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An adaptive Cahn-Hilliard
equation for enhanced edges
in binary image inpainting

Anis Theljani1 , Hamdi Houichet2,4 and Anis Mohamed3

Abstract

We consider the Cahn-Hilliard equation for solving the binary image inpainting problem with emphasis on the recovery

of low-order sets (edges, corners) and enhanced edges. The model consists in solving a modified Cahn-Hilliard equation

by weighting the diffusion operator with a function which will be selected locally and adaptively. The diffusivity selection

is dynamically adopted at the discrete level using the residual error indicator. We combine the adaptive approach with a

standard mesh adaptation technique in order to well approximate and recover the singular set of the solution. We give

some numerical examples and comparisons with the classical Cahn-Hillard equation for different scenarios. The numer-

ical results illustrate the effectiveness of the proposed model.
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Introduction

Image inpainting is a fundamental problem in image
processing. It has interesting applications and has wide
applications in different imaging fields, such as medical
imaging, photoshop, augmented reality, robotic and
even in daily life (see e.g., Bertalmio et al.1,2; Chan
and Shen3; Esedoglu and Shen4). It refers to restoring
a damaged image with missing information. Various
mathematical models have been proposed and discussed
for this problem with different success rate. Among
them, partial differential equations (PDEs) are widely
used, and they showed good success mainly for cartoon
and binary images Chan and Shen.3 In this work, we are
interested in the Cahn-Hilliard equation (CHE) and its
application in binary images inpainting. The Cahn-
Hilliard equation originally refers to the authors Cahn
and Hilliard5 and was introduced to phenomenological-
ly describe the evolution of an interface between two
state phases. It is a fourth-order semi-linear PDE
which is derived from the H�1-gradient flow of the fol-
lowing Ginzburg-Landau energy

1

2

Z
X
jruj2 þWðuÞ

�2
dx (1)

where

WðuÞ ¼ ð1� u2Þu2

is a smooth free energy Elliott,6 called double-well
potentials, which models the phase separation.

For binary image inpainting, Cahn-Hilliard equa-
tion was first exploited by Bertozzi et al.7,8 by consid-
ering the following modified version

�D Du� 1

�2
W0ðuÞ

� �
þ kðf� uÞ ¼ 0; in X (2)
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Equation (2) is obtained by incorporating the fidel-
ity part kðf� uÞ which keeps the image u close to the
observed data f in the damaged domain XnD, where
D � X is the user-supplied inpainting region and

kðxÞ ¼ k0vXnD

where vXnD is the indicator function of the subdomain
XnD and k0 > 0. The two state phases modelled by the
Cahn-Hilliard equation can be seen as homogeneous
regions in the image, while the interface between
them plays the role of an edge. Because the double
well potential W vanishes only at the values 0 and 1,
the model (2) is appropriate for inpainting only two
scale images.

A non-smooth version of Cahn-Hilliard equation
was used in Bosch et al.9; Blowey and Elliott10,11 in
image inpainting by considering the following non-
smooth double obstacle potential

WðuÞ ¼ wðuÞ þ I½0;1�ðuÞ (3)

where wðuÞ ¼ 1
2 uð1� uÞ

and I½0;1�ðuÞ :¼
1

2
uð1� uÞ; 0 � u � 1;

þ1; Otherwise:

8<
:

This non-smooth double obstacle potential has the
advantage of giving more intense colors and it then
reveals the high contrast and the edges in the image.
In this case, the full model consists in solving the fol-
lowing PDEs

�DðDu� 1

�2
ðw0ðuÞ þ lÞ þ kðf� uÞ ¼ 0; in X (4)

l 2 @b½0;1�ðuÞ (5)

0 � u � 1 in X (6)

@u

@n
¼ @Du

@n
¼ 0 on @X (7)

where @b½0;1�ðuÞ denotes the sub-differential of the non-
smooth part

b½0;1�ðuÞ ¼
Z
X
I½0;1� dx

The system (4) to (7) leads to a variational inequality
which requires the use of Lagrange multipliers associ-
ated with the constraints in equation (6). Those con-
straints can be also relaxed using Moreau-Yosida
regularization, see Bosch et al.9

