Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1987

Concurrent Checkpointing and Recovery in Distributed Systems

Pei-Jyun Leu

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
87-689

Leu, Pei-Jyun and Bhargava, Bharat, "Concurrent Checkpointing and Recovery in Distributed Systems"
(1987). Department of Computer Science Technical Reports. Paper 598.
https://docs.lib.purdue.edu/cstech/598

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CONCURRENT CHECKPOINTING AND
RECOVERY IN DISTRIBUTED SYSTEMS

Pci-Jyun Len
Bharat Bhargava

CSD-TR-689
June 1987
(Revised October 1988)

Concurrent Checkpointing and Recovery
in Distributed Systems»

Pei-Jyun Leu and Bharat Bhargava
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

ABSTRACT

This paper studys concurrency issues in distributed checkpointing and rollback recovery.
It transforms the concwrent checkpointing and recovery problem to a transaction processing
problem. A new transaction model, which consists of four types of atomic operations and five
types of conflicts, is used for distributed checkpointing and recovery. Each transaction is
execuled by multiple processes in the system. We have shown that the consistency of
rccovery lines and rollback lines established by checkpoint transactions and rollback
transactions can be achieved by enforcing serializability on the corresponding transactions. An
algorithm is designed to expand and execute checkpoint transaclions or roilback transactions
concurrently. The algorithm supports efficient recovery, reduces the response time of
checkpoint tramsactions and rollback Iransactions, and allows normal messages to be
transmitted in any order. We have implemented the algorithm for performance evaluation.
The analysis shows that concurrent execution reduces the response time of checkpoint
transactions and rollback transactions. The CPU cost is in a linear order of the lotal number
of synchronization messages used. For a checkpoint/rollback wransaclion with eight
participating processes, the CPU cost is significantly smaller than the single
checkpoint/rollback cost when the processes are bigger than 12K bytes.
* This work was supported in part by UNISYS, and NASA, and a David Ross fellowship.

** An earkier version of this paper appears in Proc, JEEE d4ih Conf. Data Engineering, Los Angeles, CA,
Feb. 1988,

1. Introduction

Rollback recovery is a techmique to eliminate transient errors in a system. Transient
¢rTors may occur anywhere during the computation, and may not be detected immediately.
The causes of the transient errors can be unstable hardware, software bugs, or illegal
operations. To reduce the rollback distance, the system periodically saves correct system
states in stable storage ([LAMPS79]. When (ransient errors are captured, the system restores
the last checkpointed state, and restarts. Since the computation after the last checkpoint may
have been contaminated by the transient error, there is no need to roll forward after rolling

back.

In a distributed system, where processes do not share memory, and message passiug is
the only way to communicate, a global state must be checkpointed distributively over all
processes. If the processes make checkpoints without synchronization, domino effect
(RAND75, RAND738] may occur. Further, the restoration of a previous global state must also
be synchronized among the processes. Otherwise, cyclic restoration may occur [KOOS7].
This represents a problem that a process afier rolling back receives messages subsequently
undone by the sender. and thus it bas to roll back again. In such a case, the rollback of one
process will cause the rollback of the other, and a cyclic effect can repeat forever. This
problem can be solved as follows. A process after rolling back holds all subsequent incoming
normal messages in a buffer until the other rollback process also finishes its rollback. The
receiver then determines which messages in the buffer have been undone by the sender, and
thus must be discarded. The receiver extracts the remaining messages for its local
computation. We call one instance of the checkpoint algorithm executed on multiple
processes a checkpoint instance. Similarly, we cail one instance of the rollback algorithm
executed on multiple processes a rollback instance.

Distributed checkpointing and rollback recovery have been studied in [BARIS3, KOO87,
TAMI84]. In contrast to transaction checkpointing [FISC82, GRAY79, MOSS83] that deals
with the consistency of database, the problem is mainly concerned with the consistency of the

process states. We can summarize the past research [BARI83, KOO87, TAMIS4) as follows.

Since transient errors may interrupt the execution of one checkpoint instance. 1) participating
processes follow two-phase commit [GRAY79] 10 ensure (he atomicity of one checkpoint
instance; and 2) each participating process keeps both its last checkpoint and the newly made
checkpoint until the checkpoint instance can commit. In [BARIS3, KOQ87], processes (hat
have cxchanged message their last checkpoints need to take checkpoints or roil back together,
The processes participating in a checkpoint instance or a rollback instance constitute a virtual
tree. Two-phase commit is performed hierarchically. The root process serves as the
coordinator. In [TAMI84], all the processes in the system need to lake checkpoints or roll
back together each time. In (BARIS3, KQOB87], different checkpoint instances and rollback
instances can interfere with one another. Interfering instances imply that the corresponding
virtual trees overlap. In [BARIS3], the interference probiem among multiple checkpoint
instances is solved by merging overlapping trees. A new coordinator is selected from among
the roots of the overlapping trees to conduct the execution of the algorithm. In [KOOS87|, the
imterference problem is handled by allowing only one instance to complete but rejecting all
other instances. There are several issues that need further study: concurrent execution of
multiple checkpoint instances and rollback instances; non-FIFQ chanpels that do not require
the order of message send and message receive to be the same; and resiliency against process

failures and communication failures.

We model concurrent checkpointing and recovery as a concurrent transaction processing
problem. Checkpoint/rollback operations of multiple processes are organized as a transaction.
We design an algorithm that executes checkpoint transactions or rollback transactions
concurrently. A rollback transaclion can always commit without being aborted. A checkpoint
transaction is aborted only when it interferes with a rollback transaction. Blocking due to
process failures or network parlitioning is resolved using a termination protocol. Blocking of
a rollback transaction can always be resolved. Blocking possibility of checkpoint transactions

has been reduced. Further, our algorithm allows normal messages to be received in any order.

In section 2, we describe the concurrent checkpointing and recovery problem. We model

this as a concurrent transaction processing problem. We show Ihat the concurrent

checkpointing and recovery problem can be solved by enforcing serializability on the
corresponding transactions. A locking prowcol is designed 0 enforce serializability on
concurrent transactions. Some optimizations in synchronization of the concurrent transactions
are discussed. Section 3 describes the checkpoint/rollback algorithm that uses the locking
protocol 10 synchronize concurrent transactions. The optimizations are also incorporated.
Two Hlustrative examples are given. Section 4 shows the correctness of the algorithm. In
section 5, a comparison with related work is made. Section 6 evaluatcs the performance
experimentally. Section 7 presents solutions to reduce blocking of transactions due to multiple
process [ailures and network partitioning. Section 8 generalizes the algorithm when processcs
keep multiple checkpoints in the stable storage. A process may need to roll -back to any

previous clieckpoint. The last section concludes the paper.

