124 research outputs found

    A Fast DOA Estimation Algorithm Based on Polarization MUSIC

    Get PDF
    A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC

    Crossed-dipole arrays for asynchronous DS-CDMA systems

    No full text
    Published versio

    Simultaneous Source Localization and Polarization Estimation via Non-Orthogonal Joint Diagonalization with Vector-Sensors

    Get PDF
    Joint estimation of direction-of-arrival (DOA) and polarization with electromagnetic vector-sensors (EMVS) is considered in the framework of complex-valued non-orthogonal joint diagonalization (CNJD). Two new CNJD algorithms are presented, which propose to tackle the high dimensional optimization problem in CNJD via a sequence of simple sub-optimization problems, by using LU or LQ decompositions of the target matrices as well as the Jacobi-type scheme. Furthermore, based on the above CNJD algorithms we present a novel strategy to exploit the multi-dimensional structure present in the second-order statistics of EMVS outputs for simultaneous DOA and polarization estimation. Simulations are provided to compare the proposed strategy with existing tensorial or joint diagonalization based methods

    Direction of Arrival Algorithm using GSU-minimization

    Get PDF
    A smart antenna is a digital wireless communications antenna system that takes advantage of diversity effect at the source (transmitter), the destination (receiver) or both. Diversity effect involves the transmission and/or reception of multiple radio frequency (RF) waves to increase data speed and reduce the error rate. A smart antenna enables a higher capacity in wireless networks by effectively reducing multipath and co-channel interference. This is achieved by focusing the radiation only in the desired direction and adjusting itself to changing traffic conditions or signal environments. Smart antennas employ a set of radiating elements arranged in the form of an array. The GSU-MUSIC algorithm for DOA estimation of smart antenna is similar to MUSIC and it uses iterative approach based on GSU minimization to find accurate values of the peaks. The GSU-MUSIC Algorithm overcomes the problems associated with previous techniques used for DOA estimation of smart antenna. DOI: 10.17762/ijritcc2321-8169.160412

    Joint DOA, range, and polarization estimation for rectilinear sources with a COLD array

    Get PDF
    In this paper, a novel localization method for near-field (NF) rectilinear or strictly noncircular sources with a symmetric uniform linear array of rgb0,0,0cocentered orthogonal loop and dipole (COLD) antennas is proposed. Based on the rank reduction (RARE) principle, the multiple parameters including direction of arrival (DOA), range and polarization parameters are separated. Furthermore, a closed-form solution for polarization parameters and noncircular phases is also provided. The deterministic Cramer-Rao bound (CRB) of the estimation problem under consideration is also derived as a benchmark. Numerical simulations are provided to demonstrate the effectiveness of the proposed method
    • …
    corecore