The edge quality when using Cahn-Hilliard like

models in image inpainting is related to the choice of

the parameter �, which usually affects the sharpness of

the edges. A large value of � is always needed in order to

join edges over large distances, whereas, in the same

time, small value is preferred to sharpen the edges as

the contrast depends on the �-jump. Thus, choosing �
to be constant, whether it is large or small, in the

classical Cahn-Hilliard equation is not always relevant

to inpaint large damaged areas due to the trade-

off between inpainting of large areas and the sharpness

of edges, see Bertozzi et al.7,8; Bertozzi and Sch€onlieb.12

In practice, the authors in Bertozzi et al.,7 Bertozzi

and Sch€onlieb12 used two step-process; they began the

numerical computation with a large value of � to reach a

steady state. Then, they switch to a new system with a

small value of � using the previous result (i.e. computed

with large �) as initial data in order to sharpen the edges.

This numerical adjustment of � can be seen as an adap-

tive choice for �, however, subjected to a hand tuning

and being uniform in the entire domain.
In this work, we propose a model which can cope

with the compromise between the inpainting of

large areas and the sharpness of edges. We consider a

weighted Cahn-Hilliard equation by adding a diffusion

function a. More precisely, the model is given by the

following equation

@tu� D Dau� 1

�2
W0ðuÞ

� �
þ kðf� uÞ ¼ 0; in X;

Dau� 1

�2
W0ðuÞ ¼ 0; on @X;

u ¼ f; on @X;

8>>>>><
>>>>>:

(8)

where Da :¼ div ðaðxÞruÞ. The diffusion function a,
which encodes different scales in the image, is dynam-

ically chosen in order to control the amount of the

smoothing of the operator. The benefits of the pro-

posed approach have two folds:

1. The inpainting of large damaged domains by choos-

ing the parameter � sufficiently large.
2. The recovery of the fine features of the initial image

by controlling the diffusion function a locally and

adaptively depending on the position x 2 X. This

will help to achieve an inpainting process with

high-contrasted and sharp edges.

In equation (8), we have chosen to use the smooth

Cahn-Hilliard model, as it is more convenient for the

numerical computation comparing to the non-smooth

one. Equation (8) is obtained by considering the H�1
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gradient flow of the following Ginzburg-Landau type
energy

E1ðuÞ ¼
Z
X

aðxÞ
2

jruj2 þWðuÞ
�2

dx (9)

while the second fitting part can be derived from a gra-
dient flow in L2 for the following energy

E2ðuÞ ¼ 1

2

Z
X
kðxÞðf� uÞ2 dx (10)

The aim is to simultaneously inpaint and sharpen
the edges across large damaged domain. In fact, the
parameter � will deal with the inpainting a large dam-
aged domain, while a will recover the singularities and
sharp edges.

The article is organized as follows: In the next sec-
tion, we show the well posedness of the stationary
equation related to equation (8). Then, we construct a
linearized version of equation (8) based on the
convexity-splitting method. In the penultimate section
is dedicated to the introduction of the adaptive strategy
for the selection of the diffusion parameter a based on
the residual error indicator. Finally, different numeri-
cal examples are outlined in Section 5 to show the effi-
ciency and robustness of the proposed method.

