
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Concurrent Checkpointing and Recovery in Distributed Systems Concurrent Checkpointing and Recovery in Distributed Systems

Pei-Jyun Leu

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
87-689

Leu, Pei-Jyun and Bhargava, Bharat, "Concurrent Checkpointing and Recovery in Distributed Systems"
(1987). Department of Computer Science Technical Reports. Paper 598.
https://docs.lib.purdue.edu/cstech/598

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CONCURRENT CHECKPOINTING AND
RECOVERY IN DISTRIBUTED SYSTEMS

Pci-Jyun Leu
Bharat Bhargava

CSD·1R·689
June 1987

(Revised October 1988)

Concurrent Checkpointing and Recovery
in Distributed Systems'

Pei-Jyun Leu and Bharat Bhargava

Department of Computer Sc icnces

Purdue Universi[)'

West Lafayette. IN 47907

ABSTRACT

This paper studys concurrency issues in disUibuled checkpointing and rollback recovery.

It transforms the concurrent checkpointing and recovery problem to a transaction processing

problem. A new transaction model, which consists of four types of atomic operations and five

types of conflicts, is used for disuibuted checkpointing and recovery. Each transaction is

executed by multiple processes in the system. We have shown that the consistency of

recovery lines and rollback lines established by checkpoint transactions and rollback

transactions can be achieved by enforcing serializability on the corresponding lransaclions. An

algorithm is designed to expand and execute checkpoint transactions or rollback transactions

concurrently. The algorithm supports efficient recovery, reduces the response time of

checkpoint transactions and rollback transactions, and allows nonnal messages to be

transmitted in any order. We have implemented the algoritlun for perfonnance evaluation.

The analysis shows thaI concurrent execution reduces the response time of checkpoinL

transactions and rollback transactions. The CPU cost is in a linear order of the tOlal number

of synchronization messages used. For a checkpoim/rollback transaction with eight

participating processes, the CPU cost is significantly smaller than the single

checkpoint/rollback cost when the processes are bigger than 12K bytes.

" This wode was supported in part by UNTSYS. and NASA, and a David Ross fellowship.
U An earlier version of this paper appears in Prot', IEEE 4t1l Con{. Da/a Engineering, Los Angeles. CA,
Feb. 1988.

1. Introduction

Rollback recovery is a technique to eliminare transient errors in a system. Transient

errors may occur anywhere during the computation, and may nor be detected immediately.

The causes of the transient errors can be unstable hardware, software bugs, or illegal

operations. To reduce the rollback distance, the system periodically saves correct system

stales in stable storage [LAMPS79]. When transient errors are captureu, the system restores

the last chcckpoinled state, and restarts. Since the computation after the last checkpoint may

have been contaminated by the transient error, there is no need to roll forward after rolling

back.

In a disLributed system, where processes do nOI share memory. and message passing is

the only way to communicate, a global state must be checkpointed distributively over all

processes. If the processes make checkpoints without synchronization, domino effect

[RAND75. RAND78] may occur. Furmer, the restoration of a previous global stale must also

be synchronized among the processes. Otherwise. cyclic reswration may occur [K0087).

This represents a problem that a process after rolling back receives messages subsequently

undone by me sender. and thus it has to toll back again. In such a case, the rollback of one

process will cause the rollback of the other. and a cyclic effect can repeat forever~ This

problem can be solved as follows. A process after rolling back holds all subsequent incoming

nonnal messages in a buffer until the other rollback process also finishes its rollback. The

receiver then determines which messages in the buffer have been undone by the sender, and

thus must be discarded. The receiver extracts the remaining messages for its local

compulation. We call one instance of the checkpoint algoritlun executed on multiple

processes a checkpoinr instance. Similarly, we call one instance of the rollback algorithm

executed on multiple processes a rollback instance.

Distributed checkpointing and rollback recovery have been studied in [BARI83. K0087,

TAMI84]. In contrast to transaction checkpointing [FISC82. GRAY79, MOSS831 that deals

with the consistency of database. the problem is mainly concerned with the consistency of the

process states. We can summarize the past research [BARI83. K0087, TAMI84J as follows.

2

Since transiem errors may interrupt the execution of one checkpoim instance. 1) panicipating

processes follow two·phase commit [ORAY79j to ensure Ihe atomicity of one checkpoint

instance; and 2) each participating process keeps both ils last checkpoint and the newly made

checkpoint until the checkpoint instance can commit. In [BARIS3, KOGS7], processes that

have exchanged message their last checkpoints need to take checkpoints or roll back togelber.

The processes participating in a checkpoint instance or a rollback instance constitute a virtual

tree. Two-phase commit is performed hierarchically. The roOI proces~ serves as the

coordinator. In [TAMI84], all the processes in the system need to take checkpoints or roll

back together each limC. In [BARI83. KOOS7], different checkpoint instances ,md rollback

instances can interfere with one anOlher. Interfering instances imply that the corresponding

virtual trees overlap. In [BARI83J, the interference problem among multiple checkpoint

instances is solved by merging overlapping trees. A new coordinator is selected from among

the roOlS of the overlapping trees to conduct the execution of the algorithm. In [K0087I , the

interference problem is handled by allOWing only one instance to complete but rejecting all

other instances. There are several issues that need further study: concurrent execution of

multiple checkpoint instances and rollback instances; non·FIFO channels that do not require

the order of message send and message receive to be the same; and resiliency against process

failures and communication failures.

We model concurrent checkpointing and recovery as a concurrent transaction processing

problem. Checkpoint/rollback operations of multiple processes are organized as a transaction.

We design an algorithm that executes checkpoint transactions or rollback transactions

concurrently. A rollback transacLion can always commit without being aborted. A checkpoint

transaction is aborted only when it interferes with a rollback transaction. Blocking due [0

process failures or network parlitioning is resolved using a termination protocol. Blocking of

a rollback transaction can always be resolved. Blocking possibility of checkpoint transactions

has been reduced. Further, our algorithm allows nonnal messages to be received in any order.

In section 2, we describe the concurrent checkpointing and recovery problem. We model

this as a concurrent transaction processing problem. We show that the concurrent

3

checkpointing and recovery problem can be solved by enforcing serializabilily on the

corresponding transactions. A locking prolOcol is designed La enforce serializabilily on

concurrent transactions. Some 0pfimi7.alions in synchronization of Lhe concurrent lransactions

are discussed. Section 3 describes the checkpoint/rollback algorithm that uses the locking

promcol 10 synchronize concurrent transactions. The optimizations are also incorporated.

Two illustrative examples are given. Section 4 shows the correctness of the algorithm. In

section 5, a comparison with rela!ed work is made. Section 6 evaluates the performance

expcrimemally. Section 7 presents solU1ions to reduce blol.:king of transactions due to multiple

process failures and network partitioning. Section 8 generalizes the algorithm when processcs

keep multiple ch.eckpoints in the stable storage. A process may need [0 roll -back to any

previous checkpoint. The last section concludes the paper.

2. Concurrent Checkpointing and Recovery

2.1. The Problem

In a distributed system. processes communicate by exchanging messages. Messages

generated by the sender may trigger some actions at the receiver. The distributed

checkpointing and recovery problem deals with the synchronization of checkpoint operations.

message passing operations, and rollback operations to ensure consistency. In Fig. 1.

checkpoints C j and Cj compose a recovery line from which the processes restart after rolling

back. Rollback points Uj and U; compose a rollback line from which the processes stan

rolling back to their last checkpoints. As part of rollback. process Pi undoes all actions in the

period from C j 10 Uj • There is no need to redo these actions after restart because they may

have been caused by transient errors. IT P j has sent some messages in that period, then the

receivers of the messages must also roll back to undo the actions triggered by the messages.

In general. we cannot assume the sender. after it restarts. will regenerate those outgoing

messages sent after the recovery line, because the sending of the outgoing messages may have

been caused by a transient error. After a process restarts, it replays all incoming messages

4

except those sent by the processes thal have rolled back. Incoming messages are recorded in a

message log for replaying purposes..J\n inconsislCnt state is caused when a sender rolls back,

undoing some message send action. but the receiver does not undo the actions triggered by the

message. We call such a message dangling receive. A message is undone if both the message

scnd and ils triggered actions are undone.

Legend:

Uj

• : rollback point
x : checkpoint

- - -:> ; message flow
___ : time axis

Figure 1. Consistent recovery line and rollback line.

Fig. 2 shows an inconsistent recovery line and an inconsistent rollback line. Processes

Pi and Pj roll back to C, and C j respectively. During the rollback, P j undoes the sending of

m. Pj is supposed to undo all actions triggered by m. Since Pj only rolls back to C
j
• aclions

triggered by m in the period T are not undone. Therefore, Ci and Cj compose an inconsistent

recovery line. Similarly, rollback points Ui and Vj compose an- inconsistent rollback line,

because Pj rolls back, undoing Lhe sending of I, bUl Pi rolls back before receiving I.

Therefore, actions triggered by I at Pi are not undone. Fig. 1 shows a consistent recovery line

and a consistent rollback line, where neither me sending of a message nor the receiving of the

message is undone by the processes.

In summary, the consistency constraint of a recovery line can be described as follows. If

a message is received before a checkpoint, then it musr also be sent before a checkpoint. The

consistency constraint of a rollback line can be described as follows. [f the sender rolls back,

undoing the sending of a message, the receiver of the message must also roll back to undo all

Pi
c,

,,,
m

Legend:

5

u,
,,,,

,,,

u
• : roilback poim
x : checkpoint
__ -> : message flow
-+ : time axis

Figure 2. lnconsislent recovery line and rollback line.

actions triggered by the message.

2.2. The Approach

In the synchronous approach [BARI83, K0087, TAMI841. processes synchronize their

checkpoint operations, message operations, and rollback operations in order to mainlain

consistency. We model this problem as a concurrent lfaDsaclion processing problem. We will

show that the concurrent checkpointing and recovery problem can be solved by enforcing

serializability on concurrent transactions. In this model. we couple each message send with a

message receive as a message transaction. We group aU checkpoint operations in an instance

as a checkpoim transaction, and all rollback operations in an instance as a rollback transaction. _.

Based on the Lamport clock [LAMP078]. there exists a partial order among all operations

laking place in a distributed system. This order represents the "happen before" relationships

among the distributed operations. This order is acyclic and transilive. Therefore, we can map

distributed operations to points on a global lime axis where all the partial order relationships

among the distributed operations are preserved.

For example, in Fig. 3. we map distributed operations from processes Pi. Pj • Pk to

operaLions on a global Lime axis. C represents a checkpoint operalion. S stands for a message

send. R represents a message receive. The sequence of operalions on the global time axis can

6

messages: m, I

p.,
recovery

line

,,
~ : "., .,
~ " , ':, ,., ,

v
"

S C S R C

,,,,,,
" 111,,

C R

Figure 3. Concurrent checkpoint operations <Uld message operations.

be represented by a log:

L ~ S ,UJC I[; JS J [k jR ,[k jC IUJC I[k JR ,[i J.

Subscripts represent transaction indices. The variable in the brackets represents the index of

the process that executes the operation. This log represents a possible concurrent execution of

the tluee lransactions:

T, ~CI[i]CIUJCI[kJ

T, = S,UJR,[kj

T, =S,[kjR,[i]

The checb..point transacrion T I is executed by all processes in the system. These

checkpoints made by the processes compose a recovery line. The message transaction T 2

sends a message from process Pj to process P". The message transaction T J sends a message

from process PI.; to process Pi. We use aCTa) to denote !.he set of indices of the processes that

execute lransaction TQ • 0'0 represents the set of indices of all processes in the system. The

7

lhree types of transactions are described as follows:

• A checkpoim transaction TQ is a ~equence of operations { Cali I liE cr(Ta) = 0"0 I.

Ca[i] is a checkpoint operation executed by process Pi'

• A rollback lfaIlsaction Tel is a sequence of operations UrI ri] liE aCT,,) =: 0"0 I. Ua [i 1

is a rollback operation executed by process P,-.

