9 research outputs found

    The Role of Reflexes Versus Central Pattern Generators

    Get PDF
    Animals execute locomotor behaviors and more with ease. They have evolved these breath-taking abilities over millions of years. Cheetahs can run, dolphins can swim and flies can fly like no artificial technology can. It is often argued that if human technology could mimic nature, then biological-like performance would follow. Unfortunately, the blind copying or mimicking of a part of nature [Ritzmann et al., 2000] does not often lead to the best design for a variety of reasons [Vogel, 1998]. Evolution works on the just good enough principle. Optimal designs are not the necessary end product of evolution. Multiple satisfactory solutions can result in similar performances. Animals do bring to our attention amazing designs, but these designs carry with them the baggage of their history. Moreover, natural design is constrained by factors that may have no relationship to human engineered designs. Animals must be able to grow over time, but still function along the way. Finally, animals are complex and their parts serve multiple functions, not simply the one we happen to examine. In short, in their daunting complexity and integrated function, understanding animal behaviors remains as intractable as their capabilities are tantalizing

    Towards Testable Neuromechanical Control of Architectures for Running

    Get PDF
    Our objective is to provide experimentalists with neuromechanical control hypotheses that can be tested with kinematic data sets. To illustrate the approach, we select legged animals responding to perturbations during running. In the following sections, we briefly outline our dynamical systems approach, state our over-arching hypotheses, define four neuromechanical control architectures (NCAs) and conclude by proposing a series of perturbation experiments that can begin to identify the simplest architecture that best represents an animal\u27s controller

    On the Evolutionary Co-Adaptation of Morphology and Distributed Neural Controllers in Adaptive Agents

    Get PDF
    The attempt to evolve complete embodied and situated artiïŹcial creatures in which both morphological and control characteristics are adapted during the evolutionary process has been and still represents a long term goal key for the artiïŹcial life and the evolutionary robotics community. Loosely inspired by ancient biological organisms which are not provided with a central nervous system and by simple organisms such as stick insects, this thesis proposes a new genotype encoding which allows development and evolution of mor- phology and neural controller in artiïŹcial agents provided with a distributed neural network. In order to understand if this kind of network is appropriate for the evolution of non trivial behaviours in artiïŹcial agents, two experiments (description and results will be shown in chapter 3) in which evolution was applied only to the controller’s parameters were performed. The results obtained in the ïŹrst experiment demonstrated how distributed neural networks can achieve a good level of organization by synchronizing the output of oscillatory elements exploiting acceleration/deceleration mechanisms based on local interactions. In the second experiment few variants on the topology of neural architecture were introduced. Results showed how this new control system was able to coordinate the legs of a simulated hexapod robot on two diïŹ€erent gaits on the basis of the external circumstances. After this preliminary and successful investigation, a new genotype encoding able to develop and evolve artiïŹcial agents with no ïŹxed morphology and with a distributed neural controller was proposed. A second set of experiments was thus performed and the results obtained conïŹrmed both the eïŹ€ectiveness of genotype encoding and the ability of distributed neural network to perform the given task. The results have also shown the strength of genotype both in generating a wide range of diïŹ€erent morphological structures and in favouring a direct co-adaptation between neural controller and morphology during the evolutionary process. Furthermore the simplicity of the proposed model has showed the eïŹ€ective role of speciïŹc elements in evolutionary experiments. In particular it has demonstrated the importance of the environment and its complexity in evolving non-trivial behaviours and also how adding an independent component to the ïŹtness function could help the evolutionary process exploring a larger space solutions avoiding a premature convergence towards suboptimal solutions

    Behavioural robustness and the distributed mechanisms hypothesis

    Get PDF
    A current challenge in neuroscience and systems biology is to better understand properties that allow organisms to exhibit and sustain appropriate behaviours despite the effects of perturbations (behavioural robustness). There are still significant theoretical difficulties in this endeavour, mainly due to the context-dependent nature of the problem. Biological robustness, in general, is considered in the literature as a property that emerges from the internal structure of organisms, rather than being a dynamical phenomenon involving agent-internal controls, the organism body, and the environment. Our hypothesis is that the capacity for behavioural robustness is rooted in dynamical processes that are distributed between agent ‘brain’, body, and environment, rather than warranted exclusively by organisms’ internal mechanisms. Distribution is operationally defined here based on perturbation analyses. Evolutionary Robotics (ER) techniques are used here to construct four computational models to study behavioural robustness from a systemic perspective. Dynamical systems theory provides the conceptual framework for these investigations. The first model evolves situated agents in a goalseeking scenario in the presence of neural noise perturbations. Results suggest that evolution implicitly selects neural systems that are noise-resistant during coupling behaviour by concentrating search in regions of the fitness landscape that retain functionality for goal approaching. The second model evolves situated, dynamically limited agents exhibiting minimalcognitive behaviour (categorization task). Results indicate a small but significant tendency toward better performance under most types of perturbations by agents showing further cognitivebehavioural dependency on their environments. The third model evolves experience-dependent robust behaviour in embodied, one-legged walking agents. Evidence suggests that robustness is rooted in both internal and external dynamics, but robust motion emerges always from the systemin-coupling. The fourth model implements a historically dependent, mobile-object tracking task under sensorimotor perturbations. Results indicate two different modes of distribution, one in which inner controls necessarily depend on a set of specific environmental factors to exhibit behaviour, then these controls will be more vulnerable to perturbations on that set, and another for which these factors are equally sufficient for behaviours. Vulnerability to perturbations depends on the particular distribution. In contrast to most existing approaches to the study of robustness, this thesis argues that behavioural robustness is better understood in the context of agent-environment dynamical couplings, not in terms of internal mechanisms. Such couplings, however, are not always the full determinants of robustness. Challenges and limitations of our approach are also identified for future studies