2. Concurrent Checkpointing and Recovery

2.1. The Problem

In a distributed system, processes communicate by exchanging messages. Messages
generated by the sender may trigger some actions at the receiver. The distributed
checkpointing and recovery problem deals with the synchronization of checkpoint operations,
message passing operations, and rollback operations to ensure consistency. In Fig. I,
checkpoints C; and C; compose a recovery line from which the processes restart after rolling
back. Rollback points ¥/; and U; compose a roflback line from which the processes start
rolling back to their last checkpoints. As part of rollback, process P; undoes all actions in the
period from C; to U;. There is no need to redo these actions after restart because they may
have been caused by Lransient errors. If P; has sent some messages in that period, then the
receivers of the messages must also roll back to undo the aclions triggered by the messages.
In general, we cannot assume the sender, after it restaris, will regenerate those outgoing
messages sent after the recovery line, because the sending of the oulgoing messages may have

been caused by a transient error. After a process restarts, it replays all incoming messages

cxcept those sent by the processes that have rolled back. Incoming messages are recorded in a
message log for replaying purposes. An inconsisicnt state is caused when a sender rolls back,
undoing some message send action, but the receiver does not undo the actions triggered by the
message. We call such a message dangling receive. A message is undone if both the message

send and its triggered actions are undone.

P; -
P; >
. : rollback point
: checkpoint
Legend: _ _ .. : message flow

——= time axis

Figure 1. Consistent recovery line and rollback line.

Fig. 2 shows an inconsistent recovery line and an inconsistent rollback line. Processes
£; and P; roll back lo C; and C; respectively. During the rollback, P; undoes the sending of
m. P; is supposed to undo all actions triggered by m. Since P; only rolls back to C;, actions
triggered by m in the period T are not undone. Therefore, C; and C; compose an inconsistent
recovery line. Similarly, rollback points {/; and U; compose an inconsistent rollback line,
because P; rolls back, undoing the sending of /, but P; rolls back before receiving /.
Therefore, actions triggered by ! at P; are not undone. Fig. 1 shows a consistent recovery line
and a consistent rollback line, where neither the sending of a message nor the receiving of the

message is undone by the processes.

In summary, the consistency constraint of a recovery line can be described as follows. If
a message is received before a checkpoint, then it must also be sent before a checkpoint. The
consistency constraint of a rollback line can be described as follows. [f the sender rolis back,

undoing the sending of a message, the receiver of the message must also roll back to undo all

CJ.' U; '
. : roflback point
X : checkpoint
Legend: || . @ message How

—— tlime axis

Figure 2. Inconsistent recovery line and rollback line.

aclions triggered by the message.

2.2. The Approach

In the synchronous approach [BARI83, KOO87, TAMISB4], processes synchronize their
checkpoint operations, message operations, and rollback operations in order to maintain
consistency. We model this problem as a concurrent transaction processing problem. We will
show that the concurrent checkpointing and recovery problem can be solved by enforcing
serializability on concurrent transactions. In this model, we couple each message send with a
message receive as a message transaction. We group all checkpoint operations in an insiance
as a checkpoint transaction, and all rollback operations in an instance as a roilback transaction. -
Based on the Lamport clock [LAMPQ78], there exists a partial order among all operations
taking place in a distributed system. This order represents the ‘‘happen before’” relationships
amonyg the distributed operations. This order is acyclic and transitive. Therefore, we can map
distributed operations to points on a global time axis where all the partial order relationships

among the distributed operations are preserved.

For example, in Fig. 3, we map distributed operations from processes P;, P;, P, to
operalions on a global lime axis. C represents a checkpoint operation. § stands for a message

send. R represents a message receive. The sequence of operations on the global time axis can

messages: m, |

. Vs -
P ? 7 =
recovery S

line ’ :

Y

SC S RC C R

= global time axis

Figure 3. Concurrent checkpoint operations and message operations.

be represented by a log:
L =8§;U1C U85 [kIRL{KIC, [FIC [KIR;3[7].

Subscripts represent iransaction indices. The variable in the brackels represents the index of
the process that executes the operation. This log represents a possible concurrent execution of

the three transactions:

Ty =Cy[i1C [F1C [£]
Ty =8a[jIRa[k]
T3 =383[kR,[F]

The checkpoint transaction T is executed by all processes in the system. These
checkpoints made by the processes compose a recovery line. The message transaction T
sends a message from process £; 10 process P;. The message transaction T3 sends a message
from process P, to process P;. We use o(7T,) to denote the set of indices of the processes that

execute lransaction T,. <p represents the set of indices of all processes in the system. The

three types of transactions are described as follows:
¢ A checkpoint transaction T, is a sequence of operations { C,li] | i e s(T,)=0s 1.
C,li] is a checkpoint operation executed by process P;.

. A roliback wransaction T, is a sequence of operations [U,[i] i€ 6(T,)=ay). U,[i]
is a rollback operation executed by process P;.

* A message lransaction T, is a sequence of the two operations { S,[i]. R,[/] !,
{ #J. i, j € 6g. This meuns the message is sent from process £; to process P

For simplicity, we may omit the transaction indices of operations of different types in the
discussion. Each checkpoint transaction establishes a recovery line. Each rollback iransaction
establishes a rollback line. The consistency of recovery lines and rollback lines can be assured
by enforcing serializability on the depcndency order among concurrent lransactions. The
dependency order among (he concurrent transactions is determined by the order of their
conflicting operations. Two operations conflict if they are not commutable in a log. The log

may produce a different result if we switch two conflicting operations. For example, in the log
L={x=x+1)}x:=x*2},
Lhe two atomic operations fincrement x by 1} and {multiply x by 2} are not commutable,

Definition 1. Let O,[i] and O,[j] be operations of two transactions T, and T4

respectively. O, precedes Oy in a log. The two operations conflict iff
i} they are executed by the same process, i.e., i = j, and .

ii) [O,,O0p)=x, wheref is a binary function defined in Table 1.

We next define the dependency order among concurrent transactions. We design a

locking protocol to enforce serializability. Several optimizations are discussed.
Definition 2. Transactions T, and T}, are dependent {denoted by T, — T,) in a log if

1) some operation O, of T, precedes and conflicts with some operation O, of Ty,

a+#bh,or

Table 1. Operation dependency table.

f C S R U
C { X P
S x \ X
R X :

U X X * ,

C: checkpoint operation

S: message send operation

R: message receive operation

U: rollback cperation

*: {U, R) = x if the sending of the message
is undone, and otherwise.

ity there exists T; such that T, — T; and T} — T,

This dependency relation is transilive, but may not be acyclic in concurrent transaction

processing.