• A message transaction To is a sequence of the two operations I Sa[i 1. R"UJ J,

i '# j. i, j E aoo This means the message is senL from process Pi 10 process Pj'

For simpliciry, we may omit the transaction indices of operations of different types in the

discussion. Each checkpoint transaction establishes a recovery line. Each rollback transaction

establishes a rollback line. The consistency of recovery lines and rollback lines can be assured

by enforcing serializability on the dependency order among concurrent lIansactions. The

dependency order among the concurrent transactions is determined by the order of their

conflicting operations. Two operalions conflict if they are not commutable in a log. The log

may produce a different result if we switch two conflicting operations. For example. in the log

L = Ix :=x + l}{x :=x * 21.

the two atomic operations (incremem x by 1 J and Imultiply x by 2 J are not commutable.

Definition 1. Let 0a[i] and 0bU] be operations of two lIansaclions Ta and Tb

respectively. 0a precedes 0b in a log. The two operations conflict iff

i) they are executed by the same process, i.e., j =i, and .

ii) f(Oa. Db) = x, where f is a binary function defined in Table 1.

We next define Ihe dependency order among concurrent transactions. We design a

locking protocol 10 enforce serializability. Several optimizations are discussed.

Definition 2. Transactions Ta and Tb are dependent (denoted by Ta --+ Tb) in a log if

i) some operatioo O. of T. precedes and conJIic~ with some operation 0b of Tb,

ai:b;or

8

Table I. Operation dependency (able.

f C S R U

C ' , x -' x

S x " , x

R x ,

U x x *
,
'-'

C: checkpoint operation

S: message send operation

R: message receive operation

U: rollback operation

*. feU. R) = x if the sending of the message

is undone, and ,otherwise.

ii) there exists T1 such that T(J ~ T, and T1 -7 Tb.

TItis dependency relation is transiLive. but may not be acyclic in concurrent Lransaction

processing.

Definition 3. A log is D-serializable (dependency serializable) iff its dependency

relalioo (-7) is acyclic (BERN791.

Theorem 1. Let L be a log of checkpoint lransactions, message transactions, and

rollback transactions. IT L is D-serializable, then me recovery line established by each

checkpoim transaction is consistenr, and the rollback line established by each rollback

transaction is consistent.

Proof The proof is by contradiction. Since the dependency between any checkpoint

transaclion and any rollback transaction is acyclic, the recovery line and rollback line

established by the two transaclions do om inlersect. We show thai

i) If the recovery line established by a checkpoinl transaction T is inconsistent, then L is

not D-serializable.

This occurs when there exisls a message transaction M = S [i]R U] such that C [i]

9

precedes S [i J, and R UJ precedes C UJ in !.he log from Fig. 2. Then we have T --7 M

and M --7 T from Definitions I and 2. Therefore. L is not D-serializable.

ii) rf the rollback line established by a rollback transaction T is inconsistcm, then L is not

D-serializable.

This occurs when Lhere exists a message transaction M =SU]R[i] such that U[il

precedes R [i J, and S UJ precedes U U] in the log from Fig. 2. Then we have T --7 M

and M -;. T from Definitions 1 and 2. Therefore, L is not D-scrializablc.

From i) and ii), the theorem follows. o

We design a locking protocol to ensure the serializabiliry of transactions. Each

checkpoint transaction and rollback transaction follows a two-ph,asc locking protocol

[ESWA76]. Each message transaction follows a simple locking prolocol, where a lock is

obtained immediately before an operation is executed, and is released immediately after the

operation is executed. A transaction issues operations to multiple processes. These processes

execute me operations on behalf of the transaction. In order to synchronize checkpoint

operations, rollback operations, message sends, and message receives, a process must also

obtain a lock on behalf of the transaction before executing its operation. If a lock cannot be

granted, the operation is delayed or aborted. In Fig. 4, we show how transactions follow the

locking protocol. T I is a checkpoinL transaction. M is a message transaction. T 2 is a

rollback transaction. A geometric description of their locking sequences is shown in the (ower

part of the picture. Each rising edge represents a lock action, Each falling edge represents an

unlock action. The corresponding recovery line and rollback line established by the

transactions are shown in the upper part of me picture.

We define four types of locks: c-lock, S-lock. r-Iock, and u-Iock. c-locks are for

checkpoint operations. s-locks are for message send operations. r-locks are for message

receive operations. u-Iocks are for rollback operations. Two locks are compatible iff g(l., 12)

= ;-; ,where g is a binary function defined in Table 2. If a process already holds a lock 1[, it

cannot obtain any lock 12, where g(1 j, 12) = x. We next fonnalize the locking protocol.

10

p.,

M

T,

...~ .
CUI CU]

.......~ .

SU] RUJ

Uri] UU]

Figure 4. Concurrenr lransactions and their locking sequences.

Table 2. Lock compaLibility table.

The Locking Protocol

g

c

s

r

u

c

x

x

x

s

x

x

x

r

x

x

x

u

x

x

x

11

For a checkpoint transaction T = ... C [i] .. : . where C [i] is any checkpoint operation of T:

Tissues C [i j 10 t:uusc process P j [Q take an wlcommilled checkpoint.

Before Pi takes a checkpoint, Pi must obtain a c-lock.

T stans to commit checkpoiDl operations only after all the checkpoint operations have

been executed.

Pi does nOl release the c-lock until it commits the checkpoint, and discards its previously

committed checkpoint.

For T to complete successfully. all processes must have committed their checkpoints. and

released all c-locks.

For a message transaction M = S [i]R fj J:

Process Pi executes S [i I by sending a message.

Before Pi sends a message, Pi must obtain an s-Iock. Pi releases the lock immediately

after sending the message.

Process P j executes R fj] by receiving a message.

Before P j receives a message, P j must obtain a r-Iock. P j releases the lock inunediately

after receiving the message

For a rollback transaction T = . _. U[il··· ,where U[i] is any rollback operation ofT:

Tissues U [i] to cause process Pi to roll back (0 its last checkpoint. If Pi has sent some

message to P j since its last checkpoint. Pi infonns P j to ignore the message when P j

receives the message.

Before Pi rolls back, P; must obtain au-lock.

T starts 10 commit rollback operations only after all the rollback operations have been

executed.

Pi does not release the u-lock until it commils the rollback operation.

For T to complete successfully, all processes must have rolled back (0 their last

committed checkpoints, and released all u-Iocks.

12

Theorem 2. The locking prorocol assures lhe scrializability of concurrent checkpoint

transactions, and message transactions, and rollback transactions.

Proof

i) The dependency order between any checkpoint transaction and any rollback transaction

is acyclic, because they follow a two-phase locking protocol.

ii) Suppose the dependency between a checkpoint lI,msaction T and a message transaction

M =S[i]RUJ is cyclic. Then we have C[i] precedes S[iJ, and RU] precedes CU] in

the log from Fig. 2. Since S [i J precedes R UJ, S [i] mllst appear between C [i J and C U1

in the log. Since T follows a two-phase locking protocol, Pi holds a c-Iock for the

transaction T in Lhe peri~d from C [i] to C U]. From Table 2, g(C, S) = x. Therefore,

Pi cannot obtain a s-lock. and cannot execute S [i] in the period from C [i 1 to C U], a

contradiction.

iii) Suppose the dependency between a rollback transaction T and a message transaction

M = S U]R [i 1 is cyclic. Then we have U [i] precedes R [i J. and S UJ precedes U U] in

the log from Fig. 2. Since Uri] precedes R [i] in the log, P j cannot execute R [iJ while

Pi holds a u-Iock for the transaction T. Suppose Pi executes R (i J after P j releases the

lock. All rollback operations of T must have been executed. Therefore. process Pj must

have executed UU1, and infonned process Pi not to receive the message, a contradicti0't!

We use four types of operations and five types of confliclS to model the concurrent

checkpointing and recovery problem. We have shown that the concurrent checkpointing and

recovery problem can be solved by enforcing serializabilily on the corresponding transactions.

Deadlock Resolution

Deadlocks may occur between a checkpoint transaction and a rollback transaction. There

are two approaches to resolve deadlocks:

1) Deadlock detection:

Once a deadlock is detected. we choose a victim transaction, and abort that transaction.

13

2) Deadlock avoidance:

Once a c-lock of a ctleckpoint transaction or a u-Iock of a rollback transaction carmO(be

granted. we abort the checkpoint transaction or the rollback transaction respectively.

2.3. Optimizations

Optimization J: Share Checkpoints alld Rollback Poinrs

In the previous locking prolOeol, there can be multiple checkpoim operations and

rollback operations issued to process Pi- p,. may have to keep more than one uncommilted

checkpoint in the stable storage. Also Pi needs to roll back once for each rollback operation.

In this section, we study an optimization in which Pi takes. one uncommiued checkpoint for all

concurrent checkpoint transactions, and rolls back once for all concurrent rollback transaclions.

Let

L = ... C.[jl··· Cb[jl···.

Suppose the log L follows the locking protocol. Ca[i] and Cb[i] are checkpoint operations of

transac!ions Ta and Th respectively.

Theorem 3. If Pj holds a c-Iock during the period from CaUl to Cb[i], then lhe

recovery line established by the operations I CaU] } u I ChU] I j E cr(Tb), j:;t i J is also

consistent. That is, the dependency order between the vinual transaction To = I Cali] I u {

CbU] I j E cr(Th), j :;t i }, and any message transaction and any rollback transaction- in the log

is acyclic.

Proof The proof is by contradiction. From Theorem 2, the dependency between the

checkpoint transaction Th and any message transac!ion M = S [IV]R [v] is acyclic, when IV #:. i

and v #:. i. Therefore. the dependency belween To and a message transaction M is cyclic only

whenM ~ S[j]R UJ. or M = S UIR[jJ.

i) Suppose the dependency between To and a message Lransaction M = S [i]R U] is cyclic.

then

L= ... C.UI··· SUI··· RU]··· CbUJ···.

14

Since Pi holds a c~lock during me period from C,[i I (0 ChUl, and t" follows a 1wo

phase locking protocol, Pi holds a c-Iock also during the period [rom C,,[il to C"rn.
Therefore, Pi cannot obtain an S-Iock. and cannol exeCUle S [i I during the period from

Cali] (0 GbU], a contradiction.

ii) Suppose the dependency between To and a message transaction M = S UJR [i J is cyclic,

then

L ~ ,,' C,UI'" SUI'" R[i]'" C"liJ'" C,,[i] " ,

Then the dependency between T" and M is cyclic. a coolIadiclion.

The dependency between the checkpoint transaction Tb and any rollback transaclion T,. is

acyclic. Therefore, the ord~r between Cb[w] and U~(w] mU!it be !.he same as the order

between C,,("J and U~[\'J in (he log for any 11', \,;t: i. The dependency between To and a

rollback transaction T" is cyclic, only when there exists j such Ihat the order between Ca[i]

and Ue[i] is not the same as Ihe order between ChUl and UeUl. We discuss the possible

cases from iii) to vi).

iii) Uefi 1and UeU] appear between Cafi] and Cb U]:

L ~ .. , C.Uj'" U,[iJ'·' U,U]'" C,U],,·

or

L = '" Co[i]'" U,U]'" U,[i]'" CbU] .. , ,

Since Pi holds a c-Iock during the period from Ca[iJ to CbfiJ, and Th follows a two

phase locking protocol, P; holds a c-lock also during the period from Ca[i] to CbU].

Therefore, Pi cannot obtain a u-Iock for T e • and cannot exeCUle U.. [i] during the period

from CAi] to CbU], acomradicLion.

iv) Ue[i]and U.. U] appear between CbUJ and Ca[l]:

L ~ '" CbUl'" U,[i]"· U,UJ'" C.[i]'" Cbli]'"

or

L = ", C"U],,· U,U]'" U,[i] '" Coli]'" C,[iJ'"

Then the dependency between T" and T.. is cyclic, a contradiction.

