processW (t) relative to two thresholds,
an upper threshold B1 and a lower threshold B2. The first mode (‘+’) applies as long asW (t) has not
reached the upper thresholdB1 from below. As soon as that happens, I(t) switches to the other mode
(‘−’), untilW (t) hits the lower threshold B2 from above, etc.

Let us describe this in some more detail, see also Figure 1. SupposeW (0) = 0, i.e., the process starts
with an empty buffer, and let the indicator process I(t) start in ‘+’, where it will stay as long as
the process W (t) has not reached B1 from below. During this period the input process behaves as

a Markov-fluid source with d-dimensional generator Q+ and traffic rate vector r+, and the buffer is

drained at a rate c. At some point the buffer contentW (t) reaches the upper threshold B1. Suppose
thatX(t) is then in state j. Then I(t) switches to ‘−’, while the background processX(t) stays in state
j. From then on the input process behaves as a Markov-fluid source with generator Q− and traffic
rate vector r−, while the buffer is still drained at rate c. In particular, the current flow rate will change

from r+
j , which is larger than c, to r−j , which may or may not be larger than c. Further on at some

moment the buffer content W (t) drops to the lower threshold B2. Suppose that X(t) is in state k at

this moment, then I(t) switches to ‘+’ while the background process stays in state k, and the input

rate changes from r−k < c to r+
k .

Thus, the process continues, and will converge to an equilibrium distribution, assuming the queue

is stable. With π− denoting the equilibrium distribution corresponding to Q−, i.e., π−Q− = 0 and
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Figure 1: Different regimes for the buffer contentW (t)

∑d
i=1 π−

i = 1, the equilibrium condition is

d∑
i=1

π−
i r−i < c;

throughout this paper we assume that this condition is satisfied. For technical reasons, we will also

assume that for all states i = 1, . . . , d we have r+
i �= c and r−i �= c, so that the content of the queue is

never constant over time (unless it is zero). Let W be the steady-state buffer content, i.e., a random

variable distributed as limt→∞ W (t) and define I and X similarly. Define also, for i = 1, . . . , d and
x ≥ 0,

F−
i (x) := P(I = −,X = i,W ≤ x), F+

i (x) := P(I = +,X = i,W ≤ x).

The goal of our paper is to identify F−
i (x) and F+

i (x). Having solved for these distribution functions,
we can calculate two important performance measures for the system, namely the throughput ϑ and
the distribution of the delayD, as follows:

ϑ =
d∑

i=1

(
r+
i F+

i (∞) + r−i F−
i (∞)

)
, (1)

and for d ≥ 0,

P(D ≤ d) =

(
d∑

i=1

(
r+
i F+

i (dc) + r−i F−
i (dc)

))/(
d∑

i=1

(
r+
i F+

i (∞) + r−i F−
i (∞)

))
.

We define some additional notation which will be helpful in considering the various cases while
solving for F−

i (x) and F+
i (x).We define the sets of ‘up-states’ and ‘down-states’ for both modes, and

5



their cardinalities, as follows:

S−
D := {i : r−i < c} and d−D := #{S−

D};
S−

U := {i : r−i > c} and d−U := #{S−
U};

S+
D := {i : r+

i < c} and d+
D := #{S+

D};
S+

U := {i : r+
i > c} and d+

U := #{S+
U}.

The subscript D is a mnemonic for ‘Down’, referring to the buffer being drained, while U stands for

‘Up’, referring to the buffer filling up. Evidently, d−D + d−U = d+
D + d+

U = d.

3 Analysis

In this sectionwe analyze the buffer content distribution, by presenting a procedure to computeF−
i (x)

and F+
i (x), for i = 1, . . . , d. From the model description in the previous section we know that F−

i (x)
and F+

i (x) have different characteristics in different intervals of the buffer content. Therefore, we
define Regimes 1, 2, and 3, as shown in Figure 1. For each of these regimes we analyze F−

i (x) and
F+

i (x). Two cases are rather straightforward, and therefore we start with these.

3+: F+
i (x) in Regime 3. When the buffer occupancy reaches B1 the indicator switches to the ‘−’
state (if it was not in ‘−’ already). The indicator changes to ‘+’, only after the buffer occupancy
would drop below B2,where B2 < B1. Therefore, F+

i (x) is constant in the interval [B1,∞). For
i = 1, ..., d and x ≥ B1,

F+
i (x) = F+

i (B1). (2)

1−: F−
i (x) in Regime 1. If the buffer occupancy drops below B2, then the indicator switches to ‘+’.
Therefore, the fluid source with the ‘−’ indicator can never be active below B2 but only in the

interval [B2,∞).We have, for all i = 1, ..., d and x ≤ B2,

F−
i (x) = 0. (3)

Nevertheless, it is important to note that even though F−
i (B2) = 0 the density at B2, i.e.,

fi
−(B2) :=

dF−
i (x)
dx

∣∣∣∣
x↓B2

,

might not be equal to zero.