H1-weak solution of the stationary

equation

We suppose that the domain X is partitioned into N
disjoint sub-domains ðX‘Þ‘ such that a is given by the
piecewise constant scalar function

a ¼ a‘; in X‘

We denote am ¼ min1�‘�Na‘ > 0 and aM ¼
max1�‘�Na‘. For simplicity, we will use the homoge-
neous boundary condition of uj@X ¼ fj@X ¼ 0, and this
condition is not a restrictive. Let H�1ðXÞ be the dual
space of H1

0ðXÞ,

hu;wi�1 :¼
Z
X
rD�1urD�1w dx

and induced by the following norm

jjujj�1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
ðrD�1uÞ2 dx

s

where the operator D�1� is the inverse of the negative
Laplacian with homogeneous Dirichlet boundary

conditions. A weak solution of the stationary problem
which corresponds to equation (8) is defined as a func-
tion u in the space H1

0ðXÞ such that

haru;r/i2 þ
�
W0ðuÞ
�2

;/

�
2

� hkðf� uÞ;/i�1 ¼ 0;

8/ 2 H1
0ðXÞ

(11)

and which, equivalently, solves the following system

�DauþW0ðuÞ
�2

þ D�1ðk0ðu� fÞÞ ¼ 0; in X;

Da uþW0ðuÞ
�2

¼ 0; on @X

8>><
>>:

(12)

Proposition 1. For k0 � C
�4amin

, where C is a positive
constant depending only on jXj; jDj, and W. For

f 2 L2ðXÞ, the weak problem (11) admits a solution

u 2 H1ðXÞ.
Proof. The proof can be done similarly to Bertozzi

and Sch€onlieb12; Burger et al.13 using classical calculus
of variation analysis and fixed point techniques.

Theorem 2.1. Let f 2 L2ðXÞ, the initial-boundary
value problem (8) possesses a unique solution u
which belongs to

Cð½0;T�;L2ðXÞÞ \ L2ð0;T;VÞ; for every T > 0:

Proof. The proof is based on the results in Bertozzi
et al.7

Numerical algorithm

In this section, we present the numerical algorithm that
we use to approximate the solution of the proposed
modified Cahn-Hilliard evolution equation (8). More
precisely, we use a semi-implicit approach called con-
vexity splitting (CS) method (see Eyre14) which was
originally proposed by Yuille and Rangarajan15 to
solve general optimization problems. It was also
applied for different nonlinear models such as the
Cahn-Hilliard and Ohta-Kawasaki models (see
Bertozzi and Sch€onlieb12; Kim and Shin16). The idea
of CS is to divide the energies (9) and (10) into two
parts; a convex plus a concave one. The convex part is
then treated implicitly, while the concave part is treated
explicitly. We refer the reader to Elsey and Wirth17;
Hale18; Shin et al.19 for more details and various type
of applications.

In our case, equation (8) can be written as

@tu ¼ �rEðuÞ

Theljani et al. 3



where EðuÞ ¼ E1ðuÞ � E2ðuÞ. Note that E1 and E2 are
the functional given in equations (9) and (10), respec-
tively. Then, we apply the convexity splitting scheme to
the two parts E1ðuÞ in equation (9) and E2ðuÞ in equa-
tion (10) separately. More precisely, we write E1 ¼
E11 � E12 where

E11ðuÞ ¼ 1

2

Z
X
aðxÞjruj2 þ C1

2
juj2 dx;

E12ðuÞ ¼
Z
X
� 1

�2
WðuÞ þ C1

2
juj2 dx

It is clear that E11 is strictly convex for any C1 � 0,
and the functional E12 is strictly convex for all �C1 > 1.
Similarly, assuming E2 ¼ E21 � E22 where

E21ðuÞ ¼
Z
X

C2

2
juj2 dx;

E22ðuÞ ¼ 1

2

Z
X
�kðxÞðu� fÞ2 þ C2

2
juj2 dx

E22 is strictly convex if and only if C2 > k0. Let Dt be
the discrete time step width, and write tn ¼ nDt, with
n ¼ 1; 2; . . . ;T=Dt� 1. In addition, let unðxÞ be the
approximate solution of the corresponding time-
discrete numerical scheme of u(x, t) at time t ¼ tn.
Hence, the resulting time-stepping scheme for the split-
ting choices of the energies E1 and E2 is

unþ1 � un

Dt
¼ �rH�1ðE11ðunþ1Þ � E12ðunÞÞ

�rL2ðE21ðunþ1Þ � E22ðunÞÞ

where rH�1 and rL2 are the descent gradients with
respect to the H�1- and L2-inner product, respectively.