Definition 3. A log is D-serializable (dependency serializable) iff its dependency
relation {(—} is acyclic [BERN79].

Theorem 1. Let L be a log of checkpoint transactions, message lransactions, and
rollback transactions. If L is D-serializable, then the recovery line ecstablished by each
checkpoint transaction is consistenf, and the rollback line established by each rollback

transaction is consistent.

Proof: The proof is by contradiction. Since the dependency between any checkpoint
transaction and any rollback transaction is acyclic, the recovery line and rollback line

established by the two transactions do not intersect. We show thal

iy If the recovery line established by a checkpoint transaction 7 is inconsistent, then L is
not D-senializable.

This occurs when there exists a message ransaction M =S[i]R[;] such that Cli]

precedes §[i], and R[] precedes C[j) in the log from Fig. 2. Then we have T — M

and M — T [rom Definitions 1 and 2. Therefore, L. is not D-serializable.

i) If the rollback line established by a rollback transaction T is inconsistent, then Z is not
D-serializable.
This occurs when there exists a message transaction M =S§[jIR[i] such that U/[{]
precedes R [i], and §[j] precedes U[/] in the log from Fig. 2. Then we have T — M

and M - T from Definitions 1 and 2. Therefore, L. is not D-scrializable,
From i) and ii), the theorem follows. 5

We design a locking protocol to ensure the serializability of transactions. Each
checkpoint transaction and rollback wansaction follows a two-phase locking protocol
[ESWAT76]. Each message transaction follows a simple locking protocol, where a lock is
oblained immediately before an operation is cxecuted, and is released immediately after the
operation is executed. A (ransaction issues operations to multiple processes. These processes
execute the operations on behalf of the wransaction. In order to synchronize checkpoint
operations, rollback operalions, message sends, and mnessage receives, a process must also
obiain a lock on behalf of the transaction before executing its operation. If a lock cannot be
granted, the operation is dclayed or aborted. In Fig. 4, we show how {ransactions follow the
locking protocol. T, is a checkpoinl transaction. M is a message transaction. T, is a
rollback transaction. A geometric description of Lheir locking sequences is shown in the lower
part of the picture. Each rising edge represents a lock action. Each falling edge represents an
uniock action. The corresponding recovery line and rollback line established by the

transactions are shown in the upper part of the picture.

We define four types of locks: c-lock, s-lock, r-lock, and u-lock. c-locks are for
checkpoint operations. s-locks are for message send operations. r-locks are for message
receive operations. u-locks are for rollback operations. Two locks are compatible iff g(/,, {;)

* , where g is a binary function defined in Table 2. If a process already holds a lock /|, it

cannot obtain any lock /1, where g/ |, {3) = X. We next formalize the locking protocol.

10

P;

£

T

M J ..

SJ] R[]
f
r2 I Y
Ulil any

Figure 4. Concurrent iransactions and their locking sequences.

Table 2. Lock compalibility table,

g c S r u
c D P4 x
s X X X X
r X X x X
u x s X o

The Locking Pratocol

11

For a checkpoint transaction 7= -+ C[i]--- . where C[i] is any checkpoint operation of T
- T issues C [{] 10 cause process £; [0 take an uncommitted checkpoint.
- Before P; takes a checkpoint, ; must obtain a ¢-lock.

- T stants to commil checkpoinl operations only after all the checkpoint operations have

been executed.

- £; does not release the c-lock until it commits the checkpoint, and discards its previously

committed checkpoint.

- For T 10 complele successfuily, all processes must hive committed their checkpoints, and

released all ¢-locks.
For a message transaction M =S [i |[R[f]:
- Process P; executes § [/] by sending a message.

- Before P; sends a message, P; must oblain an S-lock. P; releases the lock immediately

after sending the message.
- Process P; executes R [f] by receiving a message.

- Before P; receives a message, P; must oblain a r-lock. P; releases the lock immediately

after receiving the message
For a rollback transaction T = --- U[i]- - , where U/ [i] is any rollback operation of T:

- T issues U [i] 1o cause process P; to roll back to its last checkpoint. If P; has sent some
message to P; since its last checkpoint, P; informs P; to ignore the message when P;

receives the message.
- Before P; rolls back, P; must obtain a u-lock.

- T starts 10 commit rollback operations only after all the roliback operations have been

executed.
- P; does not release the u-lock until it commits the rollback operation.

- For T to complete successfully, all processes must have rolled back Lo their last

committed checkpoinls, and released all u-locks.

12

Theorem 2. The locking protocol assures the scrializability of concurrent checkpoint

transactions, and message transactions, and rollback transactions.

Proof;

i)

1ii)

The dependency order between any checkpoint transaction and any rollback transaction

is acyclic, because they follow a two-phase locking protocol.

Suppose the dependency between a checkpoint transaction T and a message transaction
M =S[i]R][j] is cyclic. Then we have C[i] precedes S[/], and R[] precedes C [f] in
the log from Fig. 2. Since §({i] precedes R (], S [i] must appear betwcen C{i] and C (7]
in the log. Since 7 follows a two-phase locking protocol, P; holds a c-lock for the
transaction T in the periqd from C{i] to C[j]|. From Table 2, g(c, s) = x. Therefore,
P; cannot obtain a s-lock, and cannot cxecute S[i] in the period from Cii} to C[/], a

contradiction.

Supposc the dependency belwcen a rollback iransaction T and a message (ransaction
M =S[jIR[i) is cyclic. Then we have U[i] precedes R[/], and S [f] precedes U[f] in
the log from Fig. 2. Since U[i] precedes R[i] in the log, P; cannot execute R [{] while
P; holds 2 u-lock for the transaction T. Suppose P; executes R (i] after P; releases the
lock. All rollback operations of T must have been executed. Therefore, process £ ; must

have executed U [j], and informed process P; not to receive the message, a contradictiony

We use four types of operations and five types of conflicts to model the concurrent

checkpointing and recovery problem. We have shown that the concurrent checkpointing and

recovery problem can be solved by enforcing serializability on the corresponding transactions.