The other cases 1+, 2+, 2− and 3− are analyzed in the following subsections. We follow an approach
similar to that in [3, 15] to find the complete solution to F−

i (x) and F+
i (x). We derive the balance

equations for both F−
i (x) and F+

i (x) in Section 3.1, by first considering the Kolmogorov forward
equations. What makes the Kolmogorov equations especially complicated in our case are the transi-
tions around the thresholds B1 and B2. Assuming that a transition takes place somewhere in a small
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time interval, the exact time of the transition is unknown, and as a consequence so is the indicator of
the generator matrix in that interval. Section 3.1 deals with these issues. In Section 3.2 the spectral ex-

pansion method is used to find the solution to the differential equations. These can be written down

in a rather simple form, but involve an extensive set of unknown coefficients. In Section 3.3 we find as

many conditions as the number of unknowns, so that the stationary distribution of the buffer content
can be determined.

3.1 Derivation of the balance equations

We found above simple solutions for F+
i (x) in Regime 3 and F−

i (x) in Regime 1, given by Eqns. (2)
and (3). Our goal in this subsection is to derive the Kolmogorov forward equations for the other cases,

from which we then easily obtain the corresponding balance equations. We slightly abuse notation

by also using F−
i and F+

i for the time-dependent distribution functions, i.e., we define F−
i (t, x) :=

P(I(t) = −,X(t) = i,W (t) ≤ x) and F+
i (t, x) analogously.

1+: F+
i (x) in Regime 1. Regime 1 refers to 0 < x < B2,where we have for small h

F+
i (t + h, x) =

⎛
⎝1 − h

∑
j �=i

q+
i,j

⎞
⎠F+

i

(
t, x − h(r+

i − c)
)

+ h
∑
j �=i

q+
j,iF

+
j (t, x) + o(h).

Rearranging, dividing by h, and using the fact that the rows of the Q+ matrix add up to zero,
we obtain

F+
i (t + h, x) − F+

i (t, x − h(r+
i − c))

h
= q+

i,iF
+
i (t, x − h(r+

i − c)) +
∑
j �=i

q+
j,iF

+
j (t, x) +

o(h)
h

.

By taking h ↓ 0, we find

∂

∂t
F+

i (t, x) + (r+
i − c)

∂

∂x
F+

i (t, x) =
∑

j

q+
j,iF

+
j (t, x).

(Remark that, formally, these partial derivatives are not necessarily well-defined. As we are

interested in the stationary behavior of the queue, this fact does not play a role – in fact we

can assume the queue content has a proper density at time 0.) Assuming stationarity we set

F+
i (t, x) = F+

i (x) and in addition we set all derivatives with respect to t equal to 0. We thus
obtain

(r+
i − c)

d
dx

F+
i (x) =

∑
j

q+
j,iF

+
j (x). (4)

2+: F+
i (x) in Regime 2. We now consider the interval B2 < x < B1. For i in S−

U , we simply have the

same equations as in Regime 1, leading to Eqn. (4). However, when i in S−
D , we have to include

the possibility that a transition can occur from the ‘−’ state into the ‘+’ state. This will happen
when the buffer content at time t is betweenB2 andB2−h(r−i −c) (which is just aboveB2 due to
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i ∈ S−
D ), and the background process does not change its state during (t, t + h]. A complication

here is that before the transition,Q− is active and after the transitionQ+ is active. However, we

do know that the probability thatX(t) remains in i during during (t, t + h] is 1+ o(1), no matter
what the precise form is, and this knowledge is sufficient. We thus find, for i in S−

D ,

F+
i (t + h, x) =

⎛
⎝1 − h

∑
j �=i

q+
i,j

⎞
⎠F+

i

(
t, x − h(r+

i − c)
)

+ h
∑
j �=i

q+
j,iF

+
j (t, x)

+ (1 + o(1))
(
F−

i (t, B2 − h(r−i − c)) − F−
i (t, B2)

)
+ o(h). (5)

By rearranging and dividing by h on both sides we obtain

F+
i (t + h, x) − F+

i (t, x − h(r+
i − c))

h
= q+

i,iF
+
i (t, x − h(r+

i − c)) +
∑
j �=i

q+
j,iF

+
j (t, x)

+ (1 + o(1))
(F−

i (t, B2 − h(r−i − c)) − F−
i (t, B2)

h
+

o(h)
h

.