We obtain the following scheme

unþ1 � un

Dt
þ DDau

nþ1 � C1Du
nþ1 þ C2u

nþ1

¼ D
W0ðunÞ

�2

� �
þ kðxÞðun � fÞ � C1Dun þ C2u

n

(13)

Remark 1. In Bertozzi and Sch€onlieb,12 the authors
proved that this time-stepping scheme is unconditionally
stable in the sense that the numerical solution ðunÞn�0 is
uniformly bounded on a finite time interval. The stability
proof of this scheme in our case requires some modifica-
tions and the result still holds.

Space discretization

For space discretization, we will use mixed finite ele-

ment method. We introduce the following auxiliary

function

wnþ1 ¼ �Dau
nþ1 þW0ðunÞ

�2
(14)

Then, from the PDEs (equation (13)), we get the

following system

unþ1 � un

Dt
� Dwnþ1 � C1Du

nþ1 þ C2u
nþ1

¼ kðxÞðun � fÞ � C1Dun þ C2u
n; in X;

wnþ1 ¼ �Dau
nþ1 þW0ðunÞ

�2
; in X;

unþ1 ¼ wnþ1 ¼ 0; on @X

8>>>>>><
>>>>>>:

(15)

Multiplying the first and the second equations in

equation (15) by two test functions /;w 2 H1
0ðXÞ,

respectively, then integrating over X, we obtain for all

/ 2 H1
0ðXÞ and w 2 H1

0ðXÞ the following weak

formulation

1

Dt
þ C2

� �
hunþ1;/i2 þ hrwnþ1;r/i2 þ C1hrunþ1;r/i2

¼ hkðun � fÞ;/i2 þ
1

Dt
þ C2

� �
hun;/i2 þ C1hrun;r/i2;

hwnþ1;wi2 ¼ harunþ1;rwi2 þ
�

1

�2
W0ðunÞ;w

�
2

8>>>>>>><
>>>>>>>:

(16)

Proposition 2. For a fixed un 2 H1
0ðXÞ, the system

(16) has a unique solution ðunþ1;wnþ1Þ 2 H1
0ðXÞ�

H1
0ðXÞ.
Proof. For a given f 2 L2ðXÞ; un 2 H1

0ðXÞ, and let

C1, C2, and Dt are positive constants. We define

k0 ¼ kþ C2 þ 1

Dt
;

f0 ¼ 1

k0
kfþ ðC2 þ 1

Dt
Þun þ C1Du

n

� �

Then, with the above notations, the system (15) is

equivalent to

�Dau
nþ1 � D�1ðk0ðf 0 � unþ1ÞÞ ¼ �W0ðunÞ

�2
; in X;

Dau
nþ1 þW0ðunÞ

�2
¼ 0; on @X

8>><
>>:

(17)
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Moreover, for fixed un 2 H1
0ðXÞ, similarly to the

system (12), we can prove equation (17) admits a

unique solution unþ1. In addition, it is clear that the

pair ðunþ1;wnþ1 ¼ �Dau
nþ1 þ W0ðunÞ

�2
Þ satisfies the

system (16). To prove the uniqueness, let ðunþ1
1 ;wnþ1

1 Þ 2
H1

0ðXÞ �H1
0ðXÞ be another solution of the system (16).