Deadlock Resolution

Deadlocks may occur between a checkpoint transaction and a rollback transaction. There

are (wo approaches 1o resolve deadlocks:

)

Deadlock detection:

Once a deadlock is detected, we choose a victim transaction, and abori that transaction.,

13

2) Deadlock avoidance:
Ouce a ¢-lock of a checkpoint transaction or a u-lock of a rollback rransaction carnnot be

granted, we abort the checkpoint transaction or the rollback transaction respectively.

2.3. Optimizations

Optimization |- Share Checkpoints and Rollback Poiits

In the previous locking protocol, there can be multiple checkpoint operations and
rollback operations issued to process P;. P; may have to keep more (han one uncommitted
checkpoint in the stable storage. Also P; needs to roll back once for each rollback operation.
In this section, we study an optimization in which P; takes one uncommitted checkpoint for all

concurrent checkpoint transactions, and rolls back once for all concurrent rollback transactions.

Let
L= Cali) - Gyli] -

Suppose the log L follows the locking protocol. C,[i] and C,[i] are checkpoint operations of

transactions T, and T}, respectively.

Theorem 3. If P; holds a c-lock during the period from C.[i] to C,[i], then the
recovery line established by the operations | C,[i] } U | Coljl1 je o(Ty), j#i] is also
consistent. That is, the dependency order between the virtual transaction To={C,li] } v {
Colj11j € 0@4), j #i }, and any message transaclion and any roilback transaction in the log
is acyclic,

Proof: The proof is by conwadiction. From Theorem 2, the dependency between the
checkpoint transaction T}, and any message transaction M = § i |R [v] is acyclic, when w = §
and v # i. Therefore, the dependency between Ty and a message transaction M is cyclic only
when M =S[i]R[jl,or M =S[j]R[i].
1} Suppose the dependency between Ty and a message (ransaction M = § [{IR[J] is cyclic,
then

L= Clil- STl RE1- - Colj) .

14

Since P; holds a ¢-lock during the period from Cali] 1o Cplil, and T, follows a iwo-
phase locking protocol, P; holds a c-lock also during the period from C,[i 1 to Cpi/l.
Therefore, P; cannot obtain an s-lock, and cannot execute S [/ | during the period from

Ca(i]1to Cpli], a contradiction.

Suppose the dependency between Ty and 2 message transaction M = § /1R[] is cyclic,
then
L= Gl SUL - REL- Gl Gyli] -+ .

Then the dependency between Ty, and M is cyclic, a contradiction.

The dependency between the checkpoint transaction 7, and any rollback transaction T, is

acyclic. Thercfore, the order between Colw] and U,fw] must be the same as the order

between C,iv] and U,{v] in the log for any w, v = i. The dependency between Ty and a

roliback transaction T, is cyclic, only when there exists J such that the order between C,[i|

and U,[{] is not the same as the order between C,[/] and U.[7]. We discuss the possible

cases from iii} to vi).

iii)

iv)

U.{i] and U,[/] appear between C,{i] and Cy[§]:
L= Culil = Ui} Uil Coli]"- .
or
L= Coli] - Uj)--- Uli]- -~ Cyfj] -~ .
Since P; holds a c-lock during the period from Calil to Culi], and T, follows a two-
phase locking protocol, P; holds a c-lock aiso during the period from C,[i] to Cpf].
Therefore, P; cannot obtain a u-lock for T,, and cannot execule U.[i] during the period
from C,[i] to Cp[f], a contradiction.
U.[f]and U,[f] appear between C,[j] and C,[i]:
L= GUl - Uelil--- Uil Calil- -+ Cyli] -+~
or
L= Gl - Uil Uli] = Goli)-+- Gyli} -+

Then the dependency between T, and T, is cyclic, a contradiction.

15

v) Cgli] and C,[/] appear between U/, [i] and Uil
Since P; holds a u-lock for T, during the period from U,[i] to U_[J], P; cannot execute
C,[i] during that period, a contradiction.

vi} C,[i] and Cp[/] appear between I/, [/1and U,[i]:
Since £; holds a u-lock for 7. during the period from U,[f] to U,.[i], P; cannot execute

C,[/] during that period, a contradiction. o
Let
L= Uil - Upli]- .

Suppose the log L follows the locking protocol. U,[i] and U,[i] are rollback operations of

transactions T, and T, respectively.

Theorem 4. If P; holds a u-lock during the period from U,[i] to U4[i], then the
rollback line established by the operations { U,[f]) u { Uplil!je o(Ty), j=i} is also
consistent. That is, the dependency order between the virtual transaction To = { U,[f]1 } U {
Uplj11Jj € o(Ty), j # i}, and any message wransaction and any rollback transaction in the log
is acyclic
Proof. The proof is by contradiction. The dependency between the rollback transaction Ty
and any message transactlion M = S[w]R[v] is acyclic, when w #{ and v # |, Therefore, the
dependency between T and a message transaction M is cyclic only when M = S [iJR /], or
M =S[fIR[i].

i) Suppose the dependency between T, and a message transaction M = S [{]R [j] is cyclic,
then
L= S[i) - Uil-* Upljl--- R[j]--- .
or
L= SUL - Uplil Ugli) - RET- -

§[{] is undone by U,[i]. We show that R [/] is not executed. R[] cannot be executed

while P; holds a u-lock for T,. Suppose R[] is executed after P ; Teleases the lock. All

rollback operations of T, must have been executed. Process P; must have executed

ii}

16

U,[i], and informed £; not to receive the message, a contradiction.

Suppose the dependency between T, and a message transaction M = S []R [i] is cyclic,
then

L= SUT - Ulid--- Upl) - RUT - Uyl
or

L= SUL Uil Ulil - RUT-- Upli] - .
Since £; holds a u-lock during the period from U, (i] to Uy[f], £, cannot obtain a r-lock,
and cannot cxccule R[i] during the period from U,[i] to U,[f], a contradiction. Note
that R [i] cannot appear after U,[i]. Otherwise, the dependency between T, and M is
cyclic.

The dependency between the rollback transaction 7, and any checkpoint transaction T, is

acyclic. Therefore, the order between Uy[w)] and C,[w] must be the same as the order

berween U,[v] and C,[v] in the log for any w, v #i. The dependency between To and a

checkpoint transaction T, is cyclic, only when there exists j such that the order between U, [/]

and C.{i] is not the same order between U, [j] and C.[j]. We discuss the possible cases from

iii) to vi).

i)

iv)

C.[i] and C.[f] appear between U, [i] and U,[j]:

L= Uli] Clil CLT Upli)- -+
or

L= Uli]- - Clj1--- Clil--- Uply1--- .
Since P; holds a u-lock during the period from U,[i] to U,[i], and T}, follows a two-
phase locking protocol, P; holds a u-lock also during the period from U/,[] to U,l71.
Therefore, P; cannot obtain a ¢-lock for T,, and cannot execute C,[i) during the period
from U,[i] to U,[j], a contradiction.
C.[i]1and C,[f] appear between Uy[/] and U,[{]:

L= Uyl Cli)- o~ Gl Ualil -+ Upli] -+

or

L= ...Ub[]']... C:U]--- CE[EJ"' Ua[.f.]"' Ub[j'].-. .

