121 research outputs found

    Fast Solvers for Cahn-Hilliard Inpainting

    Get PDF
    We consider the efficient solution of the modified Cahn-Hilliard equation for binary image inpainting using convexity splitting, which allows an unconditionally gradient stable time-discretization scheme. We look at a double-well as well as a double obstacle potential. For the latter we get a nonlinear system for which we apply a semi-smooth Newton method combined with a Moreau-Yosida regularization technique. At the heart of both methods lies the solution of large and sparse linear systems. We introduce and study block-triangular preconditioners using an efficient and easy to apply Schur complement approximation. Numerical results indicate that our preconditioners work very well for both problems and show that qualitatively better results can be obtained using the double obstacle potential

    Cahn--Hilliard inpainting with the double obstacle potential

    Get PDF
    The inpainting of damaged images has a wide range of applications, and many different mathematical methods have been proposed to solve this problem. Inpainting with the help of Cahn{Hilliard models has been particularly successful, and it turns out that Cahn{Hilliard inpainting with the double obstacle potential can lead to better results compared to inpainting with a smooth double well potential. However, a mathematical analysis of this approach is missing so far. In this paper we give first analytical results for a Cahn--Hilliard double obstacle inpainting model regarding existence of global solutions to the time-dependent problem and stationary solutions to the time-independent problem without constraints on the parameters involved. With the help of numerical results we show the effectiveness of the approach for binary and grayscale images

    Convective nonlocal Cahn-Hilliard equations with reaction terms

    Full text link
    We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binary alloys with induced reaction and type-I superconductors. The second one is the Cahn-Hilliard type equation introduced by Bertozzi et al. to describe image inpainting. Here we take a free energy functional which accounts for nonlocal interactions. Our choice is motivated by the work of Giacomin and Lebowitz who showed that the rigorous physical derivation of the Cahn-Hilliard equation leads to consider nonlocal functionals. The equations also have a transport term with a given velocity field and are subject to a homogenous Neumann boundary condition for the chemical potential, i.e., the first variation of the free energy functional. We first establish the well-posedness of the corresponding initial and boundary value problems in a weak setting. Then we consider such problems as dynamical systems and we show that they have bounded absorbing sets and global attractors

    An adaptive Cahn-Hilliard equation for enhanced edges in binary image inpainting

    Get PDF
    We consider the Cahn-Hilliard equation for solving the binary image inpainting problem with emphasis on the recovery of low-order sets (edges, corners) and enhanced edges. The model consists in solving a modified Cahn-Hilliard equation by weighting the diffusion operator with a function which will be selected locally and adaptively. The diffusivity selection is dynamically adopted at the discrete level using the residual error indicator. We combine the adaptive approach with a standard mesh adaptation technique in order to well approximate and recover the singular set of the solution. We give some numerical examples and comparisons with the classical Cahn-Hillard equation for different scenarios. The numerical results illustrate the effectiveness of the proposed model. </jats:p

    Pde based inpainting algorithms: performance evaluation of the Cahn-Hillard model

    Get PDF
    Image inpainting consists in restoring a missing or a damaged part of an image on the basis of the signal information in the pixels sur- rounding the missing domain. To this aim a suitable image model is needed to represent the signal features to be reproduced within the inpainting domain, also depending on the size of the missing area. With no claim of completeness, in this paper the main streamline of the development of the PDE based models is retraced. Then, the Cahn-Hillard model for binary images is analyzed in detail and its performances are evaluated on some numerical experiments

    Fast and Stable Schemes for Phase Fields Models

    Get PDF
    We propose and analyse new stabilized time marching schemes for Phase Fields model such as Allen-Cahn and Cahn-Hillard equations, when discretized in space with high order finite differences compact schemes. The stabilization applies to semi-implicit schemes for which the linear part is simplified using sparse pre-conditioners. The new methods allow to significant obtain a gain of CPU time. The numerical illustrations we give concern applications on pattern dynamics and on image processing (inpainting, segmentation) in two and three dimension cases

    Regularised Diffusion-Shock Inpainting

    Full text link
    We introduce regularised diffusion--shock (RDS) inpainting as a modification of diffusion--shock inpainting from our SSVM 2023 conference paper. RDS inpainting combines two carefully chosen components: homogeneous diffusion and coherence-enhancing shock filtering. It benefits from the complementary synergy of its building blocks: The shock term propagates edge data with perfect sharpness and directional accuracy over large distances due to its high degree of anisotropy. Homogeneous diffusion fills large areas efficiently. The second order equation underlying RDS inpainting inherits a maximum--minimum principle from its components, which is also fulfilled in the discrete case, in contrast to competing anisotropic methods. The regularisation addresses the largest drawback of the original model: It allows a drastic reduction in model parameters without any loss in quality. Furthermore, we extend RDS inpainting to vector-valued data. Our experiments show a performance that is comparable to or better than many inpainting models, including anisotropic processes of second or fourth order
    • …
    corecore