15

v) C,,[i J and ChU I appear between U... [i J and Uc Ul:

Since Pi holds a u~lock for Tc during the period from VAiJ [0 U..U j, P,- cannot execute

Ca [;] during that period. a comradiction.

vi) C,,[i I and CbUl appear between U.. Ul and U... fil:

Since Pj holds a u-lock for T... dUring the period from U... [j] to U.. [i], P
j

cannot execute

CbUJ during that period, a contradiction. 0

Let

L = ... Uo[i] ... U,[iJ

Suppose the log L follows the locking protocol. U,,[i I and Vb [i 1 are rollback operations of

transactions T" and Tb respectively.

Theorem 4. If Pi holds a u-Iock during the period from UaCi] [0 Vb [i l, then the

rollback line established by the operations (U,,[i] J u I U"UJ I j E aCT,,), j:;t: i } is also

consismn£. That is. the dependency order between the virtual transacLion To = { U,,[i] } u r

U"Ul J j E (J(T,,). j:F- j }, and any message uansacLion and any rollback Lransaction in me log

is acyclic

Proof The proof is by contradiction. The dependency between the rollback transaclion T
h

and any message transaction M = S [w]R [v] is acyclic, when w #; i and v #; i. Therefore, me

dependency between To and a message Lransaction M is cyclic only when M=SU]RUl. or

M=SUJRU]·

i) Suppose the dependency between To and a message transaction M = S [i]R U] is cyclic,

then

L= ... SUJ··· Ua[IJ··· UbUJ··· RU1··.,

or

L = ... S[i]··· UbUJ··· Ua[iJ··· RU]

S [i l is undone by Ua[i]. We show mat R U] is nol executed. R U] cannot be executed

while Pj holds a u-lock for Ta . Suppose R U] is executed after Pj releases the lock. All

rollback operations of Ta must have been executed. Process Pi must have executed

16

U" [j J, and informed Pi not to receive the message. a contradiction.

ii) Suppose Ihe dependency between To and a message transaction M = S U]R [i 1 is cyclic,

then

L= ···SU]··· U"[iJ'" UbU]"'RU]'" U,,[i]···.

or

L = ... SU] .. · Ub[JI'" Uo[i)'" R[i]'" U,[i]'" .

Since Pi holds a u·lock during the period from U,,[i] to U,,[i], P, canDot obtain a r-Iock,

and cannot execule R[i] during Ihe period from U,,[i] to U/,[iJ, a contradiction. Note

Ihat R [i] cannot appear after Ub[i]. Otherwise, the dependency between h and M is

cyclic.

The dependency between the rollback transaction Tb and any checkpoint transaction Tc is

<lcyclic. Therefore, Ihe order between U,,[IV] and C~[wJ must be Ihe same as Ihe order

between Uh[l'] and C,.[v] in the log for any IV, II.,!: i. The dependency between To and a

checkpoint lIansaction Tc is cyclic, only when there exists j such that the order between Uh[i]

and C~[i J is not the same order between UbU] and C.. U]. We discuss the possible cases from

iii) to vi).

iii) C~[i] and C,U] appear between Uu[i] and UhU]:

L= ... U,[i]'" C,[i]'" C,U]'" UbU)·"

or

L = ... Uo[i]'" C,U]'" C,[i]'" U,Ul'" .

Since Pi holds a u-Iock during the period from Ua[i] to Ub[i], and Th follows a two

phase locking protocol, Pi holds a u-lock also during the period from Ua[i] to UhU].

Therefore. P,. cannot obtain a c-lock for T.. , and cannot execute C.. [i) during the period

from Ua[i] to UbU], a contradiction.

iv) CAil and C~U] appear between UbU] and UQ[i):

L = ... UbU)·" C,[i)'" C,UJ'" Uo[i]'" U,[i]'"

or

L = ... UbU]·" C,UJ'" C,[i]'" Uo[i]'" Ub[i]'" .

17

Then the dependency belween T" and Te is cyclic, a contradiction.

v) U</[i] and U"Ul appear between C.,[i] and CrUl

Since Pi holds a c-lock for T~ during the period from CAi] Lo C... U]' Pi cannm execule

Ua [i] during (hal period, a conU'adiction.

vi) Ua[i] and U"Ul appear between C... Ul and CAi]:

Since P j holds a c-Iock for T... during the period from G... UJ to C... (i], P j cannol execute

U"U J during that period, a contradiction. 0

The virluullransaction To is a mixture of transactions T" and Tb. However, we caD view

To as an ordinary transaction following: a two-phase locking protocol. The locking sequence

of To is lhe same as that ofT" except for CaUl (or U,,[i]). To obtains a c-lock (or aU-lock)

for CaUl (or for [laUD when To. obtains that lock. To releases that lock when T" releases a

c-lock (or a u-Jock) for Cb[i] (or for Ub[i]). Therefore, theorems 3 and 4 can be recursively

applied. Transaction Ta or h in the log L can be either an ordinary transaction or a mixed

ttansaction containing operations drawn from other transactions. Based on the theorems, a

checkpoint transaction T = ... C [i] . .. can be implemented more efficiently. When T

issues C [i] to process Pj, p,. ignores C [i] if Pi already holds a c-Iock on behalf of another

checkpoint lraIlsaclion. Similarly when a rollback lransaction issues U[i J to process Pi, Pi

ignores U[i] if Pi already holds a u-lock on behalf of another rollback transaction. However,

Pi still needs to obtain a lock on behalf of T. Through this optimization, Pi keeps at most one

uncommitted checkpoint in !he stable storage. Also p,. rolls back once when there are

concurrent rollback transactions issuing rollback operations to Pj.

Qptimizgtion 2: Establish Partial Recovery Lines and Rollback Lines

A checkpoint transaction or a rollback transaction does not have to issue operations to all

processes in the system. Then the recovery line established by the checkpoint transaction I

C [i] liE Q, Q ~ 0"0 I is called a partial recovery line. The rollback line established by the

rollback transaction I U[ill i E Q, Q ~ 0"0 } is called a partial rollback line.

18

Definition 4. Le[L be a log of checkpoim transactions, message transactions, and

~ollback transactions. E~Ch parLial recovery line ,md partial rollback line es!ablishcd by these

transactions is consistem if L is D-scrializable. and there is no dangling receive message in the

augmented log L' = L Tt . for illly rollback transac!ion Tf =I UfU] liE cr(Tf) <;:::;; 0"0 I.

This me'IDs execution of an arbitrary rollback transaclion afler all other transactions have

tenninated will not produce dangling receive messages.

Omimi;:oriOI/ 3: Never Abort a Rollback Trallsacriol1

If rollback transactions have a low abort rate, then the system can recover from failure

fasler. In the earlier discussion, if a rollback transaction is locked aUL by a checkpoint

. transaction, the rollback transaction is aborted or blocked. Instead, we may want 10 abort the

checkpoint transaction if we are sure the checkpoint transaction has not committed any

checkpoint operation. We can enforce some conditions in concurrent transaction processing

such that a rollback transaction can always commit without being aboncd.

In the next section, we have incorporated these optimizations into the algorithm. A

checkpoint transaction or a rollback.transaclion is initialed by a coordinator. The transaction

is dynamically expanded on a tree of processes. The partial recovery lines and partial rollback

lines established by these transactions are consistent. A process can be a participant of several

COnCWTenL transactions. h1 such a case, the process makes only one checkpoint upon the first

checkpoint request, or rolls back only once upon the first rollback request. Whenever a

tOllback uarrsaction is locked oul by a checkpoint transaction, the checkpoint transaction has

not commiLted any checkpoint, and can always be aborted. Transactions follow the locking

protocol specified earlier. We use a more restrictive lock compatibility table shown in Table 3

where g(c. r) and g(u, s) have been changed to "x". This ensures that a checkpoint

transacLion can always be aborted when it interferes with a rollback Lraosaction.

19

Table 3. New Lock compatibility table.

g c s r u

c " x x x

s x x x x

r x x x x

u x x x ,

3. The ChecklJuint and Rullback Recovery Algurithm

In the algorithm, there are lWO types of messages: normal messages and control

messages. Messages used in the execution of checkpoint and rollback transactions are called

COl/trot messages. All olhers are called normal messages. We do not require lhal messages be

received in !.he order in which they arc sent. Either type of messages can get lost during

transmission. Retransmission of losl messages is handled by some end-ta-end comnllmication

protocols. Local checkpoints and rollback points are numbered sequentially. Suppose [fI,

n+lJ is the interval bounded by two adjacent checkpoints and/or rollback poims. Then

outgoing Donna! messages sent wilhin lhe interval [no n +IJ are altached the label II. For

example, in Fig. 5. the labels of [he messages m, f, x, y. z are 1, 2, 3, 3 and 4 respectively.

We use seqoj (C j) to denote the sequence nwnber of a checkpoint C
j

of Pi'

x : checkpoint
• : rollback point

,I .<1 .<1 .<1 .<1

m .··1 x y z

p X • • X ~

1 2 3 4

Figure 5. Nwnbering checkpoints and rollback points.

In the algorithm, each process saves at most rwo youngest checkpoints (called ofdchkpr

and newchkpt) in stable storage. nelVchkpr is an uncommitted checkpoint. oldchkpr represents

20

the latest' version of the committed checkpoint. Each participating process of a checkpoint

transaction makes a new uncommitted checkpoint lleWchkpl. If the checkpoint transaction can

commit. ofdchkpr is updated with [he content in newchkpl, and lIelVchkpt is discarded. If P

rolls back (0 oldchkpr, newcllkpr (if exisls) will be discarded.

Koo [K0087] presents a checkpoint/rollback algorithm, in which each process can

initiate an instance of the algoritlun. The number of participants in the synchronization

instance is minimal. We extend the idea such Ihat multiple instances can be run concurrently.

Each instance is modeled as a transaction. Checkpoint transactions and rollback transactions

arc dynamically expanded from process to process. A transaction does om necessarily include

all processes in the system. We describe how checkpoint transactions and rollback

transactions are expanded concurrently. The expansion order is determined by some

dependency relationships among Ihe processes. We define the dependencies of processes as

follows.

Definition 5. Pi -t P j iff there exists a normal message m from Pi to Pi' and m is sent

after the latest committed checkpoint of Ph and is received after the latest committed

checkpoint of Pj' and m is not undone by any rollback transactions.

We can describe the dependency relationships by a digraph where nodes represent

processes, and edges represent dependencies among processes. Edges can be dynamically

added or deleted due to message passing, checkpoint operations, or rollback operations. In

general, the graph may be cyclic. and may not be connected.

If Pi -t Pj, and Pj is a participating process of a checkpoint transaction, Pi must also be

a participating process of !hat transaction. On the other hand, if Pi -t Pj' and Pi is a

participating process of a rollback transaction, Pj must also be a participating process of that

transaction. According to this rule, a process can participate in more than one transaction.

Initially, a transaction is initiated by a coordinator, and then expanded to other processes.

Edges can be added to a node dynamically because processes exchange messages, which

creates new dependencies. Checkpoint transactions and rollback transactions follow the two-

21

ph<lse locking protocol specified earlie'f. Once a node holds a lock for a transaction, no edges

can be added 10 the node lInlit the transaction terminates. This is because the node process

does not send or receive normal messages until the transaction terminates. A node will be

traversed at most once when a transaction is being expanded. Therefore, the expansion of a

transaction will eventually tenninatc. The dependency relationship is transitive. We define

the transitive relation as follows.

Definition 6. Pi ---j.+ Pj iff Pi -7 Pj or there exists PI; such that Pi -7 PI;. and

PI< -)0+ Pj'

A checkpoim transaction or a rollback transaction initiated by the coordinator Pi is

uniquely identified by lhe timestamp r, r =(i, initiatioll_time). We use T(t) to denote the

transaction wilh timestamp t. Each control message sem for this transaction is attached the

timestamp [by the sender.

In the next three subsections. we describe the algoriUun that expands checkpoint

transactions and rollback transactions on a [fee of processes.

3.1. Expansion of a Checkpoint Transaction

A checkpoint transaction T(t) does not exist in priori. First, a process identifies itself as

the coordinator of T(t) (Le .• makes a checkpoint autonomously). and then expands the

transaction to some other processes (Le., issues checkpoint requests to them). The checkpoint

transaction is expanded on a tree of processes. The expansion precedes as follows.