17

Then the dependency beiween T), and T, is cyclic, a contradiction.
v) U,li] and U,1j] appear between C [ij and C_[f]:
Since P; holds a c-lock for 7, during the period from C.,[i] o C,[f], P; cannol execute
U, [i] during that period, 2 contradiction.
vi) Ugli] and U,[j] appear between C,[j] and C,[i]:
Since P; holds a ¢-lock for T, during the period from C.[j] o C.[i], P; cannol execute

Uy (J] during that period, a contradiclion. O

The virtual transaction T is a mixture of transactions 7, and T,,. However, we can view
T as an ordinary transaction following a two-phase locking protocol. The locking sequence
of Ty is the same as that of Ty, except for C,[i] (or U,[i]). To obtains a c-lock (or a u-lock)
for C,[i] (or tor &, [i§) when T, obiains that lock. T, releases that lock when T, releases a
¢-lock (or a u-lock) for Cp[i] (or for {/,[i]). Therefore, theorems 3 and 4 can be recursively
applied. Transaction T, or T, in the log L can be either an ordinary transaction or a mixed
ransaction containing operations drawn from other transactions. Based on the thieorems, a
checkpoint transaction T = -+ C[i] -+ can be implemented more efficiently. When T
issues C[i] to process P;, P; ignores C[f]) if P; already holds a c-lock on behalf of another
checkpoint transaction. Similarly when a rollback wransaction issues U [i] to process P;, P;
ignores U[i] if P; already holds a u-lock on behalf of another rollback ransaction. However,
P; siill needs Lo obtain a Iock on behalf of 7. Through this oplimizalion, P; keeps at most one
uncommitted checkpoint in the stable storage. Also P; rolls back once when there are

concurrent rollback transactions issuing rollback operations to P;.

Optimizarion 2: Establish Partial Recovery Lines and Rollback Lines

A checkpoint transaction or a rellback transaction does not have to issue operations to all
processes in the system. Then the recovery line established by the checkpoint transaction {
Clillie @, Q cog | is called a partial recovery line. The rollback line established by the

rollback transaction [U [i]li € Q, @ € Gg } is called a partial rollback line.

18

Definition 4. Let L be a log of checkpoint transactions, message lransactions, and
rollback transactions. Each parlial recovery line and partial rollback line established by these
transactions is consistent if L is D-serializable, and therc is no dangling receive message in the

augmented log L =L Ty, for any rollback transaction Te={ Udillie o(Tpycog).

This means execution of an arbitrary rollback transaclion afier all other (ransactions have

lerminated will not produce dangling receive messages.

Oprimization 3 Never Abort @ Rollback Transaction

If rollback transactions have a low abort rate, then the system can recover from failure
faster. In the earlier discussion, if a rollback transaction is locked out by a checkpoint
. transaction, the rollback transaction is aborted or blocked. Instead, we myy want (o abort the
checkpoint transaction if we are sure the checkpoint transaction has not committed any
checkpoint operation. We can enforce some conditions in concurrent (ransaction processing

such that a rollback transaction can always commit without betng aborted.

In the next section, we have incorporated these optimizations into the algorithm. A
checkpoint transaction or a rollback transaction is initiated by a coordinator. The Lransaction
is dynamically expanded on a tree of processes. The partial recovery lines and partial rollback
lines established by these transactions are consistent. A process can be a participant of several
concurrent transactions. In such a case, the process makes only one checkpoint upon the first
checkpoint request, or rolls back only once upon the first rollback request. Whenever a
rollback transaction is locked out by a checkpoint transaction, the checkpoint transaction has
nol commilted ary checkpoint, and can always be aborted. Transactions follow the locking
protocol specified earlier. We use a more restrictive lock compatibility table shown in Table 3
where g(c, r) and g(u, s) have been changed 10 ‘‘x”. This ensures that a checkpoint

transaction can always be aborted when it interferes with a rollback transaction.

19

Table 3. New Lock compatibility table.

g c 5 r u
c o X ® X
5 x x X g
r x x X X
u x X X o

3. The Checkpoint and Roliback Recovery Algorithm

In the algorithm, there are iwo types of messages: normal messages and control
messages. Messages used in the execution of checkpoint and rollback transactions are called
control messages. All ouiers are called normal messages. We do not require that messages be
received in the order in which they are sent. Either type of messages can get lost during
transmission. Retransmission of lost messages is handled by some end-to-end communication
protocols. Local checkpoints and rollback points are numbered sequentially. Suppose [#,
n+1] is the interval bounded by two adjacent checkpoints andfor rollback poims. Then
outgoing normal messages sent within the interval [n, n+1] are attached the label n. For
example, in Fig, 5, the labels of the messages m, /, x, y, zare 1, 2, 3, 3 and 4 respectively.

We use seqof (C;) to denote the sequence number of a checkpoint C; of ;.

X : checkpoint
* : rollback point

a4 4 4 Kl o
p X o _e % ﬁ-_
1 2 3 4

Figure 5. Numbering checkpoints and roilback points.

In the algorithm, each process saves at most (wo youngest checkpoints (called oldchipr

and newchkpt) in stable storage. newchkpt is an uncommitted checkpoint. oldchkpr represents

20

the fatest version of the committed checkpoint. Each participating process of a checkpoint
fransaction makes a new uncommitted checkpoint newchipr. If the checkpoint transaction can
commit, oidchkpr is updated with the content in newchkpr, and newchkpr is discarded. If P

rolls back o oldchipr, newchipe (if exists) will be discarded.

Koo [KOOB87] prescnts a checkpoint/roflback algorithm, in which each process can
initiate an instance of the algorithm. The number of participants in the synchronization
instance is minimal. We cxtend the idea such that multiple instances can be run concurrently,
Each instance is modeled as a transaction. Checkpoint transactions and rollback transactions
are dynamically expanded from process 1o process. A transaction does not necessarily include
all processes in the system. We describe how checkpoint transactions and rollback
transaclions are éxpanded concurtently. The expansion order is determined by some
dependency relationships among the processes. We define (he dependencies of processes as

follows.