Then taking h ↓ 0, and assuming stationarity we find

(r+
i − c)

d
dx

F+
i (x) =

∑
j

q+
j,iF

+
j (x) − (r−i − c)

d
dx

F−
i (x)

∣∣∣∣
x↓B2

. (6)

Since for i in S−
U , we already found the same equations as in Regime 1, leading to Eqn. (4), we

can combine the two cases to find, for i = 1, . . . , d,

(r+
i − c)

d
dx

F+
i (x) =

∑
j

q+
j,iF

+
j (x) − A−

i , (7)

where

A−
i :=

⎧⎪⎨
⎪⎩

(r−i − c)
d
dx

F−
i (x)

∣∣∣∣
x↓B2

for i in S−
D ;

0 for i in S−
U .

(8)

2−: F−
i (x) in Regime 2. In Regime 2, i.e., B2 < x < B1, for i in S−

U ,we have the simple case

F−
i (t + h, x) =

⎛
⎝1 − h

∑
j �=i

q−i,j

⎞
⎠F−

i (t, x − h(r−i − c)) + h
∑
j �=i

q−j,iF
−
j (t, x) + o(h).

By rearranging, dividing by h, taking h ↓ 0 and assuming stationarity we obtain

(r−i − c)
d
dx

F−
i (x) =

∑
j

q−j,iF
−
j (x). (9)

For i ∈ S−
D , the equation is more complicated. If we consider a time interval of h time units, then

in this interval the buffer occupancy will drop by |h(r−i − c)|.We have to make sure that it does
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not drop to or below B2. If this occurs then the indicator switches to the ‘+’ state, which is the
probability we want to subtract from the equations (as it was already taken into account in (6)).

Therefore, we include the term−F−
i (t, B2 − h(r−i − c))which ensures that after h time units the

buffer occupancy cannot drop to or below B2. We thus obtain

F−
i (t + h, x) =

⎛
⎝1 − h

∑
j �=i

q−i,j

⎞
⎠ (F−

i (t, x − h(r−i − c)) − F−
i (t, B2 − h(r−i − c)))

+ h
∑
j �=i

q−j,iF
−
j (t, x) + o(h).

By rearranging, taking h ↓ 0 and assuming stationarity we get

(r−i − c)
d
dx

F−
i (t, x) =

∑
j

q−j,iF
−
j (t, x) + (r−i − c)

d
dx

F−
i (t, x)

∣∣∣∣
x↓B2

. (10)

We can now combine Eqns. (9) and (10) into one equation for i as

(r−i − c)
d
dx

F−
i (x) =

∑
j

q−j,iF
−
j (x) + A−

i (11)

where A−
i is given by Eqn. (8).

3−: F−
i (x) in Regime 3. The equations for B1 < x < ∞, are the most complicated. This is be-
cause we have to take into account two aspects. Firstly, we have to exclude the possibility

of a transition from the ‘−’ into the ‘+’ state when X(t) is in S−
D and the buffer content is

just above B2 at time t. It is clear from the explanation for F−
i (x) in Regime 2 that this is

done by including a term −F−
i (t, B2 − h(r−i − c)). Secondly, we have to include the possi-

bility of a transition from the ‘+’ state into the ‘−’ state. If at time t, the buffer content is

somewhere in the interval [B1, B1 − h(r+
i − c)], and the background state is in S+

U , then in an-

other h time units, the buffer content will increase and will definitely reach B1 and jump into

the ‘−’ state. We therefore add a term (1 + o(1))
(
F+

i (t, B1) − F+
i (t, B1 − h(r+

i − c))
)
, similar

to the term (1 + o(1))
(
F−

i (t, B2 − h(r−i − c)) − F−
i (t, B2)

)
we added in the equation for F+

i in

Regime 2. We find, for i in S−
D ∩ S+

U ,

F−
i (t + h, x) =

⎛
⎝1 − h

∑
j �=i

q−i,j

⎞
⎠ (F−

i (t, x − h(r−i − c)) − F−
i (t, B2 − h(r−i − c)))

+ (1 + o(1))
(
F+

i (t, B1) − F+
i (t, B1 − h(r+

i − c))
)

+ h
∑
j �=i

q−j,iF
−
j (t, x) + o(h). (12)