When Pi becomes a participant or the coordinator of transaction T (t), P; makes an

uncommitted checkpoint Ci . Let maxj; be the maximum label of the nonnal messages sent

from Pi and received within the interval [seqo!(C;) - 1, seqo!(Ci)]. max;; is set to zero if P;

receives no nonna! messages from Pi within that interval. Pi then regards P; for which maxi;

is not zero as a potential participant of the transaction. and sends Pi the checkpoint request

message ("chkpt_req"'. t, s, maxi;)' s is the index of the coordinator. Suppose when Pi

receives the checkpoint request, the latest commilted checkpoint of Pi is Cj. Upon the

22

checkpoim request. if seqo!CCj):S; maxij, and Pi has nol been a participant or Inc coordinator

of T(r), and has not lmdone the the sending of the message with the label maxij. then Pi

becomes a new participant of T(e), and executes a checkpoint operation. Otherwise, Pi rejects

P/5 request.

The checkpoint transaction can commit only after all participants have executed

checkpoint operations. Each panicipam makes an uncommilled checkpoint. and then sends the

coordinator a "chkpt_ycs" response. The participant may expand the transaction to some

other processes. The coordinator, after receiving the responses from all participants. sends a

"commit" message lO every participant. Upon the message, each participant commits its

uncommitted checkpoint accordingly. A p.micipant may inform the coordinator to abort the
-

checkpoint transaction. In such a case, the coordinator sends an "abort" message to every

participant.

3.2. Expansion of a Rollback Transaction

A rollback transaction T(t) is also dynamically expanded. First, a process idemifies

itself as the coordinator of T (t) (Le., rolls back to its last committed checkpoint

autonomously), and then expands the transaction to some other processes (Le., issues rollback

requests to them). The rollback transaction is expanded on a tree of processes. The expansion

precedes as follows.

When P j becomes a participant or the coordinator of transaction T(t), P; rolls back to its

last committed checkpoint Cj • If Pi has ever sem any normal message to Pj since Cj was

made, then P j regards Pj as a potential participant of the transaction, and sends Pj the rollback

request message ("roll_req", t, s, undo_seq). s is the index of the coordinator. undo_seq

represents the label of the nonnal messages to be undone. Upon the rollback request, if Pj has

received from P j any message m with the label undo_do, and has not been a participant or the

coordinator of T(t), then P j becomes a new participant of T(t), and executes a rollback

operation. Otherwise, P j rejects Pi'S request. Since the rollback request may reach P j faster

than some normal messages to Pj with the label undo_seq, Pi must also inform P j to ignore

23

such incoming normal messages Ialer.

The rollback transaction lenninates only aner all participants have executed rollback

operations. Each participanl sends lhe coordinator a "roll_yes" response. and rolls back to its

lasl committed checkpoin!. The panicipant may expand the transaction 10 some aLher

processes. The coordinator, after receiving the responses from all participams, sends a

"roll_finish" message to every participant. Upon Ihis message, each participant resumes

sending and receiving normal messages. A rollback transaction will never be aboned.

Whenever a checkpoint transaction interferes wilh a rollback transaction, the checkpoint

transaction has not commitled any checkpoint, and will always be aborted.

3.3. The Algorithm

The Conventions for the Algorithm

Each process P j has a daemon process to execute the algorithm. The algorithm on each

daemon process contains eight major procedures, four for checkpoint and four for rollback. A

procedure is invoked by the daemon process if its corresponding invocation condition is true.

The execution of each procedure is exclusive. Mter a procedure is execmed, Pi can resume all

its local compuLation. bI, b2, ... , b8 represent the invocation conditions for the eight

prqcedures respectively. For efficiency pwposes, procedures roll_inilialionO and

roll_requesCpropagationO have higher priority over the other six procedures. All the other six

procedures have the same priority. If more than one invocation condition are lrue, procedures

with higher priority must be invoked first Procedures with the same priorily can be invoked

in an arbitrary order. The following convemions are used in the algorithm:

1) ni keeps track of the sequence numbers of the checkpoints and/or rollback points in Pi

Each time Pi commits a new checkpoint or rolls back, Ilj is incremented by one. 1/i is

initialized 10 zero. Each outgoing normal message of Pj is attached the current value of

ni as a label.

24

1) Conlrol messages sent for ['ransaction T (r) arc attached the timestamp f. For example:

send (msg_fype, t, ...) to Pk ;

or

receive (ms.rcrype, t, ...) from Pk ;

indicates the cOnlrol message is senl 10 (or received from) P k for !.he transaction T(l). 1l

should be noted that messages are passed out by value. Thus send(msg_l)'pe, t, ...)

means (he content of a local variable [is copied into the second field of the outgoing

message. rcceive(msg_l)'pe, f, ...) mc,UlS the second field of the incoming message is

copied into a local variable r. For simplicity, we leave out the identity of the sender from

the message since it is clear from thl; context.

3) chkpt_child(i) records the indices of processes from which Pi has received normal

messages during the latest period when both chkpr_lock_ser(i) and roll_lock_ser(i) are

empty_

4) roll_child (i) records the indices of processes to which P j has sent normal messages

during the latest period when both chkpt_lock_ser(i) and roll_lock_set (i) are empty_

5) cllkptyarricipanr(i) records the indices of participants of the checkpoint transaction

initiated by the coordinator Pi.

6) rollyarticipant(i) records the indices of participants of the rollback transaction initiated

by the coordinator Pi-

7) A process may execute checkpoint operations for several concurrent checkpoint

transaClions. chkpt_lock_ser(i) records the the timestamps of the checkpoint transactions

for which Pi holds c-Iocks. P j commits newchkpt(i) if at least one of lhe transactions

can commit. While Pi holds c-Iocks, Pi does not send or receive nonnal messages. The

set is initialized to an empty sel.

8) Pi may execute rollback operations for several concurrent rollback transactions.

roll_lock_set (i) records the timestamps of the rollback transactions for which P j holds

u-Iocks. While Pi holds u-locks, Pi does not send or receive normal messages. The set

25

is initialized to an empty set.

A process can initiate a checkpoint lIansaction by calling L:lJ.kpUnilialionO. or initiate a

rollback transaction by calling roll_initiationO. The transaction will be expanded on a tree of

processes. The transactions follow the locking protocol specified earlier. Processes obtain c·

locks and u-locks on behalf of transactions. Pj does nO[send or receive normal messages if

either chkpt_'ock_set(i) or roll_lock_ser(i) is nOl empty. This causes subsequent incoming

messages to be held in the channels. If an incoming message is uudon by a sender, Pj must

discard that message held in the channel.

Checkpoints and rollback points are shared among concurrenL transactions. Therefore, Pi

makes one checkpoint upon the first checkpoint request. Also P j rolls back once upon the first

rollback request.

26

The Algorithm

Now we outline the algorithm. Pj nms ill foreground while ils tlaemon sleeps in

background. CanLrol is switched 10 the daemon when some invocation condition becomes

true.

Daemon process for checkpoint and rollback in Pj:
loop

sleep until boolean condition bi or b2 or ... or bS is truc;

case

b1 : chkpt_initiationO;
b2 : chkpt_request_propagauonO;
b3 : chkpt_responsc_colleclionO;
b4 : chkpt_commit/abonO;
b5 : roll_initiationO;
b6 : roll_fcqucsl_propagationO;
b7 : roll_responsc_colleclionO;
b8 : rolUinishO;

endcase;

endloop;

The following variables are shared among these procedures: 1/;. oldchkpr(i), nelVchkpr(i),

chkptJhild(i), roll_child (i), chkptyarricipallr(i), and 1'0//"'participant (i), chkpc_'ock_set (i),

roll_lock_set (i). They are initialized to O. nil, nil, 0. 0, 0, 0, 0, and ° respectively. nil

and 0 are system reserved symbols. They represent a null value and an empty set

respectively. newchkpt(i).state represents a local state of Pi, and newchkpt(i).seq is the

sequence number of the checkpoint. bI, or b5 is true when some guarding variables contain

certain values. After Pi makes a new checkpoint, its checkpoint timer is reset to its initial

value. b2, b3, b4, b6, b7, or b8 is true when some conleol messages have been received.

After the corresponding procedure is invoked, the received conleol messages are consumed,

which nullifies the associated invocation condition. Next, we detail each procedure and its

corresponding invocation condition.

27

Condition bl: the checkpoint timer of p,. timeout and chkpryarricipam(i):::: 0 and
rofi_lock_ser(i):::: 0

procedure chkpUnitiationO;
begin

t := U, initiation_time);
newcJlkpc(i).srate := current state of Pi;
nClI'chkpr(i).seq := IIi + 1;
if chkpl child (i) if; 0 [hen

chkpt_lock_sct(i):= [r };
chkptyartic:ipalll (i) := chkpl_child (i);

send ("chkpl_req". t. i. max/';j) \0 PI.;, for all k E chkpt_child (i);

else

ofdchkpr(i) ;= newchkpr (i);

lIewchkpr(i):= lIiI;

IIi ;= ni + 1;

endif;

end chkpUnitiation;

Comments: initiation_time represems the real lime or the logical time when the procedure

starts. Pi and its daemon process for checkpoint and rollback have separate slate information.

nelVchkpr(i).srare saves only the stale of Pi' maxki is the maximum label of the messages sent

from Pj: and received within the interval [newchkpr(i).seq - 1, newchkpr(i).seq].

k E chkpr child(i) if maxkj '#. O. The transaction is expanded to processes Pk for all

k E chkpr_child(i). The assignment statement oldchkpt(i):= newchkpt(i) copies

newchkpt(i).srate (0 oldchkpt(i).state and newchkpt(i).seq to oldchkpt(i).seq. The assignment

lIewcllkpt(i):= IIi! removes newchkpr(i).state and newchkpt(i).seq from the stable storage.

For efficient implementation, we can copy the address pointer of newchkpt(i) 10 that of

oldchkpr(i) without block transfer.

28

Condition b2: Pi receives C"chkpl_req", r, s, maxjj) from Pj

procedure chkpI_rcques[_propagalionO;
begin

if Pi has rolled back and undone the sending of the message with the label maxij then

send C"chkpt_abort",t) 10 Pt ;

return;

endif;
if t E chkpt_lock_ser(i) or maxij < oldchkpr.seq then

send ("chkpt_oo", r) [0 Ps ;

return;

endif;
atomic_send ("chkpl_yes", t, chkpc_child(i» to Ps;
if chkpr lock set(i) = 0 then

J'" make an uncommitted checkpoint. "'I
newchkpt(i).srate := curren! state of Pi;

1l1!IVchkpr (i).seq := I/i + 1;

endif;
send ("chkpt_ceq", t, S, max~i) 10 P b for all k E cllkpc_child (i);

1* obtain a c-lock for T(f). */
chkpt_Iock_ser(i):= chkpc_lock_ser(i) U [t };

end chkpt_request_propagalion;

Comments: P,s is the coordinator of the checkpoim transaction T(f). Upon the checkpoint

request, if Pi has rolled back and undone the message with the label maxij' the checkpoint

transaction must be aborted. Thus Pi replys with the message ("chkpt_abort", r). IT Pi has

already held a c-lock for T (r), or the last committed checkpoint of Pi and the uncommitted

checkpoint of Pi already compose a consistent recovery line, Pi replys to the coordinator with

Lhe message ("chkpcno", (). In all oLher cases, Pi replys wim me message ("chkpL_yes", t,

chkpr child (i». We require the sending and receiving of this message to be atomic. This

ensures the coordinator recognizes potential participants before Lhey reply. Pi may be a

participant of several concurrent transactions. In such a case, Pi makes an uncommilted

checkpoint only upon the first checkpoint requesl, bUI not upon subsequent checkpoinL

requests.