Definition 3. P, — P; iff there exists a normal message m from P; 0 P;, and m is sent
after the latest committed checkpoint of P;, and is received after the latest committed

checkpoint of P;, and m is not undone by any rollback transactions.

We can describe the dependency telatonships by a digraph where nodes represent
processes, and edges represent dependencies among processes. Edges can be dynamically
added or deleted due to message passing, checkpoint operations, or rollback operalions. In

general, the graph may be cyclic, and may not be connected.

IfP; — P;, and P 7 Is a participating process of a checkpoint transaction, £; must also be
a participating process of that transaction. On the other hand, if P; - P;, and P; is a
participating process of a rollback transaclion, P; must also be a participating process of that
transaction. According to this rule, a process can participate in more than one transaction.

Initially, a transaction is initiated by a coordinator, and then expanded (o other processes,

Edges can be added 1o a node dynamically because processes exchange messages, which

creates new dependencies. Checkpoint transactions and rollback transactions follow the two-

21

phase tocking protocol specified earlier. Once a node holds a lock for a transaction, no edges
can be added to the node untit the trausaclion terminates. This is because the node process
does not send or reccive normal messages until the transaction terminates. A node will be
lraversed at most once when a transaction is being expanded. Therefore, the expansion of a
transaction will eventually terminate. The dependency relationship is transitive. We define

the transitive relation as follows.

Definition 6. P; =" P; iff P; - P; or there cxists P, such that P; — P, and
Py -t Py

A checkpoint transaction or a rollback transaction initiated by the coordinator P; is
uniquely identified by the timestamp 1, r = (7, initiation_time). We use T(r) 1o denote the

transaction with timestamp ¢. Each control message sent for this transaction is attached the

limestamp r by the sender.

In the mext three subsections, we describe the algorithm that expands checkpoint

transactions and rollback transactions on a tree of processes.

3.1. Expansion of a Checkpoint Transaction

A checkpoint transaction T (r) does not exist in priori. First, a process identifies itself as
the coordinator of T(¢) (i.e.. makes a checkpoinl autonomously), and then cxpands the
transaction to some other processes (i.e., issues checkpoint requests to them). The checkpoint

transaction is expanded on a tree of processes. The expansion precedes as follows.

When Pj becomes a participant or the coordinator of transaction T (s}, Pj makes an
uncommitted checkpoint C;. Let max;; be the maximum label of the normal messages sent
from P; and received within the interval [segof (C}) - L, seqof {C)). max;; is set o zero if P;
receives no normal messages from P; within that interval. P j hen regards P; for which max;;
is not zero as a potential participant of the transaction, and sends P; the checkpoint request
message (*‘chkpt_req™’, f, 5, max;). s is the index of the coordinator. Suppose when P;

receives the checkpoint request, the latest committed checkpoint of P; is C;. Upon the

22

checkpoint request, if seqof (C;) € max;;, and £; has not been a participant or the coordinator

of T(r), and has not undone the the sending of the message with Lhe label max;;, then P;

ifr
becomes a new participant of T (r}, and cxecutes a checkpoint operation. Otherwise, P; rejects

P;’s request,

The checkpoint Iransaction can commit only after all participants have execuied
checkpoint operations. Each participant makes an uncommitted checkpoint, and then sends the
coordinator 2 ‘‘chkpt_yes'' response. The participant may expand the transaction to some
other processes. The coordinator, after receiving the responses from all participants, sends a
‘‘commil’’ message to every participant. Upon the message, each participant commits its
uncommitted checkpoint accordingly. A participant may inform the coordinator to abort the
checkpoint transaction. In such a case, the coordinator sends an *‘abort’” message [0 every

participant,

3.2. Expansion of a Rollback Transaction

A rollback transaction T(r) is also dynamically expanded. First, a process identifies
itself as the coordinator of T(r) (ie., rolls back to its last committed checkpoint
autonomously}), and then expands the transaction to some other processes (i.e., issues rollback
requests to them). The rollback transaction is expanded on a tree of processes. The expansion

precedes as follows.

When P; becomes a participant or the coordinator of wansaction 7 (r), P; rolls back to its
last committed checkpoint C;. If P; has ever sent any normal message (o P; since C; was
made, then P; regards P; as a porential participant of the ransaction, and sends P; the rollback
request message (“‘roll_req’, r, 5, undo_seq). s is the index of the coordinator. undo seq
represents the label of the normal messages (o be undone. Upon Lhe rollback request, if P; has
received from P; any message m with the label undo_dv, and has not been a participant or the
coordinator of T(r), then P,- becomes a new participant of T(r), and executes a rollback
operation. Otherwise, P; rejects P;'s request. Since the rollback request may reach P; faster

than some normal messages to P; with the label undo_seq, P; must also inform P; to ignore

23

such incoming normal messages later.

The rollback transaclion terminates only afier all participants have executed roilback
operations. Each participant sends the coordinator a *"roll_yes’’ response, and rolls back (o its
last commilted checkpoint. The participant may expand the transaction lo some other
processes. The coordinator, after recciving the responses from all participants, sends a
“‘roll_finish’' message to every parlicipant. Upon this message, each participant resumes
sending and receiving normal mcessages. A rollback (ransaction will never be aborted.
Whenever a checkpoint transaction interferes with a rollback transaction, the checkpoint

transaction has not committed any checkpoint, and will always be aboried.

3.3. The Algorithm

The Conventions for the Algorithm

Each process £; has a daemon process to execute the algorithm. The algorithm on cach
daemon process contains eight major procedures, four for checkpeint and four for roilback. A
procedure is invoked by Lhe daemon process if its corresponding invocation condilion is true.
The execution of each procedure is exclusive. After a procedure is executed, £; can resume all
its local computation. bl, b2,..., b8 represent the invocation conditions for the eight
procedures respectively. For efficiency purposes, procedures roll initiation{() and
roll_request_propagation() have higher priority over the other six procedures. All the other six
procedures have the same priority. If more than one invocation condition are true, procedures
with higher priority must be invoked first. Procedures with the same priority can be invoked

in an arbitrary order. The following conventions are used in the algorithm:

1) n; keeps track of the sequence numbers of the checkpoints and/or rollback points in P;.
Each time P; commits a new checkpoint or rolls back, »; is incremented by one. »n; is
initialized o zero. Each outgoing normal message of P; is attached the current value of

n; as a label.