By rearranging, dividing by h, taking h ↓ 0, and assuming stationarity, we obtain

(r−i − c)
d
dx

F−
i (x) =

∑
j

q−j,iF
−
j (x) + (r−i − c)

d
dx

F−
i (x)

∣∣∣∣
x↓B2

(13)

+(r+
i − c)

d
dx

F+
i (x)

∣∣∣∣
x↑B1
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Regime Interval F +(x) F−(x)

1 (0, B2) d
dxF +(x)(R+ − C) = F +(x)Q+ 0

2 (B2, B1) d
dxF +(x)(R+ − C) = F +(x)Q+ − A− d

dxF−(x)(R− − C) = F−(x)Q− + A−

3 (B1,∞) F +(B1) d
dxF−(x)(R− − C) = F−(x)Q− + A− + A+

Table 1: Overview of balance equations in the different regimes

In order to derive the equations for the other values of iwe should note that in Eqn. (12) the term

F−
i (t, B2−h(r−i −c)) appears for all i∈ S−

D and the term (1 + o(1))
(
F+

i (t, B1) − F+
i (t, B1 − h(r+

i − c))
)

for i ∈ S+
U . Further on in (13) the term F−

i (t, B2 − h(r−i − c)) results in

(r−i − c)
d
dx

F−
i (x)

∣∣∣∣
x↓B2

,

whereas (1 + o(1))
(
F+

i (t, B1) − F+
i (t, B1 − h(r+

i − c))
)
leads to

(r+
i − c)

d
dx

F+
i (x)

∣∣∣∣
x↑B1

.

Therefore, we obtain, for any i = 1, . . . , d,

(r−i − c)
d
dx

F−
i (x) =

∑
j

q−j,iF
−
j (x) + A−

i + A+
i , (14)

where A−
i is given by Eqn. (8) and A+

i is

A+
i :=

⎧⎪⎨
⎪⎩

(r+
i − c)

d
dx

F+
i (x)

∣∣∣∣
x↑B1

for i ∈ S+
U ;

0 for i ∈ S+
D .

(15)

In order to get an overview of the balance equations in the different regimes we have summa-

rized the results so far in matrix form in Table 1, where F +(x) ≡ (F+
1 (x), ..., F+

d (x)); the row
vectors F−(x), A− andA+ are defined similarly. R+ is the diagonal matrix diag{r+

1 , ..., r+
d } and

R− the diagonal matrix diag{r−1 , ..., r−d }. We also introduce C := cId, where Id is the identity

matrix of dimension d.

3.2 Solution to the balance equations

In the previous subsection we have derived the balance equations for both F−(x) and F +(x). In this
subsection we provide the solutions to these equations, using the spectral expansion method used
in [3] and [15]. The solution can then be presented in a simple form, but it involves a number of

unknown coefficients.
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1+ : The balance equation for F +(x) in Regime 1 is dF +(x)/dx · (R+ −C) = F +(x)Q+. The spectral
expansion of the solution to this equation is given by

F +(x) =
d∑

j=1

a1+
j v+

j exp[z+
j x]

where (z+
j ,v+

j ) is an eigenvalue-eigenvector pair statisfying z+
j v+

j (R+ − C) = v+
j Q+, and the

a1+
j are coefficients.

In the above solution we tacitly assumed that the matrix Q+(R+ − C)−1 has full eigenspace, in

that all eigenvalues are simple (i.e., have multiplicity 1). Two remarks are in place here. (A) In

the first place, we mention that it is known that if the Q+ matrix has a specific structure, the

eigenvalues are indeed simple (and real); most notably, as shown in [6], if Q+ corresponds to
a birth-death Markov process this property indeed applies. (B) Secondly, eigenvalues with

multiplicity k larger than 1 do not lead to any conceptual problems. Standard theory on linear

differential equations entails that then the density of the stationary queue content has terms

proportional to xj exp(−z+
j x), with j = 0, . . . , k − 1. We decided to assume in our analysis

that the eigenvalues of Q+(R+ − C)−1 (and later also those of Q−(R− − C)−1) are simple as

the corresponding formulas for the ‘non-simple case’ do not add much extra insight, and are

notationally cumbersome.

2+ : We now consider F +(x) in the interval B2 < x < B1 for which the balance equation is

d
dx

F +(x)(R+ − C) = F +(x)Q+ − A−.