29

Condition b3:

case 1) Pi receives ("chkpt_ycs", t, clikprJhild(k» from PI. or

case 2) Pi receives (' 'chkpt_oo", r) from Pk or

case 3) Pj receives ("chkpl_abort" ,r) from Pk

procedure chkpL_response_collcctionO;
begin

if case 1 then

chkpf""pOI'riciplll1f (i) := chkptyorticipanr(i) + chkpr_child (k);
mark a single kin chkpryarricipanr(i);

else 1* case 2 or case 3 *'1

delete a k which is unmarked from chkpryarticipam(i);

endif;

if case 3 then

ABORT := true;

endif;

jf all members in chkpryarticipollt(i) have been marked then

if ABORT then

send ("abort", t) to Pi and Pk for all kin chkptyarticipant (i);

else

send ("commit", t) to Pi and Pk for all k in chkpryorcicipam(i);

endif;

chkptyorticipallt (i) := 0;
ABORT := false;

endif;

end chkpCresponse_colleclion;

Comments: Pi will execute this procedure only if Pi is !.he coordinator of the checkpoint

transaction T(r). chkpr"'parricipanr(i) records all pmential participants of the rransaction. An

element k is marked in chkpr...parcicipant(i) if Pk is a true participant. An element k is deleted

from chkpt"'participanr(i) if Pk rejects the rollback request. In case 1, Pk agrees to be a

participant of the checkpoint transaction, and infonns !.he coordinator of more potential

participants recorded in the set chkpt_chi/d(k). The "+" operator unions the two sets without

eliminating duplicate elements. In case 2, Pk has already been a parlicipant or the coordinator

30

of the checkpoim lransaclion, and thus rejecrs The checkpoint request. In case 3, PI: requests

the coordinalOr [Q abort the whole checkpoinl transaction. Elements in chkpryartic:ipal/f(i)

will all be marked after every process that has received a checkpoint request has replied to the

coordinator. Pi sends (' 'abort", t) to every participant (including itself) if any of lhe

participants cannot make a new checkpoint. Otherwise, Pi sends (' 'commit", t) to every

participant (including itself). The flag ABORT is initialized to false.

Condition b4:

case I) Pi receives ("commit", r) from P5

ease 2) Pi receives ("abort", t) from Ps and t E chkpt_Iock_ser(i)

procedure chkpt_commit/abortO;
begin

chkpt_lock_ser(i):= chkpc_lock_set(i) - I [I;
if case 1 then
/* commit lhe checkpoint. *f

oldchkpt(j):= newchkpt(i);

endif;
if chkpt lock setU) = 0 then

newchkpt(i):= nU;
II; ;= n; + I;

endif;

end chkpl30mmit!abort;

Comments: P.r is the coordinator of the checkpoint transaction with timestamp t. Pi may be a

participant of several concurrent checkpoint transactions. In such a case, newchkpt(i) is

shared among these checkpoint transactions. chkpt_lock_setU) records the timestamps of

these transactions. P; releases a c-lock upon a commil or an abon decision from the

coordinator. Pi commits the new checkpoint if at least one of the coordinators can commit.

Otherwise, Pi aborts the new checkpoint.

31

Condition b5: a transienl error is detected in Pi

procedure rolUnitiationO;
begin

(:= (1", initiation_lime);

if c:hkpr_lock_ser(i) :;t: 0 then

rollback to lIelVchkpt(i).state;

return;

endif
if roll~chjJd(i);t.0 and roll_lock set(i) =0 then

roll_lock_ser(i):= { { };
rollJ1Grticipallt (i) := 1'01/ chifd (i);

send ("roIlJcq". t, i, fli) to Pb for all k E roIlJllild(i);

endif;
rollback to oldchkpr(i).srare;

end roll_initialion;

Comments: Transient errors are detected in lime before Pi inlends to make a new checkpoim.

Thus a checkpoint never saves a state contaminated by hidden transient errors. rollback to

newchkpr(i).srare restores the staLe Ilewchkpt(i).state. The transaction is expanded lO process

Pk for all k E roll_child (i).

32

Condition b6: Pi receives ("roll_req", r, s, /Indo_seq) from P j

procedure roll_request_propagmionO;
begin

if l E roll_lock_ser(i) or Pi has om received any messages with the label lmdo_seq

then

send ("roll_DO", r) to p.r ;

return;

endif;
lIewchkpt(i):= nil;

chkfJt_lock_.~eI(i):=0;

atomic_send ("roll_yes", t, 1"011_child (i» to Ps;
send ("roll_req", t, S, IIi) [0 Pk - for all k E roll_child (i);

if roll_lock_ser(i) = 0 then

rollback to oldchkpt(i).srate;

endif;
1* obtain a u-Iock for T(t). */
roll_lock_set (i) := roll_lock_set (i) U It};

end roll_requescpropagation;

Comments: Ps is the coordinator of the rollback l.faDsaction T(f). If Pi has already held a u-

lock for T(t) or Pi has not received any messages undone by the sender Pi' Pi replys 10 the

coordinator with the message ("roll_no", r). Otherwise, Pi replys with the message

("roll_yes", r, roll_child (i)). We require the sending and receiving of this message to be

atomic. 1bis ensures the coordinator recognizes potential participants before they reply. Pi

may be a participant of several concurrent rollback transactions. In such a case, Pi rolls back

only once upon the first rollback request, but not upon subsequent rollback requests.

lindo_seq represents the label of the messages that have just been undone by the sender Pj' Pi

keeps a message log for all incoming messages since last committed checkpoinl. Therefore,

Pi can decide if Pi has received any messages with me label undo_seq. Note (hat Pi reptys to

lhe coordinator before rolling back. This achieves a higher degree of parallelism. Even if Pi

fails after replying to the coordinator, we can eventually restore i!s checkpointed state in the

stable storage.

33

Condition b7:

case 1) Pj receives ("roll_yes", t, roIlJhild(k» from PI: or

case 2) Pj receives ("roll_Do". r) from Pk

procedure roll_response_colleclionO;
begin

if case 1 then

rollyarricipallt (i) ;= rollyarricipol/t (1") + roll_child (k);
mark a single k in rollyarricipanr(i);

else 1* case 2 :1<1

delete a k which is unmarked [rom rollYQrricipanr (i);

endif;
if all members in rollyarricipanr (i) have been marked then

send ("roIUlnish". r) to Pi and Pk for all k in roflyarricipaflr(i);
rollyarricipanr (i) := 0;

endif;

end roll_response_colleclion;

Comments: Pi will execute this procedure only if Pi is the coordinator of the rollback

transaction T(l). An element k is marked in chkpryarricipant(i) if Pk is a true participant.

An element k is deleted from chkpr""parIicipol/t(i) if Pk rejects the rollback request. In case 1,

Pk agrees to be a participant of the rollback transaction, and informs the coordinator of more

potential participants recorded in the set roll_child (k). The "+" operator unions the two sets

without eliminating duplicate elements. In case 2, Pk has already been a participant or the

coordinator of the rollback lransaction, and lhus rejects the rollback request. Elements in

rollyarticipant(i) will all be marked after every process that has received a rollback request

has replied to the coordinator. After receiving responses from all participants of the rollback

transaction, Pj sends ("roll_finish", t) [0 every participant (including itself).

34

Condition b8: Pi receives ("rolUloish", t) from Ps

procedure roll_fmish();

begin

roll lock ser(i):= roll_lnck_ser(i) - { I I:
if roll lock set = 0 then

IIi := 1/; + 1;

endif;

end roll_finish;

Comments: Ps is the coordinator of the rollback transaction wilh T(r). Pi may be a

participant of several concurrent rollback transactions. roll_lock_ser(i) records the timestamps

of these lIallsactioo"s. Pi releases a u-Iock upon a "roll_finish" message from the coordinator.

3.4. Illustrative Examples

This subsection gives two examples. Example 1 shows the execution of a single

checkpoint transaction. Example 2 shows concurrent execution of two checkpoint

transactions. Each figure shows only nonnal message passing but Dol control message

passing.

Example 1 (see Fig. 6).

As mentioned earlier, checkpoints in each process are numbered in increasing order.

Based on the intervals, the labels of the normal messages x, 1, m are all 1. The checkpoints

az. a3 and a4 in Fig. 6. are created by the transaction. First, P2 initiates the checkpoint

transaction T(e) by making a2 autonomously, and sending P J the message ("chkpt_req", C, 2,

maxJ2), where max32 has the value 1. Upon the message, P 3 makes a new checkpoint a3.

Then P 3 replys with ("cb.kpt_yes", t, (4 D, where 4 is the index of the potential checkpoint

participant P 4, and sends P 4 the message ("chkpl_req", t, 2, max43), where max43 has the

value 1. Upon lhe message, P 4 makes a new checkpoint Cl.l, and replys with (' 'chkpcyes", c,

I J). After all checkpoint operations are executed, P z sends ("commil", t) to P 2 , P J and P4.

az. a3' a4 commit, and compose a new consistent recovery line. A.z, }.,3' ~ are discarded. 0

35

PI
Al

~,
A, /x lX, 0)P, , ,, ,
A,

, I ,

c!;J, , lX,
P J ,,

A4
, m

~
, lX,

P,

Figure 6. The process timing diagram and the checkpoint sparming Iree

for example 1.

Example 2 (see Fig. 7).

Al

P,

lX,

6~,
/x

,
lX, 0)

,,
, /

,
, ,
, I ,

c!;J6
, , lX,

~,, m

~~
, lX,

Figure 7. The process liming diagram and the checkpoint spanning trees

for example 2.

In this example, two checkpoint transactions run concurrently. As in Example 1, P2

initiates one checkpoint lransaction T(t) by making checkpoint (x'! autonomously_ P I initiates

lhe other checkpoint transaction T(f') by making checkpoint (Xl autonomously, and sends P3

the message ("chkpl_req", c' , I, max31), where max)l has lhe value 1. P2 sends P J

C"chkpl_req". t, 2, max32)' Then P3 makes 0.3 upon !.he request of P2 or of PI whichever

comes first. BoLb checkpoint requests are propagated from P 3 to P 4. Therefore, P 4 receives

36

two checkpoint requests originating from' P2 and P [. In Ihis case. the uncommitlcd

checkpoint CLJ is shared bCl\veen the (WO checkpoint transactions. P.l can commit the shared

checkpoint (X,3 if at least one of the two tranmsactions can commit. Evcnlually at. 0:2. 0:), 0:<1

commit, and compose n new consistent recovery line. The previous checkpoims

A.I' ~. A,). 1....\ are discarded. Since processes propagates checkpoint requests for each

transaction, the twO checkpoint transactions will not block each oLber. Each transaction can

eventually be expanded. 0

4. Correctness Proof

This section shows the correcmess of the algorilhm, and derives some properties of the

algorithm.

Theorem 5 Each checkpoint transaction will eventually terminale (either commitled or

aboncd). Also each rollback transaction will eventually terminate.

Proof" Each transactions is expanded hierarchically. The coordinator recognizes each

potential participant before it replys. Upon a checkpoint request, a process will always reply

to the coordinator with either a "chkpcyes" or a "cllkpCno" or a "chkpt_abon" message.

Similarly, upon a rollback request, a process will always respond with either a "roll_yes" or a

"roll_no" message. Thus, once a process identifies itself as the coordinator, it will evemually

receive responses from all the participants of the transaction. Since the number of processes in

the system is finite, each transaction has a finite number of participants. Each participant

expands the transaction at most once. Each transaction will evenrually tenninate. 0

Theorem 6. Each partial recovery line and each partial rollback line established by a

checkpoint transaction or a rollback transaction is consistent.

Proof"

i) When a single checkpoint transaction or a single rollback transaction is executed without

interference:

Since transactions follow the locking protocol specified earlier, the dependency between

37

any me:-:sage transaction and the transaction is acyclic. Also according to the algorithm,

when P j ---1 Pi' then if Pj is a process of a checkpoint transaction, then Pi is also a

process of the transaction. On the OIher hand, if P j is a process of a rollback lIansaction,

then Pj is also a process of Ihe transaction. Therefore. lhere is no dangling receive

message.

ii) When checkpoint transactions Til and T}, are executed concurrently:

Suppose Pi receives checkpoint rcquesls from Ta and Th • and chkpr_Iock_scr(i):r= 0

upon a checkpoint request from Tb • Then Pi makes a checkpoint for Ta , bm not for T".