For all ð/;wÞ 2 H1
0ðXÞ �H1

0ðXÞ, we then have

hrðwnþ1 � wnþ1
1 Þ;r/i2 þ hk0ðunþ1 � unþ1

1 Þ;/i2 ¼ 0;
harðunþ1 � unþ1

1 Þ;rwi2 � hwnþ1 � wnþ1
1 ;wi2 ¼ 0

�
(18)

Let ðf‘ÞI‘¼1 be a partition of unity associated to the

decomposition ðX‘ÞI‘¼1, and picking w ¼ a�1
‘ f‘ðwnþ1

�wnþ1
1 Þ, in the second equation, we have the identity

Z
X‘

a�1
‘ f‘ðwnþ1 � wnþ1

1 Þ2 dx

¼
Z
X‘

a‘rðunþ1 � unþ1
1 Þa�1

‘ rf‘ðwnþ1 � wnþ1
1 Þdx;

8‘ ¼ 1; � � � ; I

(19)

Integrating by parts twice the right-hand side and

summing up, we obtain

XI

‘¼1

a�1
‘

Z
X‘

f‘ðwnþ1 � wnþ1
1 Þ2 dx

¼
Z
X
a‘rðunþ1 � unþ1

1 Þrðwnþ1 � wnþ1
1 Þdx � 0

(20)

By choosing the test function / ¼ unþ1 � unþ1
1 in the

first equation, using equation (20) and the positivity of

C1, C2 and k, we obtain

hk0ðunþ1 � unþ1
1 Þ; unþ1 � unþ1

1 i2
¼ �hrðunþ1 � unþ1

1 Þ;rðwnþ1 � wnþ1
1 Þi2 � 0

From the nonnegativity of k0, we get

hk0ðunþ1 � unþ1
1 Þ; unþ1 � unþ1

1 i2 ¼ 0

Therefore, unþ1 ¼ unþ1
1 , and consequently,

wnþ1 ¼ wnþ1
1 .

Finite element discretization and adaptive

strategy

In order to find the solution of this problem, we apply

the finite element method. Let h> 0, Xh be a polygonal

subset of X and Th be a nondegenerate triangulation of

the discrete domain Xh where each triangle or quadri-

lateral K 2 Th has maximum diameter bounded by h,

satisfying the usual admissibility assumptions, i.e. the

intersection of two different elements is either empty, a

vertex, or a whole edge. We denote by P1ðKÞ the space
of all polynomials defined on triangular elements K.

We introduce the following discrete space

Xh ¼ vh 2 Cð�XÞj8K 2 Th; vhjK 2 P1ðKÞ
� 	 \H1

0ðXÞ

The finite discretization of equation (16) is defined

by the following algebraic system

ðC2 þ 1=DtÞMunþ1 þ C1Kunþ1 þKwnþ1

¼ ðC2 þ 1=DtÞMun þ C1Kun þMkun � F;
Mwnþ1 �Kaunþ1 ¼ R

where

Mi;j ¼ ðvi; vjÞ; Mk
i;j ¼ ðkvi; vjÞ;

Ki;j ¼ ðrvi;rvjÞ; Ka
i;j ¼ ðarvi;rvjÞ;

Fi ¼ ðkf; viÞ; Ri ¼ 1

�2
W0ðunÞ; vi

� �

ð:; :Þ denotes the discrete L2-inner product, and fvigi2J
be a basis of Xh with J is the set of all vertices. We write

the above system as follows

A1 K

�Ka M

" #
unþ1

wnþ1

" #
¼ bn1

bn2

" #
(21)

where A1 ¼ ðC2 þ 1=DtÞMþ C1K; bn1 ¼ A1u
n þMkun

�F and bn2 ¼ R.

Adaptivity

As mentioned in the introduction, the diffusion param-

eter a plays an important role in the inpainting process.

Therefore, it is of interest to choose it based on a satia-

ble strategy. Hence, we use an adaptive local procedure

based on a residual error indicator. For each element

K2Th, we use the following local discrete energy

gK ¼ a
1
2

KjjruhjjL2ðKÞ (22)

