428 research outputs found

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    Concurrent Checkpointing and Recovery in Distributed Systems

    Get PDF

    Analysis of checkpointing schemes for multiprocessor systems

    Get PDF
    Parallel computing systems provide hardware redundancy that helps to achieve low cost fault-tolerance, by duplicating the task into more than a single processor, and comparing the states of the processors at checkpoints. This paper suggests a novel technique, based on a Markov Reward Model (MRM), for analyzing the performance of checkpointing schemes with task duplication. We show how this technique can be used to derive the average execution time of a task and other important parameters related to the performance of checkpointing schemes. Our analytical results match well the values we obtained using a simulation program. We compare the average task execution time and total work of four checkpointing schemes, and show that generally increasing the number of processors reduces the average execution time, but increases the total work done by the processors. However, in cases where there is a big difference between the time it takes to perform different operations, those results can change

    Checkpointing and the modeling of program execution time

    Get PDF

    Static analysis-based approaches for secure software development

    Get PDF
    Software security is a matter of major concern for software development enterprises that wish to deliver highly secure software products to their customers. Static analysis is considered one of the most effective mechanisms for adding security to software products. The multitude of static analysis tools that are available provide a large number of raw results that may contain security-relevant information, which may be useful for the production of secure software. Several mechanisms that can facilitate the production of both secure and reliable software applications have been proposed over the years. In this paper, two such mechanisms, particularly the vulnerability prediction models (VPMs) and the optimum checkpoint recommendation (OCR) mechanisms, are theoretically examined, while their potential improvement by using static analysis is also investigated. In particular, we review the most significant contributions regarding these mechanisms, identify their most important open issues, and propose directions for future research, emphasizing on the potential adoption of static analysis for addressing the identified open issues. Hence, this paper can act as a reference for researchers that wish to contribute in these subfields, in order to gain solid understanding of the existing solutions and their open issues that require further research

    Trust Based Node Recovery and Checkpointing Techniques in Manets

    Get PDF
    Checkpointing is a process of determining the vulnerability of node in case of any attack occurs in the network. It depends on the cluster change count value of the node. If the measure of the hop exchanges required to reach the destination node from the current node, is above the previously specified value, the node under consideration is unsafe and safe points must be implemented in between the path and different subnetworks within that network must have their own implemented safe points. The message must commits to the safe points as it reaches the respective sub networks. The message in the networks evolve over the certain subnetworks. The each subnetwork has the checkpoint node, that serves the purpose for communication between different subnetworks, or between the hops in different subnetworks. This phenomenon supports the system efficiency and preserves the robustness. The process retrieval methods, therefore, should be implemented with the use of the safe points to prevent system degradation. In this research paper, an efficient recovery protocol is designed for distributed transactions in MANETs so that failures can be minimised. Dynamic analysis has also been done and it is compared with other existing protocols to validate the attained result

    A Survey of Checkpointing Algorithms in Mobile Ad Hoc Network

    Get PDF
    Checkpoint is defined as a fault tolerant technique that is a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. If there is a failure, computation may be restarted from the current checkpoint instead of repeating the computation from beginning. Checkpoint based rollback recovery is one of the widely used technique used in various areas like scientific computing, database, telecommunication and critical applications in distributed and mobile ad hoc network. The mobile ad hoc network architecture is one consisting of a set of self configure mobile hosts capable of communicating with each other without the assistance of base stations. The main problems of this environment are insufficient power and limited storage capacity, so the checkpointing is major challenge in mobile ad hoc network. This paper presents the review of the algorithms, which have been reported for checkpointing approaches in mobile ad hoc network
    • …
    corecore