This does not affect the consistency from Theorem 3, because Pi does not send or

receive nonnal messages when cllkpf_'ock_set(i) is oot empty.

iii) When rollback transactions Ta and Tb are executed concurrently:

Suppose Pi receives rollback reques(s from Ta and T
"

, and roll_lock_set (i) :;r. 0 upon a

rollback request from T'r Then Pi rolls back for Ta , but not for Tbo This does not affect

the consistency from Theorem 4, because Pi does not send or receive normal messages

when roll_lock_set (i) is not empty.

iv) When a checkpoint transaction and a rollback transaction are executed concurrently:

iv)-AWhen a checkpoint requesl is issued to Pi from Pj' and Pi has undone !he- sending of a

message to Pj:

Pi will infonn lhe checkpoint coordinator to abort lhe checkpoint transaction.

iv)-B When a rollback request is issued to P j from P j • and chkpc_lock_ser(i) is not emp[)':

Case 1 Pi is the coordinator of the rollback transaction, Le., i = j:

Pi rolls back to the last uncommitted checkpoint, and the rollback LnUlsacLion is

completed. In such a case, the rollback ltansaction has only one rollback operation.

Case 2 Pi has nOl receive any messages to be undone by p/

Pi ignores Ihis rollback request.

Case 3 Olherwise:

Pi becomes a participant of the rollback ltansacLion. Pi rolls back to the last

38

commiltcd checkpoinL. and discards the ullcommilted checkpoinl. We next show

that the checkpoint Iransaclion for which Pj is a participant has nOl committed any

checkpoim, and will be aborted.

For any Pi, Pi does not receive normal messages when chkp'_lock_ser(i) is not

empty. Therefore, if Pi becomes a rollback participant. and discards its

uncommitled checkpoint, there must exist il nonnal message received before that

checkpoint is made. Suppose P,_ is the coordinator of the checkpoint transaction,

and Pr the coordinator of the rollback transaction. Pi p,uticipatcs in both the

checkpoint transaction and the rollback transaction. According 10 the expansion rule

of checkpoint transactions and rollback transactions, we have Pr ~+ Pi and

P i ""::"+ Pc. where -7+ is defined in Definition 6. Hence, Pr -)+ Pc' There must

exi~t PI: and p" on the path from Pr 10 P~. such that i) PI;: -) Ph; ii) PI;: panicipates

in the rollback transaction before the checkpoint transaction; and iii) PIJ panicipates

in the checkpoint transaction before the rollback transaction. Then PI: will infonn

Pc to abort the checkpoint transaction upon a checkpoint request from PII' 0

Suppose P I is the coordinator of a chcckpoint transaction. and P 2, . .. , PI: are the

participants. Let C = (C l> C 2 •••• , Ck } be the recovery line established by the checkpoint

transaction. The next theorem states the minimaliry of the checkpoim transaction.

Theorem 7. Each checkpoint transaction has the minimal number of participants. ThaL

is. the recovery line C = C - { Ci } U { Ci I is inconsistent for any 2 S ; S k, where Ci is the

last committed checkpoint of Pi made before C j

Proof" By Theorem 6. C is a consistent rccovery line. Since Pi. 2 Sis k, is not the root of

the checkpoint spanning tree, Pj must have a parent Pj in the tree, 1 S j S k. From definition

5, P j -) Pj' That is. lhere exists a normal message m sent by P j after C i and received by P j

before Cj . Then the order belween the message transaction of m and the checkpoint

transaction that establishes the recovery line C is cyclic. 0

Suppose P I is the coordinator of a rollback transaction. and P2•...• PI: are the

participants. Let U= I U I, U2•... , Uk } be tnc rollback line established by the rollback

39

transaction. The next meorcm states the miflimalil)' of the rollback tr:ms·aclion.

Theorem 8. Each rollback transaction has the minimal number of p,uticipants. Thal is.

the rollback line U = U - { Ui I is inconsislent for any 2 ~ j ~ k.

Proof' Since P j .2 '5. j s k, is not lhe roOl of the rollback spanning tree. P j mus[have a

parem Pi in the tfee, 1 SiS k. From Definition 5. Pi ~ Pj' Pj must have received a

message m from Pi upon the rollback request from Pi- If Pj docs not roll back, the actions

triggered by the message at Pj are nOl undone. Therefore. this recover line U produces a

dangling receive message. 0

5. Comparison with Related Work

Several distributed checkpoinling and recovery mechanisms can be found in [BARIS3,

KOOS?, TAMI841. Their distinguishing feaLUres arc as follows:

Barigazzi~Strigini algorithm [BARI83]:

The sending and receiving of a message is aLOmic. which is more restrictive than FIFO

channels. Under this constraint, sending a message will block the operations of the sender

until the message is received.

A process suspends aU nonnal operations while the process is a participating process of a

checkpoint instance or a rollback instance.

Tamir-Sequin algorithm [TAMI84]:

All the processes in the system need to take checkpoints or roll back together.

A process suspends all nonna! operations while the process is a participating process of a

checkpoint instance or a rollback instance,

Koo-Toueg algorithm {K00871:

Messages are assumed to be transmitted in First-in-First-om order.

Only processes that have exchanged messages since their last checkpoints need to take

checkpoints or roll back logelher. Concurrent execution of multiple checkpoint instances

40

or rollback instances is not allowed. Each rollback process rolls back only after every

other process in the instance agrees to rolI back.

A process caooO[send nannal messages while the process is a participating process of a

checkpoim ins(ance or a rollback instance.

Muhiple process failures usually block the algorithm. The algoriLhm needs to wail unlil

the Jailed processes recover. Also Network partitioning is not considered.

Leu-Bhargava algorithm:

Normal messages and most of the conlrol messages can be transmined ill any order.

Only processes Lhal have exchanged mcssugcs since [heir last checkpoints need to take

checkpoints or roll back together. Concurrent execution of checkpoint transactions- or

rollback transactions is allowed. Each rollback transaction always commits wilham being

aboned or blocked. Each rollback process rolls back wilhout walting until other

panicipams agree to roll back. Once it rolls back, it can immediately continue all its

operations except sending and receiving nonnal messages.

A process cannot send or receive normal messages while lhe process is a participaring

process of a checkpoint transaction or a rollback transaction.

Blocking possibility of checkpoint transactions due to multiple process failures and

network partitioning is reduced. Blocking of a rollback transactions can always be

resolved.

5.1. Advantages of Non-FIFO Channels

Our algorithm allows nonnal messages to be transmitted in any order. not necessarily in

First-in-First-out order. Due to the message delay or loss of messages, it is more expensive [a

implement FIFO channels than non-FIFO channels. Some applications prefer non-FIFO

semantics to FIFO semantics. One example is distributed discrete event simulation [JEFF82].

Second example is that a sender may set up a "mailbox" storing all the outgoing messages,

which are subsequently "pulled out" by the receivers based on some priority, not necessarily

41

in the order in which [hey are produced by the sender. Some messages'may not be inspected

at all. Third example is Ihat (WO processes may be connected by more [han one logical FIFO

channel for different purposes. Then the ovcmJl effect will make these FIFO channels look

like one single non~FIFO channel..

6. Performance Evaluation

DiSlfibuted chcckpointing and recovery has been smdied in v:trtOUS literature. Not much

research has been done on perrormancc analysis. We have implememed the algorithm on a

network of SUN-3 1 workstations, and have collected performance data. This section analyzes

the performance of the algorithm.

6.1. Experimental Design

6.1.1. Experimental Procedures

This experiment is done in the RAID system [BHAR88cl. which runs on SUN-3

workstations connected by Ethernet. Each experimental scenario perfonns the following steps:

a) Execute normal processes which send normal messages to one ,mother.

b) Invoke a checkpoint starter or a rollback starter which send~ a special message to

designated processes. A process that receives this message initiates a checkpoint

transaction or a rollback transaction respectively. Before the transaction tenninates,

the process does not send or receive normal messages.

c) Run a special command to stop the experiment.

1. SUN-3 is a tradcnuuk of Sun :Microsyslcms. Inc.

42

6.1.2. Measured Data

In the experiments we measure the performance of the coordinalOf and panicipanls

separately during the execution of a checkpoint transaction or a rollback transaction. In the

following discussion, "transaction" means either a checkpoint -transaction or a rollback

transaction. Each transaction is executed by two La eight processes. We have measurel.!

elapsed rime and cpu umge during the execution of transactions. Elapsed lime is the total

lime a process spends during tile execmion of a transaction. This period starts from the Lime

when the process receives a checkpoint request or a rollback request umil it receives a commit

or an abort decision of the coordinator. Elapsed time contains three components: a) lime to

lake a single checkpoint or roll back to the last checkpoinr, h) cpu time, and c) idle time

waiting for messages.

Single checkpoint delay is the time to wrile the image of a process into the disk. while

single rollback delay is the time to read the image of a process from the disk. For processes

ranging from 4K byres to 48K bytes, the checkpoint and rollback were measured lO take lime

ranging from 89 ms (milliseconds) lo 496 ms (milliseconds). Reading memory images or

restoring images can be done by a back-end processor, which does not consume cpu resource.

So we simulate Lbis approach by requiring a process to sleep for a period of time while taking

a single checkpoint or rolling back.

Processes coordinate with one another to synchronize meir checkpoint operations and

rollback operations. Each process spends cpu time sending, receiving, and processing

synchronization messages. CPU time contains two components: a) communication cost, and

b) computaLion cost for the execution of the algorithm.

A process can be a participant of [wo or three concurrent transactions. We have

measured elapsed limes of processes during the execution of a single transaction and that of

concurrent lransaclions. The following nolation is used in the analysis.

Notation.

e1ape

efapp

elapep

efappp

elape:pp

elapppp

43

elapsed time of the coordinator of a single transaction.

elapsed lime of a parLicipant of a single transaction.

elapsed lime of a process thar is the coordinator of one transaction and

also a participant of the other transaction. In this case, twO transactions

are execu(ed concurremly.

elapsed time of a process that is a common participant of tWO transactions.

elapsed time of a process that is the coordinator of one transaction and

also a common participant of the orher two transactions. In this case,

three transactions are executed concurrently.

elapsed lime of a process that is a common participant of three

transactions.

Similarly, CPUe:. CPUp' CPU,p' CPUpp , CPUcpp' and CPUppp denote the corresponding cpu

times of processes during the execU!ion of a single transaction and that of concurrent

transactions.

6.2. Performance in Concurrent Execution

In the synchronous checkpointing approach, it (s likely to have more than one

coordinator at a time. Each coordinator initiates a uansaction. Different transactions may

interfere. If concurrent execution is not allowed, one transaction would have to wait for the

other to finish. The delay may be accumulated as there are more transactions running. For

example, suppose transactions T I. T 2, ...• Tk + l are initiated at the same time. and they have

Ihe same number of participants. T 1 takes time x to finish. Each. process rakes 6.y to make a

checkpoint, and propagate the checkpoint request. Process Pk is a common participant of

transaction T k and T k+l . P k can execute a checkpoint operation for T k+1 only after T k has

tenninated. Therefore, transaction Tk +1 will finish .6.y time later than Tk . The finish time of

transaction Tk is x + (k - l).6.y.

44

If each common participam can execute checkpoint operations concurrently for two

transactions, the two transactions can precede simultaneously. The common panicipanl spends

26.y executing two checkpoint operations. The finish lime of each transaction will be the

same.

Table 4. Elapsed times (in milliseconds).

number of processes of each transaction: 5
Each process is on a different site.
single checkpoint/rollback delay: 251 ms

elapsed lime elapsed time
of checkpoint of rollback
nrocess process

elape 559 301
single

transaction elap 322 303

e1aprp 588 354
two concurrent

transactions elap"" 360 359

three concurrent
elapcpp 617 400

lransactions elap 389 405

We have done some optimization in concurrent execution. Concurrent transactions can

share checkpoints or rollback points. Therefore. each common participant spends less than

26y executing checkpoint operations for the two transactions. We have sLUdied experimentally

the effect of sharing checkpoints and rollback points on the elapsed time. Table 4 shows the

elapsed time of the coordinator and thaL of a participant during the execution of a single

lTaOsaclion and that of concurrent transactions. Each process is of 20K bytes, and spends 251

ms making a single checkpoint or rolling back. In the experiment of concurrem transaction

processing. each lransaction is executed by the same five processes. A process can be a

coordinator of at most one transaction. but can be a common participant of two or three

transactions.