which contains information about the error distribu-

tion of the computed solution uh and also acts as an

edge detector. In fact, the discontinuities (edges) are

contained in regions where the brightness changes

abruptly and therefore where this error indicator is

large. Thus, quantity is well suited to locally control

and select the diffusion coefficient a using an adaptive

strategy, see Belhachmi and Fr�ed�eric20; Theljani

et al.21,22 During the adaptation, we use the following

formula for each triangle K

Theljani et al. 5



anþ1
K ¼ max

anK
1þ j 	max gK

jjgjj1 � 0:1; 0

 � ; atrh

0
@

1
A

where atrh is a threshold parameter and j is a coefficient
chosen to control the rate of decreasing in a. In addi-
tion, we use a mesh-adaptation technique allowing a
tight location of the singularities. It also permits both
the refinement (near the edges) and the coarsening of
the grid (in homogeneous area) in order to best fit the
geometry of the image and to make the method con-
siderably fast. The build mesh is done iteratively until a
maximum number of iterations are reached. Our algo-
rithm is described as follows.

Algorithm 1: Adaptive algorithm based image inpainting

1. Initialization: Start with the initial grid T
0
h and

aðxÞ ¼ a0.
2. Iterations: For fixed function aðxÞ ¼ ak and mesh

T
k
h, compute ukþ1 so using convexity splitting (CS)

method.
(a) Perform mesh adaptation to get the new mesh

T
Kþ1
h with mesh refinement step (in our case

using the metric adaptation with FreeFemþþ).
(b) Perform a local choice of aðxÞ to obtain new

functions akþ1.

3. Go to step (2) until convergence.

Remark 2. The advantages of this algorithm rely in
two points: First, we make the “optimal” choice of the
function a, following the map furnished by the error indi-
cator ðgKÞK2Th

, on each element K in order to approxi-
mate correctly the edges. Second, we build an adapted
mesh T

1
h (in the sense of the finite element method, i.e.

with respect to the parameter h) by cutting the elements
K, close to the jump sets of uh into a finite number of
smaller elements to fit the edges, while, far from these
jumps, the grid is coarsened.

Numeric

We present some numerical experiments to show the
efficiency of our approach for image inpainting, and
we compare it with classical Cahn-Hilliard equation
Bertozzi et al.7 In all examples, the damaged regions
are marked with red and gray colors.

We use the Structural Similarity Index Measurement
(SSIM) as an evaluation metric to compare both
models and which is given by the following formula

SSIM ¼ ð2lIlI0 þ c1Þð2rI1I0 þ c2Þ
ðl2I þ l2I0 þ c1Þðr2I þ r2I0 þ c2Þ

where l, r2, r are the mean, the variance, the covari-
ance, respectively, and c1 and c2 are two positive
parameters. The SSIM allows to estimate the quality
of a reconstructed image with respect to its original
version image. It takes a value between 0 and 1 where
closer to 1 means a better inpainting process.

In Figure 1, we have chosen the same image pre-
sented by the authors Bertozzi et al.7 The result using
classical Cahn-Hilliard equation in Figure 1(b) was
computed in a two steps process. In the first step, the
authors solved their equation with a large value of �,
e.g. � ¼ 0:1, until getting steady-state solution. In this
step, the level lines are smoothly continued into the
missing domain. In a second step, the previous result
from step 1 was used as an initial time condition u0a for
a smaller � (e.g., � ¼ 0:01) in order to sharpen the con-
tours. From the result of our model in Figure 1(c), we
can see the corners are accurately approximated and
the edges are properly and sharply inpainted contrary
to the result of the classical Cahn-Hilliard model
(Figure 1(b)). We also display in Figure 2 the evolution
of the mesh at iteration 0, 3, 7 and 20, respectively. The
first is the initial mesh T

0
h which is regular such that

every node corresponds to a pixel in the image and the
last one is the final coarsed mesh.

In the Figure 3, we compare both models in inpaint-
ing edges across large distance by considering three

Figure 1. Destroyed binary image and the solutions of the different models. (a) Damaged image, (b) model of Bertozzi et al.,7

SSIM¼ 0.89 and (c) New model, SSIM¼ 0.92.