3

4)

3)

6)

7)

8)

24

Control messages sent for transaction T (r) arc attached the timestamp r. For example:
send (msg_oype, 1, -)10 Py;

or
receive (msg_rype, f, *--) from Py;

indicates the control message is sent 1o (or received from} P, for the transaction T(¢). Tt
should be noted that messages are passed out by value. Thus send(msg rype, £, =+)
means the content of a local variable r is copied into the second field of the outgoing
message. receive(msg type, r, ---) means the second ficld of the incoming message is
copied inlto a local variable r. For simplicity, we leave out the ideatity of the sender from

the message since il is clear from the context.

chkpt child(i) records the indiccs of processes from which P; has received normal
messages during the latest period when both chkpr lock ser(i) and roll_lock_ser(i}) are
empty.

roll_child(i) records the indices of processes to which P; has sent normal messages

during the latest period when both chkpr_lock_set(i) and roll_lock_set (i) are empty.

chkpr_participant (i) records the indices of participants of the checkpoint iransaction

initiated by the coordinator P;.

roll_participant (i) records the indices of participants of the rollback lransaction initiated

by the coordinator P;.

A process may execute checkpoint operations for several concurrent checkpoint
transactions. chkpr_lock_ser(i) records the the umestamps of the checkpoint transactions
for which P; holds ¢-locks. P; commits newchkps(i) if at least one of the transactions
can commit. While P; holds c-locks, P; does not send or receive normal messages. The

set is inilialized to an empty sel.

P; may execute rollback operations for several concurrent rollback (ransactions.
roll_lock ser(i) records the timestamps of the rollback transactions for which P; holds

u-locks. While P; holds u-lecks, P; does not send or receive normal messages, The set

25

is initialized 1o an empty sct.

A process can initiate a checkpoint transaction by calling chkpt_initiation(), or initiate a
rollback transaction by calling roll_initiation(). The transaction will be expanded on a tree of
processes. The transactions follow the locking protocol specified earlier. Processes obtain c-
locks and u-locks on behalf of transaclions. P; does not send or receive normal messages if
either chkpt_lock_set (i) or roll lock_ser(i) is not empty. This causes subsequent incoming
messages to be held in the channels. If an incoming message is undon by a sender, P; must

discard that message held in the channel.

Checkpoints and rollback points are shared among concurrent transactions. Therefore, P;
makes one checkpoint upon the first checkpoint request. Also P; rolls back once upon the first

rollback request.

26

The Algorithm
Now we outline the algorithm. P; runs in [oreground while ils daemon sleeps in
background. Control is switched 10 the daemon when some invocation condition becomes

Lrue.

Daemon process for checkpoint and rollback in £;:
loop

sleep until boolean condition bl or b2 or --- or bS is truc;
case

b1 : chkpt_initiation();
b2 : chkpt_request_propagation();
b3 : chkpt_response _collection();
b4 : chkpt_commit/abort();
b5 : roll_initiation();
b6 : roll_request_propagation();
b7 : roll_response _collection();
b8 : roll_finish{),

endcase;

endlcop;

The following variables are shared among these procedures: n;, oldchkpr (i), newchkpr (i),
chkpt_child (i), roll_child (i), chkpt_participant (i), and rofl_participant (i), chkpt lock set(i),
rofl_lock_ser(i). They are initialized to 0, nil, nil, &, &G, D, ©, B, and & respectively. nil
and & are system reserved symbols. They represent a null value and an empty set
respectively. newchipt (i).stare represents a local state of P;, and newchkpr(i).seq is the
sequence number of the checkpoint. bl, or b5 is true when some guarding variables contain
cerlain values. After P; makes a new checkpoint, its checkpoint timer is reset to its initial
value. b2, b3, b4, b6, b7, or b8 is true when some conuol messages have been received.
After the corresponding procedure is invoked, the received control messages are consumed,
which nullifies the associaled invocation condition. Next, we detail each procedure and ils

corresponding invocation condition.

27

Condition bl: the checkpoint timer of P; timeout and chkpr participant(iy=© and
rofl_lock ser(iy=0
procedure chkpt_initiation();
begin
t = (i, initiation_time},
newchkpe (i).state -= current state of P;;
newchipt (iy.seq =u; + 1;
if chkpt_child (i) # & then
chkpt_lock_set(iy:= [r |;
chkpt_participans (1} 1= chkpt_child (i),
send (*‘chkpl_req’, s, i, maxy) 1o Py, for all k e chikpr_child (i);

else
oldchipt (i) := newchipe (i;
newchkpr (i) 1= nif;
H,=m+1;

endif;

end chkpt_initiation,;

Comments: initiation_time represents the real time or the logical time when the procedure
starts. P; and its daemon precess for checkpoint and rollback have separate slate information.
newchkpt (i).state saves only the state of P;. max,, is the maximum label of the messages sent
from P, and received within the inlerval [newchkpr(i).seq =1, newchkpt(i}).seq)].
k e chkpt child(f) if max,; #0. The transaction is expanded to processes P, for all
k € chkpr_child (i). The assignment statement oldchkpr (i) == newchkpr(i} copies
newchkpt (i).state (0 oldchipt (i).state and newchkpt (i).seq to oldchkpt (i).seq. The assignment
newchipr (i) == nil removes newchipr (i }.stare and newchkpt(i).seq from the stable storage.
For efficient implementation, we can copy the address pointer of newchipr(i) to that of

oldchkpr (i) without block transfer.

28

Condition b2: P; receives (*‘chkpt_req’’, r, 5, max;;} from P;
procedure chkpi_rcquest_propagation();
begin
if P; has rolled back and undone the sending of the message with the label max;; then
send (“*chkpt_abort™, f} 10 P;
return;
endif’;
if ¢ € chipt_lock_set(i} or max;; < oldchkpt.seq then
sead (‘‘chkpt_no’’,r) 1o P;
returan;
endif;
atomic_send (*‘chkpt_yes'’, t, chkpt_child (i})) to P,;
if chkpr lock set(i) =43 then
/¥ make an uncommitted checkpoint. */
newchkpr (i }.srate ;= current state of 7;;
newchkpe (i).seq = n; + 1,
endif;
send (‘‘chkpt_req’’, s, 5, maxy) 0 Py, for all k € chkpr_child (i);
/* obtain a c-lock for T'(r). */
chipt_lock_ser(i) := chikpt_lock set(iy\y [t };

end chkpt_request_propagation;

Comments: £ is the coordinator of the checkpoint transaction T (). Upon the checkpoint

request, if P; has rolled back and undone the message with the label max;;, the checkpoint

if»
transaction must be aborted. Thus P; replys with the message (*‘chkpt_abort™’, r). If P; has
already held a c-lock for T (r), or the last commilted checkpoint of P; and the uncommitted
checkpoint of P; already compose a consistent recovery line, P; replys to the coordinator with
the message (' ‘chkpt_no’’, r). In all other cases, P; replys with the message (‘‘chkpl_yes”, ¢,
chkpt_child (i)). We require the sending and receiving of this message to be atomic. This
ensures the coordinator recognizes potential participants before they reply. P; may be a
participant of several concurrent transactions. In such a case, P; makes an uncommilted

checkpoint only upon the first checkpoint request, but not upon subsequent checkpoini

requests.