    Analysis of gait and coordination for arthroplasty outcome evaluation using body-fixed sensors

    Get PDF
    The importance of evaluation of an orthopedic operation such as hip or knee arthroplasty has long been recognized. Many definitions of outcome and scoring questionnaires have been used in the past to assess the outcome of joint replacement. However, these assessments are subjective and not accurate enough. In addition, orthopedic surgeons require now more subtle comparisons between potentially efficacious treatments (e.g. two types of prostheses). Therefore, the use of objective instruments that have a better sensitivity and specificity than traditional scoring systems is needed. Gait analysis is one of the most currently used instrumented techniques in this respect. However, a gait analysis system is accessible only in a few specialized laboratories, as it is complex, expensive, need a lot of room space and fixed devices, and not convenient for the patient. In this thesis, we proposed an ambulatory system based on kinematic sensors attached on the lower limbs to overcome the limitations of the previously mentioned techniques. Technically the device is portable, easily mountable, non-invasive, and capable of continuously recording data in long term without hindrance to natural gait. The goal was to provide gait parameters as a new objective method to assess Total Knee Replacement (TKR). New solutions to fusing the data of accelerometers and gyroscopes were proposed to accurately measure lower limbs orientations and joint angles. The methods propose a minimal sensor configuration with one sensor module mounted on each segment. The models consider anatomical aspects and biomechanical constraints. In the proposed techniques, the angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. These data were then used to develop a gait analysis system providing spatio-temporal parameters, kinematic curves, and a visualization tool to animate the motion data as synthetic skeletons performing the same actions as the subjects. Moreover, a new algorithm was proposed for assessing and quantification of inter-joint coordination during gait. The coordination model captures the whole dynamics of the lower limbs movements and shows the kinematic synergies at various walking speeds. The model imposes a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion for each individual. It provides a coordination score at various walking speeds which is ranged between 0 and 10. An integration of different analysis tools such as Harmonic Analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. In order to show the effectiveness of the proposed methods in outcome evaluation, we have considered a clinical study where the outcomes of two types of knee prostheses were compared. We conducted a randomized controlled study, including 54 patients, to assess TKR outcome between patients with fixed bearing and mobile bearing tibial plates of implants. The patients were tested preoperatively and postoperatively at 6 weeks, 3 months, 6 months, and 1 year. Various statistical analyses were done to compare the outcomes of the two groups. Finally, we provided objective criteria, using ambulatory gait analysis, for assessing functional recovery following TKR procedure. We showed significant difference between the two groups where the standard clinical evaluation was unable to detect such a difference

    Analysis of a distributed model of leg coordination

    No full text
    Abstract. Using tools from discrete dynamical systems theory, we begin a systematic analysis of a distributed model of leg coordination with both biological and robotic applications. In this paper, we clarify the role of individual coordination mechanisms by studying a system of two leg oscillators coupled in one direction by each of the three major mechanisms that have been described for the stick insect Carausius morosus. For each mechanism, we derive analytical return maps, and analyze the behavior of these return maps under iteration in order to determine the asymptotic phase relationship between the two legs. We also derive asymptotic relative phase densities for each mechanism and compare these densities to those obtained from numerical simulations of the model. Our analysis demonstrates that, although each of these mechanisms can individually compress a range of initial conditions into a narrow band of relative phase, this asymptotic relative phase relationship is, in general, only neutrally stable. We also show that the nonlinear dependence of relative phase on walking speed along the body in the full hexapod model can be explained by our analysis. Finally, we provide detailed parameter charts of the range of behavior that each mechanism can produce as coupling strength and walking speed are varied.

    Analysis of a distributed model of leg coordination

    No full text
    corecore