This equation has an inhomogeneous term because of which we cannot write the solution as for

F +(x) in Regime 1. Since A−
i is a constant (see Eqn. (8)), differentiation of the above equation

with respect to x gives us a homogeneous equation in f+(x) ≡ dF +(x)/dx as below

d
dx

f+(x)(R+ − C) = f+(x)Q+.

Now that we have a homogeneous equation its solution is given as

f+(x) =
d∑

j=1

ã2+
j v+

j exp[z+
j x]

where (z+
j ,v+

j ) is the same eigenvalue-eigenvector pair as before and ã2+
j are coefficients. As

Q+ is the generator, it has eigenvalue 0, and hence one of the eigenvalues z+
j is zero, say z+

j∗ = 0.
With this in mind, integration immediately yields that

F +(x) =
d∑

j=1,j �=j∗
a2+

j v+
j exp[z+

j x] + a2+
j∗ v+

j∗x + w2+

where a2+
j = ã2+

j /z+
j for j �= j∗, a2+

j∗ = ã2+
j∗ , and the components w2+

i of w2+ are integration

constants.
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Regime Interval F +(x) F−(x)

1 (0, B2)
d∑

j=1

a1+
j v+

j exp[z+
j x] 0

2 (B2, B1)
d∑

j=1,j �=j�

a2+
j v+

j exp[z+
j x] + a2+

j� v+
j�x + w2+

d∑
j=1,j �=j�

a2−
j v−

j exp[z−j x] + a2−
j� v−

j�x + w2−

3 (B1,∞) F+(B1)
d∑

j=1,j �=j�

a3−
j v−

j exp[z−j x] + a3−
j� v−

j�x + w3−

Table 2: Overview of solution

2− : ForB2 < x < B1, the balance equation forF−(x) is dF−(x)/dx·(R−−C) = F−(x)Q−+A−. This
is again a inhomogeneous equation and the spectral method cannot be used directly. Therefore,

we follow the same procedure as for F +(x) in Regime 2. We differentiate the equation on both
sides to get a homogeneous equation in f−(x), which we integrate to obtain

F−(x) =
d∑

j=1,j �=j∗
a2−

j v−
j exp[z−j x] + a2−

j∗ v−
j�x + w2−

where (z−j ,v−
j ) is an eigenvalue-eigenvector pair satisfying z−j v−

j (R− − C) = v−
j Q−, and the

a2−
j are coefficients. The components w2−

i of w2−, are integration constants and the coefficient
a2−

j� corresponds to the eigenvalue z−j� = 0 of Q−.

3− : The balance equation for F−(x) in Regime 3 is dF−(x)/dx · (R− − C) = F−(x)Q− + A− +
A+. In this equation we have two inhomogeneous terms as opposed to one in the previous

cases. Nevertheless, we can still apply the same method as for F +(x) in Regime 2 and F−(x)
in Regime 2. This is because both the inhomogeneous terms in the equation above consist of

constant elements limx↓B2 dF−
i (x)/dx and limx↑B1 dF+

i (x)/dx or zero (see Eqns. (8) and (15))

which disappear after differentiating with respect to x. Therefore, after differentiation and then

integration we get the solution for F−(x) in Regime 3 as

F−(x) =
d∑

j=1,j �=j�

a3−
j v−

j exp[z−j x] + a3−
j� v−

j�x + w3−

where (z−j ,v−
j ) is again the eigenvalue-eigenvector pair that satisfies z−j v−

j (R− − C) = v−
j Q−,

and the a3−
j are coefficients. The components w3−

i of w3− are integration constants and the

coefficient a3−
j� corresponds to z−j� = 0.

We summarize the solutions found in the various intervals in Table 2.
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3.3 Derivation of conditions for finding the unknowns in the solution

In Section 3.2, we provided the solution to F−(x) and F +(x) using the spectral expansion method.
However, the solution includes many unknowns which need to be found with additional conditions.

Table 2 presents an overview of the solution where the vectors a1+,a2+,a2−,a3−,w2+,w2− and w3−

are unknown. Table 3 enumerates all unknowns giving a total of 8d. In this section our goal is to find
8d conditions so as to solve the system.

A. Boundary conditions at x = 0 and x = ∞ are as in [3] and [11]:

• F+
i (0) = 0, for i in S+

U . This is because it cannot be that simultaneously the buffer is empty

and the background process is in an up-state. This gives us d+
U conditions.

• For x → ∞, F−
i (x) should remain bounded, and therefore for all z−j with a non-negative

real part, the corresponding a3−
j has to be zero. Notice that this also entails that the equi-

librium distribution ofW−(t) is given byw3−. This gives us d−D conditions.