6 Journal of Algorithms & Computational Technology



Figure 2. The adopted mesh refinement with iterations. (a) Iteration 0, (b) Iteration 3, (c) Iteration 7 and (d) Iteration 20.

Figure 3. First line: Three different inpainting domains. Second line: Restored images by classical Cahn-Hilliard (� ¼ 0:8). Third line:
Restored images by classical Cahn-Hilliard (� ¼ 0:01). Fourth one: Restored images by new model.
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different inpainting scenarios (first line in Figure 3).

The images in the second line were obtained using the

classical Cahn-Hilliard model, where � ¼ 0:8 in all the

domain X. The value � ¼ 0:8 is large enough and allows

to join the both sides of the damaged stripe for the

three scenarios. However, it leads to a very blurred

edge because the contrast of the latter depends on the

�-jump. In another hand, if we choose a small value, i.e.

� ¼ 0:01 (third line of Figure 3), the model is able to

join the edges only for non-large damaged domain and

fails to join them across large domains. Contrary, our

proposed approach, see last line in Figure 3, gives suc-

cessful result as the stripe is well inpainted and the

edges are sharply recovered in all scenarios. We used

� ¼ 0:8 in all the image domains X in order to match

the edges and we adapted the diffusion function a to

recover the singularities of the image, i.e. edges. Thus,

we reconstruct edges across large domain and keeping

them sharp enough. We tabulate the number of itera-

tions and the SSIM values for the different models and

the different scenarios in Table 1. It is clear that our

model gives better results among in terms of SSIM and

also necessitates less iterations.
In Figure 4, we test our model in reconstructing

damaged part of a disk in order to show the efficiency

of the adaptive strategy for curvature reconstruction.

Figure 4(a) is the initial damaged image f (inpainting

region in red). In Figure 4(b), we display the inpainted

Table 1. or comparison between the different models related to the example in Figure 3.

Figure 3 (a) Figure 3 (b) Figure 3 (c)

SSIM #Iter. SSIM #Iter. SSIM #Iter.

Cahn-Hilliard with � ¼ 0:8 0.93 10 0.9 15 0.88 20

Cahn-Hilliard with � ¼ 0:01 0.97 20 0.85 26 0.83 26

New model 0.98 8 0.97 12 0.95 20

SSIM: Structural Similarity Index Measurement.

Figure 5. Zoom captions from the test in Figure 4. (a) Referenced image, (b) Classical Cahn-Hiliard equation with a is fixed constant
and (c) new model.

Figure 4. From left to right: Damaged image, Cahn-Hiliard equation with constant a ¼ 0:01 (SSIM¼ 0.96) and new model
(SSIM¼ 0.98). (a) Damaged image, (b) Classical Cahn-Hiliard and (c) new model.
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images using the classical Cahn-Hilliard model for � ¼
0:01 and after 16 time-iterations. The reconstructed

edges clearly are blurred. In Figure 4(c), we show the

result of our adaptive strategy using the error indica-

tors gK in equation (22). We initialized the algorithm

with large value of a¼ 10 and we performed only 6

adaptive iterations to obtain. We also display zoomed

regions in Figure 5 to highlight the main visual differ-

ences between the different results. The zoom captions

prove that our model can effectively sharpen edges and

preserve curvatures.
The last example in Figure 6 deals with real appli-

cation for a binary QR-code image inpainting. It gives

a promising result for corners and large gap reconstruc-

tion. The efficiency of our new approach can be seen in

all the image domains, and in particular in the dam-

aged region. In fact, all corners and edges were well

reconstructed.

Conclusion

In this paper, we have addressed a new approach for

binary image inpainting problem based on a weighted

Cahn-Hilliard equation. The weight parameter controls

the over-smoothness of the operator and is chosen

locally and adaptively based on the residual error indi-

cator in each pixel of the image. In the numerical com-

putation, we used the splitting convexity method in

order to linearise the proposed non-linear equation.

The experiment results show the good performance in

recovering well enhanced edges in comparison with

classical Cahn-Hilliard model.
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