45

Due (Q the sharing of the checkpoints and rollback poims. (he elapsed lime of a process

tha[execuLes operations for concurrent transactions will be smaller. From Tables 4. we found

the following relationships:

elapep ::: elape + elapp - d

clappp ::: elapp + elapp - d

elapepp ::::: elapep + elapp - d

elapppp :::: elappp + clapp - d

d = 251 ms, which is !.he time to take a

single checkpoint or LO roll back.

Data on the left side of :::: are measured experimentally. The expressions on the right

side represent expected values. When a process cxeCUles checkpoint operations for two

concurrent checkpoint transactions, the process makes a single checkpoint instead of two.

Therefore, elapep and elappp can be expected to be d milliseconds shorter than if the process

makes two checkpoints. When a process executes operations for two concurrem rollback

transactions, the process rolls back once instead of lwice. Therefore. elapcp and elappp can be

expected to be d milliseconds shorter than if the process rolls back twice. For checkpoint

processes. the measured data are even smaller than expected, because processes tend to utilize

CPU idle time more efficiently in concurrent transaction processing.

6.3. Performance in Rollback-Recovery

In our algorithm, rollback transactions can always commit without being aborted. A

process rolls back without wailing until other participants agree LO roll back. Therefore, the

process can recover from transient errors fasler. The period of time during which normal

operations are suspended is about the same as the time for the process to roll back.

If processes roll back only after other participants agree lO do so, their normal operations

will be suspended for a longer period of rime. This period will include the time to

synchronize with other processes, and the time to await decisions from the coordinator. Table

46

5 shows lhe elapsed time of a process during the execution of a rollback transaction with

respeCI ro three different rollback delays in a .single site environment. This period of time is

about 1.4 to 4 times [he single rollback delay.

Table 5. Elapsed times (in milliseconds).

number of processes of lhe rollback transaction: 8

All !.he eight processes arc on the same sileo

single rollback delays: 89 ms, 251 IDS, 496 ms

rollback delay

89 251 496

coordinator 363 472 719

participant 316 438 684

Table 6. Maximum number of synchronization messages.

number of processes of the transaction: 5

There are one coordinator and four participants.

number of number of total

messages scnt messages received

coordinator 13 26 39

participant 8 5 13

[alai 13+4x8=45 26+4x5=46

6.4. Overhead of the Algorithm

Processes synchronize their checkpoint operations and rollback operations by sending

messages. The total message overhead is no worse than other synchronous checkpointing

algorithms presented in [BARI83, K008?]. In our algorithm, the message overhead is not

uniformly distributed. The total number of messages sent and received by the coordinator is

in the order 0 (n 2). The total nwnber of messages sent and received by a participant is 0 (II),

where n is the number of the processes of the transaction. It costs CPU time to process the

47

messages. We study the worst case when Ine ma.... imum number of synchronization messages

are scm among the processes. Table 6 shows the maximum number of synchronization

messages a process sends and receives in executing a single transaction. This number only

depends on tne number of participants of Lhe transaction. -The maximum number of messages·

used in the execution of a checkpoint transaction is the same as that of a rollback transaction if

they camain the same number of participants.

We have measured the CPU time a process spends during lhe execution of a single

transaction and that of concurrent transactions. Each transaction is executed by the same five

processes. Table 7 shows thc CPU costs when all five processes arc on a single site. Table 8

shows the CPU costs when each process is on a different site. We have the following

observations:

The CPU cost of a checkpoint transaction is about the same as lhat of a rollback

transaction with the samc number of participants.

When each process is on a different site. the CPU cost is about 2.2 times thal when all

five processes are on a single site. This is because remote communication is more

expensive than local communication.

CPU cost contains two components: a) communication cost. and b) computation cost for

the execution of the algorithm. Communicalion cost is about 45% of the lotal CPU cost

in a single site environment, and increases lO 75% when each process is on a different

sileo

48

Table 7. CPU costs (in milliseconds).

number of processes of each transaction: j

All the five processes are on the same site.

CPU cost CPU cost
of checkpoint of rollback

nroccss process

single
CPU. 47.0 48.8

transaction CPU" 18.3 18.6

CPUcp 67.1 63.1
two concurrent

transactions CPU 36.3 38.6

three concurrent
CPUcpp 80.9 79.9

transactions CPU""" 55.5 57.9

Table 8. CPU costs (in milliseconds).

number of processes of each trnnsaction: 5
Each process is on a different site.

CPU cost CPU cost
of checkpoint of rollback
nrocess Dfocess

single
CPU. 102.0 99.1

Lransaction CPU" 41.6 41.0

CPUcp 135.1 136.7
two concurrent

transactions CPU"" 87.7 86.3

three concurrent
CPUcpp 173.0 174.9

transactions CPU 138.8 135.6

49

6.5. Effect of Multiprogramming Level on Elapsed Time

We study how multiprogramming level may affect the clapsetl time of a process tluring

the execution of a transaction. When all processes of a transaction are on the same site, the

elapsed time will be the longest. When mere is one process per site. the elapsed time will be

the shoncsl. Table 9 shows the elapsed lime of processes at difTerem multiprogramming

levels. There are four processes in a transaction. The checkpoint delay and rollback delay are

251 ms. We choose I, 2, 4 as the multiprogramming levels. That means, each site has one

process, each site has two processes, and one site has allihe four processes respectively.

mUhiprogramming levels: 1,2,4 (# of processes per site)

number of processes of the transaction: 4

single checkpoint/rollback delay: 251 ms

Table 9. Elapsed times at different multiprogramming levels.

multiprogramming level

1 2 4

coordinator 542 587 645
checkpoim

transaction participant 308 344 395

coordinator 299 327 374
rollback

transaction participant 291 302 328

From Tables 9, we have the observations:

Multiprogramming level affects the coordinator more than a participant. This is because

the coordinator has higher CPU cost, which incurs more time sharing delay. Therefore,

as the multiprogramming level increases, the elapsed lime of the coordinator increases

faster than that of a participant.

50

Multiprogramming level affects processes of a checkpoint lnmsaclion more than those of

a rollback transaction. This is because the two-phase commit protocol used in the

execution of a rollback transaction has a higher degree of parallelism Lhan that of a

checkpoint transaction. Upon a rollback request, a process, replys 10 the coordinator, and

propagates the rollback request before it rolls back 10 its last checkpoint. The

coordinator can process some messages while other participants are rolling back, which

does not consume the cpu resource. Therefore, rollback processes can utilize CPU idle

time more efficiemly than checkpoint processes. On the other hant!, upon a checkpoint

request, a process replys to the coordinator, and propagates the checkpoint request only

after it has made a checkpoint. From Table 9, the elapsed time of a checkpoint process

increases faster than thm of a rollback process.

6.6. Comparison with the Independent Checkpointing Algorithm and

Concluding Remarks

We compare the performance with that of the independent checkpointing algorithm

[BHAR88b]. In this algQrithm. processes take checkpoints independently withom

synchronization. Since the last checkpoints of processes may not cQmpQse a consistent

recovery line. a process may not discard old checkpoints when a new checkpoint is generated.

When a coordinator process decides to roll back. it initiates a rollback instance. The

coordinatQr collects checkpoint infonnation from all other processes in the system. and

determines a consistent recovery line to which the other processes need to roll back.

6.6.1. The Independent Checkpointing Algorithm

This algorithm is more efficient in checkpointing because no synchrQnization is needed.

However, iL is less efficient in rollback·recQvery. During rollback-recQvery, a

cQordinator needs tQ collect infonnaLion from all other processes in the system. It may

determine a recQvery line compQsed by very early checkpoints. Then processes have to

roll back to the very early checkpoints. Based Qn the experimental results [BHAR88aJ.

51

the rollback distance depends on the message exchange pa\[cm among the processes.

When processes exchange messages very frequcmly. II rollback recovery is likely 10

cause all processes to roll back to very early checkpoints. To cope with this kind of

problem. the checkpoint intervals of processes should be made adaptable. Checkpoim

intervals should be made smaller when failure rate is high or when message exchange

rate is high. Therefore, this algorilhm will have a high overhead when message

exchange rale is high, because each process either needs to lake checkpoinlS morc

frequently or tends La roll back to a very earlier ~heckpoint. To discard old checkpoillls,

processes also need 10 Lake checkpoints more frequently. [n such a way, new

checkpoints more likely compose a consistenr recovery line.

The size of synchronization messages is in a quadratic order of all Ihe processes in the

system. The total number of messages is in a linear order of all the processes in the

system. In the experiment [BHAR88a], each process keeps 4 to 10 checkpoints in Lhe

stable storage. Message size also depends on the number of checkpoints kept by each

process.

This algorittun does not allow concurrent execution. Rollback~recovery is slower

compared La Ihe synchronous algorilhm.

6.6.2. The Synchronous Algorithm

Only processes that have exchanged messages since their last checkpoints need to

coordinate with one anoLher. The algorilhm will perform better when the processes have

a bigger image size. For smaller processes, we can group mem together as a checkpoint

unit or a rollback unit. In such a way, we can reduce the message overhead at the

expense of increasing single checkpoint cost and single rollback cost.

The last committed checkpoints of all processes always compose a consistent recovery

line. The rollback distance is independent of the message exchange rate. We can

detemtine an opLimal checkpoint interval based on the failure rate.

52

The'size of synchronization messages is in a linear order of the number of processes of

the transaction. The total number of messages is in a quadratic order of the number of

processes in the transaclion. Proce:sses spend less time processing each message. In our

experiment, the message size is only 22 bytes.

The synchronous algorithm allows concurrent execution. We have shown that

concurrent execution reduces Ihc respon.se lime of checkpoinl Lransactions and rollback

transactions, and improves the performance of rollback recovery.

7. Resolving Blocking due to Process Failures and Network

Partitioning

While checkpoint Iransactions or rollback transactions are run on some processes. some

process may fail and block other processes. We adopt the following assumptions about

failures. a) Process failures are clean; that is, a process rails and stops without sending any

forged control messages. b) Process failures do not affect the stable storage [LA~S79].

Thus a recovering process can always restore its last checkpomted state. c) Operational

processes are informed of process failures in Ii.nite time. The mechanisms monitoring the

process status information have been studied in [BHAR86, HAMM80, WALT82]. u) After a

process nolices a process failure, it discards all subsequem nonnal messages from the failed

process. These messages are in transit when the process fails. e) A recovering process can

always collect all its lost incoming control messages either from its message spoolers

[HAMM80] or from some other processes. These messages addressed to the failed process

were redirected to its message spoolers. Messages can be replicated on multiple spoolers to

enhance reliability. If all message spoolers fail, the recovering process mUSl inquire irs

cooperating processes of the same uansaclion. So, the recovering process can catch up with

its cooperaling processes.

In our algorithm, a rollback operalion can always commit. Under the assumptions about

failures, blocking of rollback Ifansactions can always be resolved. However, blocking of a

checkpoint transaction may not be resolved. If the checkpoint transaclion has not commilted

53

any checkpoint operation, the checkpoint transaction should be completely aborted.

Otherwise. operational proce:sscs must commit or abort their uncommitLed checkpoints based

on lhe decision of the coordinalor. However, if the operational processes cannot lell if the

coordinator has made a decision in cuse of cascading failures. !.he transaction is blocked until

failed processes recover. However, operational processes are still allowed to continue their

own opcmtions except sending and receiving normal messages.

8. An Algorithm that Allows Multiple Checkpoints in Stable Storage

In the earlier algorithm, each process keeps in stable sLOrage exactly ODe commilted

checkpoint and at most ODe uncommined chcckpoinl. In some applications. it is necessary to

allm'; a process to make new checkpoints before its previous checkpoinrs commit. Also. a

process may have to keep previously committed checkpoints for rollback purposes.