B. Continuity conditions. F+
i (x) and F−

i (x) are both continuous at the thresholds B1 and B2. This

gives us the following 4d equations:

• limx↑B2 F+
i (x) = limx↓B2 F+

i (x).

• limx↑B1 F+
i (x) = F+

i (B1).

• limx↓B2F
−
i (x) = 0.

• limx↓B1F
−
i (x) = limx↓B1 F−

i (x).

C. Substitution conditions.

As in [15] we need to substitute the solutions given in Section 3.2 into the inhomogeneous bal-

ance equations of Section 3.1. We have 3 inhomogeneous systems. Potentially each of these can
lead to d conditions. Therefore, in total we would get 3d equations from the substitution.

Boundary conditions, continuity conditions and substitution conditions together were sufficient to

solve the model in [15], but as we have a more complicated model in which the fluid source alternates

between two modes, this is not the case here. Therefore, we introduce and prove the following:

Regime Interval F +(x) F−(x)

1 (0, B2) a1+
j j = 1, ..., d 0

2 (B2, B1) a2+
j , w2+

j j = 1, ..., d a2−
j , w2−

j j = 1, ..., d

3 (B1,∞) F+
j (B1), for j = 1, .., d a3−

j , w3−
j j = 1, ..., d

Total number of unknowns: 8d

Table 3: Overview of the unknowns in the different regimes
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D. Additional conditions.
In the first place, suppose that the buffer is filling up in the ‘+’ state. At some point it will reach
B1 and then switch to the ‘−’ process. Since there is no density beyondB1 (and the phase being

‘+’) it is highly unlikely that the buffer level is just below B1 while the background process is

in a down-state. Similarly, when the buffer is filling up (‘−’ phase) it is unlikely that the buffer
content is just above B2 while the background process is in an up-state.

The lemma below states these additional conditions more precisely, and is proved by deriving

the balance equations at x = B1 and x = B2. Note that these were not addressed in Section 3.1.

Lemma 3.1. (i) For all i ∈ S+
D ,

d
dx

F+
i (x)

∣∣∣∣
x↑B1

= 0.

(ii) For all i ∈ S−
U

d
dx

F−
i (x)

∣∣∣∣
x↓B2

= 0.

Proof: (i)We first consider the case for i in S−
D ∩ S+

U . In this case we have

F+
i (t + h,B1) = (1 − h

∑
j �=i

q+
i,j)F

+
i (t, B1 − h(r+

i − c)) + h
∑
j �=i

q+
j,iF

+
j (t, B1)

+ (1 + o(1))
(
F−

i (t, B2 − h(r−i − c)) − F−
i (t, B2)

)
+ o(h). (16)

By rearranging, dividing by h, taking h ↓ 0 and assuming stationarity we obtain for i in S−
D ∩ S+

U ,

(r+
i − c)

d
dx

F+
i (x)

∣∣∣∣
x↑B1

=
∑

j

q+
j,i(F

+
j (B1)) − (r−i − c)

d
dx

F−
i (x)

∣∣∣∣
x↓B2

.

Comparison with (8) and (15) shows that

∑
j

q+
j,iF

+
j (B1) = A+

i + A−
i , (17)

and it is in fact easy to see that this holds for any i. Let us compare this to Eqn. (7) for F+
j (x) in the

interval (B2, B1), letting x ↑ B1,which gives

∑
j

q+
j,iF

+
j (B1) = (r+

i − c)
d
dx

F+
i (x)

∣∣∣∣
x↑B1

+ A−
i . (18)

From this comparison we conclude that for i in S+
D

(r+
i − c)

d
dx

F+
i (x)

∣∣∣∣
x↑B1

= A+
i = 0. (19)

from which the first claim immediately follows.
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(ii) The proof of this part is similar, comparing the two equations for F−
i (x) atB2, which are F−

i (B2) =
0 and

(r−i − c)
d
dx

F−
i (x)

∣∣∣∣
x↓B2

=
∑

j

q+
j,iF

−
j (B2) + A−

i . �

The following lemma entails that the number of substitution conditions is really only 2d (not 3d).

Lemma 3.2. The equations from the substitution condition for F−(x) in the interval (B2, B1) are implied by
the continuity condition for F−(x) at B2.

Proof: We start with the substitution for F−
j (x) in the interval (B2, B1). The balance equation in this

case is, see (11),

(r−i − c)
d
dx

F−
i (x) =

∑
k

q−k,iF
−
k (x) + A−

i .

On substituting the solution back into the equation and using the fact that z−j� = 0 and
∑

k q−k,iv
−
j,k =

z−j v−j,i(r
−
i − c), where v−j,i refers to the ith component of vector v−

j , we find

(r−i − c)(a2−
j� v−j�,i) =

∑
j

q−k,iw
2−
k + A−

i . (20)

By the definition of A−
i and using the first part of Lemma 3.1 we can simply substitute

A−
i = (r−i − c)

d
dx

F−
i (x)

∣∣∣∣
x↓B2

= (r−i − c)

⎛
⎝ d∑

j=1,j �=j�

a2−
j v−j,iz

−
j exp[z−j B2] + a2−

j� v−j�,i

⎞
⎠

for all i = 1, ..., d in the equation above to give us

∑
k

q−k,iw
2−
k + (r−i − c)

⎛
⎝ d∑

j=1,j �=j�

a2−
j v−j,iz

−
j exp[z−j B2]

⎞
⎠ = 0, or,

∑
k

q−k,iw
2−
k +

∑
k

q−k,i

⎛
⎝ d∑

j=1,j �=j�

a2−
j v−j,k exp[z−j B2]

⎞
⎠ = 0

as the substitution conditions should hold. However, since we may freely add
∑

k q−k,ia
2−
j� v−j�,kB2 to

the left-hand side of the above (since it is zero), and then combine the sums into one, the conditions
turn out to be equivalent to

∑
k q−k,iF

−
k (B2) = 0, Hence they are indeed implied by the continuity

equations at B2, which say that F−
k (B2) = 0 for all k. �

Let us now explain the intuition behind Lemma 3.2. If we look at Table 1, we could suspect that an
overlap could arise for F−

i (x) in Regime 2. This is because this is the only inhomogeneous equation
which involves a single indicator state (being the ‘−’ state). The continuity equations would also have
the same characteristics. As for the other inhomogeneous equations, these involve terms with both
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the ‘+’ and the ‘−’ states, whereas the continuity equations still involve terms with a single indicator
state. Hence, for these cases there is a clear difference between the characteristics of the substitution

and the continuity equations, and the substitution equations do give additional information.

Let us now count the number of conditions we have at our disposal. The boundary conditions give

us d+
U and d−D equations and the four continuity conditions give us another 4d conditions. The substi-

tution conditions could have potentially given us another 3d conditions. Adding these to the d+
D + d−U

conditions from Lemma 3.1, we would together have 9d conditions, d more than we need. With

Lemma 3.2 we proved that an overlap of d conditions exists between the continuity and the substitu-

tion conditions, eventually adding up to exactly 8d conditions equal to the total number of unknowns
in the solution (see Table 3), which we need to solve the system.

However, it is important to note that all the 8d equations are linear in the different unknowns enlisted
in Table 3, with a rank of 8d − 1. This is easy to see since the linear system can be solved upto a

multiplicative constant. The redundancy in the equations can be removed by replacing any one of the
equations in the linear system by the normalization equation

d∑
i=1

(
F+

i (∞) + F−
i (∞)

)
= 1. (21)

Thus, we arrive at the following result.

Proposition 3.3. We have 8d conditions on the coefficients, matching the number of unknowns.

In the next section we illustrate, by means of a numerical example, how one can identify the 8d
unknowns.

4 Numerical example

In this section we provide numerical results aimed at demonstrating the computation of the station-

ary distribution of the buffer content and the other performance measures. We consider a two state
numerical example, i.e., with d = 2. We consider the following generator matrices and rate vectors,

Q+ =

(
−1 1
2 −2

)
, Q− =

(
−0.8 0.8

5 −5

)
, r− =

(
16
0

)
, r+ =

(
25
0

)
.

The other parameters are c = 15, B1 = 15 and B2 = 10. The diagonal matrices R−, R+, and C then
equal diag{16, 0}, diag{25, 0}, and diag{15, 15}, respectively. After the numerical determination of the
eigensystems of the matrices Q+(R+ − C)−1 and Q−(R− − C)−1 we apply the conditions as listed in

Section 3.3. We then solve the resulting linear system of equations for the 8d = 16 unknowns. This
gives us the complete and unique solution for the stationary distribution of the buffer content, F +(x)
and F−(x). The graphical representation of F+

i (x) and F−
i (x) for i = 1, 2 is shown in Figure 2.

The total throughput of the system can be calculated from Eqn. (1) as

ϑ = r+
1 F+

1 (∞) + r−1 F−
1 (∞) = 14.1924.
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Figure 2: Probability distribution functions of the buffer content with d = 2, B1 = 15, B2 = 10.