The ADQ/icarions

We study the following applications where a process may keep mulliple checkpoims in

stable storage:

1) Application 1: In the original algorithm, when a checkpoint transaction is blocked due to

process failures or network partitioning, participating processes cannot commit their

checkpoints or initiate new checkpoint transactions. An alternative approach is to allow

participating processes to initiate new checkpoint transactions. In such a case. the

checkpoints made by the old checkpoint transaction are kept uncommitted.

2) Application 2: In this case, the system may not detect transient errors immediately. It is

possible that a checkpoim may save a Slate containing transient errors. Then, rolling

back to the youngest commiued checkpoint is nOl sufficient to eliminate the transient

errors. Thus, each process may keep in stable storage previously committed checkpoints.

From time to lime, a process starts verifying its committed checkpoints in stable storage.

If they contain no transient errors, some of them can be discarded.

54

In applications 1, Pi keeps exactly one committed checkpoim and multiple uncommitted

checkpoints in stahle storage. In application 2, P j keeps multiple committed checkpoints and

at most one uncommitted checkpoim in stable storage. To deal with a combination of the two,

Pi needs to keep multiple committed checkpoints and multiple uncommitted checkpoints in

stable storage. We nex.t modify the original algorithm. We describe how checkpoint

transactions and rollback transactions are expanded on a Iree of processes, wilen each process

may keep multiple checkpoints in the st.. blc storage.

Tile Modified A1!l0ritJII11

Suppose Pi keeps in siable storage the checkpoints oldchkptAn, oldchl...pt
Q

+1(i)

, ... , oldcIJ/...ptr;t(i), IICWc!IJ...Pf1J(i), nClVcllkpth+I(i), ... , Ilelvchkptp(i). The checkpoints

record lhe states of Pi in an increasing order indicated by the subscripts. Each oldchJ.:pr(i) is a

committed checkpoint, and each lIelVchkpt(i) is an uncommitted checkpoint Each

uncommitted checkpoint can be shared among multiple checkpoint transactions. We use

chkpr_'ock_ser(i) [0 record the timestamps of the checkpoim rransactions for which Pi holds

c-Iocks. ro[[_[ock_ser(i) records the timestamps of the rollback transactions for which Pi

holds u-Iocks. Pi does not send or receive nonnal messages if either chJ..pt_lock_ser(i) or

roll_lock_ser(i) is not emply. However, if checkpoint transactions for which Pi holds c·locks

are all blocked due to process failures, Pi is still allowed to send and receive normal messages.

Let maxijg denote the maximum label of the messages sent from Pi and received within the

interval [newchkptgU).seq - 1, llelVchkprgU).seq]. Each checkpoint transaction and each

rollback transaction is dynamically expanded on a tree of processes. The coordinator commits

the transaction after every participant has executed the checkpoint or rollback operation. We

classify uncommitted checkpoints into marked ones and unmarked ones. Initially, any

uncommitted checkpoint is unmarked. Suppose Pj issues a checkpoint request to Pi for

transaction T(t). Ps is the coordinator. Upon the request ("chkpCreq", t, s, maxiig) from Pj'

P j may have the following cases for any previous outgoing message m [0 Pi with the label

55

Case 1 Pi has undone Ihe sending of the message with Ihe label maxjj!.':

Pi requests Ihe coordinator to abort T(l).

Case 2 Pi sends m within the iDierval [newchkpt/,(i).seq - 1, lIewc!lkpth(i).seq), i.e"

maxijg =nell'ch/..."[Jr,,(i).seq - 1, and newchkpr,,(i) is nOI marked:

P,- does not make another checkpoint upon the request. Let maxkill be !he ma..... imum

label of the messages sent from P k and received wilhin Lhe interval

[newch/..pt!lU).scq - 1, newchkptll (i).scq). Pi thcn regards PI; for which ma"'kiIJ is not

zero as a potential parlicipant of the transaction T(f), and sends out the checkpoint

request ("chkpCreq", t. S, maxkih) to Pk -

Case J Pi sends 111 within the interval [1/;, 00), i.e" maxijg = "i:

Pi must make a new checkpoint nClVcilkptb+l (i), wnere ncwchl..ptb+l (i).seq is set to

Jli + I. Let maxki(h+l) be the maximum label of the messages sent from P k and

received within the interval [newchkprb+l (i).seq - I, newchkptb+l (i).seq]. Pi lhen

regards PI; for which maxki(b+I) is DOl zero as a potential participant of T(t), and

sends out the checkpoint requesr. ("chkpt_req", f, s, maxki(b+l) to PI;.

Case 4 Otherwise:

Pi rejects the request from Pj'

Pi can be a participant of several checkpoint transactions. which share the checkpoint

newchkptll(i). If at least one of the checkpoint transactions can commit, P j marks

1/eWchkpt,I(i). Pi releases a c-Iock upon a final decision from the coordinator. When P j

releases all c-locks and commits its checkpoint. Pi increments nj by 1.

When ncwchkptb(i), newchkptb+l (i)•... , newchkpt,,(i) are all marked. newchkpr,l(i)

can now commit. That is, a new committed checkpoint o/dchkpt C1+1 (i) is created with the

conlent in newchl..pf,l(i), and newchkpt,,(i), newchkptb+l (i), ... , newchkpt,,(i) are discarded.

Operations for rollback also need modification: When a transient error is detected in Pj'

Pj initiates a rollback transaction by rolling back to the last committed checkpoint. The

transaction T(t) is dynamically expanded on a tree of processes. Suppose Pj issues a

56

checkpoint request to Pi for transaction T(r). Ps is the coordinator. Upon the rollback request

("roll_ceq", r. s, linda_seq) from Pi' Pi may have the following cases for all incoming normal

messages thal are sent from P j and have the label lindo_seq:

Case J Pi has DOl received from P j any message with the label undo_seq, or has already

held a u·lock for T(r):

Pi rejects the rollback requesl.

Case 2 All the incoming messages are received afler the slaw oldchkpr,,(i).srare, a ...,; h :::;: 0.:,

oldchkpr,,(i) is the latest checkpoint such thallhis condition holds:

Pi sends ("roll_req", t, S, 11,) to potential participants of T(l). Then Pi rolls back to

oldcll/...prh(i).sralc, and discards oldchkpl}j +1 (i), .. ", nClI'chkpt p(i).

Pi can be a participant of several rollback transactions. Pi releases a u-Iock upon a final

decision from the coordinator. When Pi releases all U-locks, Pi increments IIi by 1.

9. Conclusions

We have modeled concurrent checkpointing and recovery as a concurrent transaction

processing problem. This model unifies the concepls of concurrent checkpoiming and

concurrent lransaction processing. We have shown mal the concurrent checkpoiming and

recovery problem can be solved by enforcing serializabilily on the corresponding transactions.

A locking protocol has been designed to synchronize the transactions. Several optimizations

are discussed. We incorporated these optimizations in the checkpoint/rollback algorithm. The

algorithm executes checkpoint transactions or rollback transaclions concurrently. Rollback

transactions will never be aborted or blocked. A checkpoint transaction may be aborted only

when it interferes with a rollback transaction. Blocking of a rollback transaction due Lo

process failures can always be resolved. Blocking possibility of a checkpoint transaction has

been reduced. Also. it allows normal messages 10 be transmitted in any order. We further

generalize this algorithm when processes keep multiple checkpoints in the stable storage. A

process may need to roll back to any previous checkpoint. The algorithm is more general than

all the previous work.

57

Acknowledgment

The amhors wish to thank Dr. R. KOD and Dr. S. P. Rana for valuable commenls on an

earlier version of this paper.

References

[BARI83]

[BERN79]

[BHAR86]

[BHAR88a]

[BHAR88bl

[BHAR88c]

[CHAN85]

[FISC82]

[GRAY79]

[HAMM80]

G. Barigazzi and L. Slrigini, "Application-transparent setting of recovery
points," in Proc. 13(h IEEE Symp. Fault-Tolerant CompuriJlg, Milano. Haly,

June 1983.

P. A. Bernstein, D. W. Shipman, and W. S. Wong, "Fannal aspects of
serializability in database concurrency control," 1£££ TrailS. Softw. Eng.

SE·5, 3(May 1979), 203-216.

B. Bhargava and Z. Ruan. "Site recovery in distributed database systems
with replicated data," in Pmc. 6ri! IEEE Int. Conf. on Distributed Compllf.

SySI., Cambridge. NlA. May 1986.

B. Bhargava, P. Leu. and S. Lian, "Experimental evaluation of concurrem
checkpoiDling and rollback-recovery algorithms," CSD-TR-790, Dept. of
Computer Sciences, Purdue University, West Lafayette, IN, July 1988.

B. Bhargava and S. Lian, "Independent checkpointmg and concurrent
rollback recovery for disuibmed syslems - An optimistic approach," in Proc.
7th IEEE Symp. 0/1 ReliabiUry in Distribured Systems. Columbus. OH, OCL

1988.

B, Bhargava and J. Riedl, "Implementation of RAID," in Proc. 7th IEEE
Symp. on Reliability in Disrributed Systems, Colwnbus, OH, Oct. 1988.

K. M. Chandy and L. Lamport, "Distributed snapshots: Detennining global
states of distributed systems," ACM Trans. Comput. Syst. 3, 1(Feb. 1985),

63-75.

M. Fischer, N. Griffeth, and N. Lynch, "Global states of a distributed
system," IEEE Trans. Software Ellg. 5E-85, (May 1982), 198-202.

LN. Gray. "Notes on data base operating systems." in Operating systems:
An advanced course. R. Bayer, R. M. Graham, G. Seegmuller, Eds.,

Springer-Verlag, New York, 1979,393-481.

M. Hammer and D. Shipman, "Reliability mechanisms for SDD-l: A system
for distributed databases," ACM Trans. Database Sysr. 5, 4(Dec. 1980),

431-466.

[JEFF82]

[K0087]

[LAMP078]

[LAMPS79I

[LEU88]

[MOSS83]

[RAND75]

[RAND78 I

[SKEE82J

[TAMI84]

[WALT82]

58

D. R. Jefferson and H. A. Sowziral, "Fast concurrent simulation using the
time warp mechanism, Part I: Local comrol," Tech. Report N-1906.AF,
Rand Corporation. Santa Monica. CA. Dec. 1982.

R. KOD and S. Toueg, "Checkpoiming and rollback-recovery for distributed
systems," iEEE TrUIlS. Software Eng. 5£-13. l(Jan. 1987).23-31.

L. Lamport, "Time, clocks and the ordering of cvenls in a distributed
system," Comnll/II. ACM 21, 7(July 1978), 54-70.

B. Lampson and H. Sturgis. "Crash recovery in a distriburcd storage
system," Xerox Palo Alto research Cemer, Tech. Report, April 1979.

P. Leu and B. Bhargava, "Concurrent robust chcckpointing and recovery in
distributed systems," in Prof.'. 4th IEEE [llf. Cmif. Data Engineering, Los
Angeles. CA, Feb. 1988.

J. E. Moss, 'Checkpoint and restart in diSlfibuled transaction systems," in
Pl'oc. Jrd IEEE Symp. 01/ Reliability ill Disfribl/tcd Sofnvare and Database
SYSt., July 19R~.

B. Randell, "System S(IUC!W'e for software fault lolerance," IEEE Trans.
Software Ellg. SE-l, (Jwle 1975),226-232.

B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability issues in computing
system design," Computing Surveys 10. 2(June 1978), 123-165.

D. M. Skeen, "Crash recovery in a distributed database management
system," Ph.D. Thesis, EECS Department. University of California,
Berkeley, 1982.

Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using global
checkpoints," in Proc. 13th IEEE Int. COllf Parallel Processing, Aug. 1984.

B. Waiter, "A robust and efficient protocol for checking the availability of
remote sites," in Proc. 6th Int. Workshop on Distributed Data Management
and Computer Nerworks, 1982.

	Concurrent Checkpointing and Recovery in Distributed Systems
	Report Number:
	

	tmp.1307986960.pdf.P5hRD