We can compute the expected buffer content by first computing F (x) =
∑

i,j F j
i (x), then computing

the combined probability density as f(x) = dF (x)/dx. The expected buffer content is then given by

EW =

∞∫
0

xf(x)dx = 12.2040.

In a second experiment we consider the effect of having two thresholds on the signaling overhead.

The expected number of phase-transitions per unit time equals

∑
i∈S+

U

f+
i (B1)(r+

i − c) +
∑
i∈S−

D

f−
i (B2)(c − r−i );

this (plausible) formula is derived in [14]. The effect of varying B2, for a given value of B1, is shown

in Figure 3. The other parameters are as above. We observe that indeed the signaling frequency is

reduced by choosing B2 smaller than B1.

5 Concluding remarks

We have analyzed a feedback fluid queueing system in which the traffic source rates adapt to con-

gestion. The system has two thresholds: the higher threshold B1 aims at signaling the beginning of a

congestion period, whereas the lower threshold B2 serves to signal the end of the congestion period.
This idea is modelled by letting the input process alternate between two Markov fluid processes: the
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Figure 3: Signaling frequency as B2 grows to B1 = 15.

first applies as long as the upper threshold B1 has not been hit from below. As soon as that happens,
the traffic source switches to the other process, until B2 is hit from above.

The resulting model falls in the class of Markovian feedback fluid queues. The numerical complexity

of the methodology used to solve for the buffer content distribution and throughput boils down to

solving two d-dimensional eigensystems, as well as a (fairly standard) linear system of 8d equations;
here d denotes the cardinality of the state space on which the two Markov processes are defined.

A central design problem which can be investigated using our model, and is addressed in [14], is

the optimization of the threshold positions while considering the trade-off between throughput and

delay. Challenging extensions to the present analysis are the systematic assessment of the signaling
frequency in the model (that is, what is the rate at which the input process alternates between the

two Markov fluid processes), as a function of the model parameters; this is a relevant issue, as the

signaling overhead needs to be controlled. Yet another important direction for future research is to

incorporate delay in the reception of feedback signals and in the adaptation of the source traffic rate.

References

[1] I. ADAN, E. VAN DOORN, J. RESING, and W. SCHEINHARDT. ‘Analysis of a single server queue

interacting with a fluid reservoir. Queueing Systems, 29:313-336, 1998.

[2] S. AHN and V. RAMASWAMI. Steady state analysis of finite fluid flowmodels using finite QBDs.

Queueing Systems, 49: 223-259, 2005.

[3] D. ANICK, D. MITRA, and M. SONDHI. Stochastic theory of a data-handling systemwith multi-

ple sources. Bell System Technical Journal, 61:1871-1894, 1982.

18



[4] A. DA SILVA SOARES and G. LATOUCHE. A matrix-analytic approach to fluid queues with feed-
back control. International Journal of Simulation: Systems, Science & Technology, 6: 4-12, 2005.

[5] A. DA SILVA SOARES and G. LATOUCHE. Matrix-analytic methods for fluid queues with finite

buffers. Performance Evaluation, 63: 295-314, 2006.

[6] E. VAN DOORN, A. JAGERS, and J. DE WIT. A fluid reservoir regulated by a birth death-process.

Stochastic Models, 4: 457 – 472, 1988.

[7] S. FLOYD. TCP and Explicit Congestion Notification. ACM Computer Communication Review, 24:

10-23, 1994.

[8] S. FLOYD and V. JACOBSON. Congestion gateways for packet neworks. IEEE/ACM Transactions

on Networking, 1: 397-413, 1993.

[9] M. GRIBAUDO and M. TELEK. Stationary analysis of fluid level dependent bounded fluid mod-
els. Performance Evaluation, 65: 241-261, 2007.

[10] IEEE STANDARD 802.3. Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

access method and physical layer specification, Annex 31B, 1998 Edition.

[11] L. KOSTEN. Stochastic theory of a data handling systems with groups of multiple sources. In:

Performance of Computer Communication Systems, eds. H. Rudin andW. Bux, Elsevier, Amsterdam,

321-331, 1984.

[12] R. MALHOTRA, R. VAN HAALEN, R. DE MAN, and M. VAN EVERDINGEN. Managing SLAs for

metropolitan Ethernet networks. Bell Labs Technical Journal, 8: 83-95, 2002.

[13] R. MALHOTRA, R. VAN HAALEN, M. MANDJES, and R. NÚÑEZ-QUEIJA. Modeling the inter-
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