Condition b3:
case 1) P; receives (*‘chkpt_yes™’, 1, chkpr_child (k}) from Py or
case 2) P; receives (*‘chkpt_no’’, 1) from P or
case 3) P; receives (‘‘chkpt_abort™, ¢) from £,
procedure chkpl_response_collection();
begin
if case 1 then
chkpr_pariicipant (i) 1= chkpt_participant (i) + chkpt_child (k)
mark a single k in chkpr participant (i;
else /* case2orcase3 ¥/
delete a & which is unmarked from chkpr participanz (i),
endif’;
if case 3 then
ABORT = true;

endif;
if all members in chkpe_parricipant (i) have been marked then

if ABORT then

send (*‘abort’’, £) to P; and P, for all k in chkpt participant (i,
else

send (“*‘commit’’, ¢) to P; and Py for all k in chkpt_participant (i),

endif;
chkpt_participant (i) :=J;
ABOQRT = false;

endif;
end chkpt_response_collection;

Comments: P; will execute this procedure only if P; is the coordinator of the checkpoint
tramsaction T(r). chkp:t_participans (i) records all potential participants of the transaction. An
element & is marked in chkpr_participant (i} if P, is a true participant. An element k is deleted
from chipt_participant (i) if P, rejects the rollback request. In case 1, P, agrees to be a
participant of the checkpoint transaction, and informs the coordinator of more potential
participants recorded in the set chkpr_child (k). The '‘+*’ operator unions the (wo sets without

climinaling duplicate elements. In case 2, P, has already been a participant or the coordinator

30

of the checkpoinl transaction, and thus rejects the checkpoint request. In case 3, P requests
the coordinator to abort the whole checkpoint transaction. Elements in chkpr_participanr (i)
will all be marked after every process that has received a checkpoint request has replied to the
coordinator. P; sends (‘‘abort’’, f) to every participant {(including itself) if any of the
participants cannot make a new checkpoint. Otherwise, P; sends (*‘commit’’, ¢} lo every

participant (including itself). The flag ABORT is inilalized to false.

Condition b4:

case 1) £; receives (‘‘commil’’, ¢) from P,

case 2) P; receives (‘‘abort’’, r) from P, and r € chkpt lock_ser(i)
procedure chkpt_commit/abort(};
begin

chikpt lock ser(i) := chkpr _lock set(i)—{ r };

if case 1 then

[* commit the checkpoint. */

oldchkpt (i) := newchkpr (i),

endif;
if chkpt lock _ser(i) = & then
newchkpt (i) 1= nil;
H=ap 1
endif;
end chkpt_commit/abort;

Comments: P, is the coordinator of the checkpoint transaction with timestamp ¢. P; may be a
participant of several concurrent checkpoint transactions. In such a case, newchipt(i) is
shared among these checkpoint transactions. chkpt lock_set(i) records the limestamps of
these transactions. P; releases a c-lock upon a commit or an abort decision from the
coordinator. P; commits the new checkpoint if at least one of the coordinators can commit.

Otherwise, P; aborts the new checkpoint.

31

Condition b3: a transient error is detected in P;
procedure roll_initiation{);
begin
t = (i, inftiation_time),
if chipr_lock_ser(i) # & then
rollback to newchkps (i).siare;
return;
endif
if roll child (i} # @ and rofl_lock _ser(i) =1 then
rofl_fock ser(i):={+t};
rofl_participant (i} := roll_child (i);
send (*‘roll_req’’, f, i, n;) 10 Pg, for all k e rofl_child (i);
endif;
rollback to oldchkpr (i).stare;

end roll_initiation;

Comments: Transient errors are detected in lime before P; inlends to make a new checkpoint.
Thus a checkpoinl never saves a state contaminated by hidden transient errors. rollback to
newchkpr (i).state restores the stale newchkpt (i).state. The transaction is expanded 10 process

P, for all k € roll_child (i).

32

Condition b6: P; receives (*‘roll_req™’, ¢, s, undo_seq) [rom P;

procedure roll_request_propagation();

begin
if ¢ € roll_lock_ser(i) or P; has nol received any messages with the label wnde _seq
then
send (“‘roll_no'’, 1) to P,
refurn;
endif;

newchkpe (i) :== nil,
chkpt lock set(i) 1=,
atomic_send (*‘roll yes’’, ¢, roll_child (1)) to Py;
send (‘‘roll_req'’, , s, m;) o Pp. forall k € roll child(i);
if roll_lock_ser (i) =43 then
rollback to oldchikp: (i).state;
endif;
/¥ obtain a u-lock for T(r). ¥/
roll_lock set(i):=roll Jock set(iy Y {t}

end roll_request_propagation;

Comments: P, is the coordinator of the rollback transaction T (¢). If P; has already held a u-
lock for T(t) or P; has not received any messages undone by the sender £;, P; replys to the
coordinator with the message (‘‘roll_no'’,). Otherwise, P; replys with the message
(‘‘roll_yes”’, «, roll_child (i}). We require the sending and receiving of this message to be
atomic. This ensures the coordinator recognizes potential participants before they reply. P;
may be a participant of several concurrent rollback transactions. In such a case, P; rolls back
only once upon the first rollback request, but not upon subsequent rollback requests.
undo_seq represents the label of (he messages that have just been undone by the sender P;. 2;
keeps 2 message log for all incoming messages since last committed checkpoint. Therefore,
P; can decide if P; has received any messages with the label indo_seq. Note that £; replys to
the coordinator before rolling back. This achieves a higher degree of parallelism. Even if P;
fails after replying to the coordinator, we can eventually restore its checkpointed state in the

stable storage.

33

Condition b7:
case 1) P; recetves (“‘roll_yes"’, ¢, roll_child (k}) from P or
case 2) P; receives (‘‘roll_no'", ¢) from P,
procedure roll_response_collection();
begin
if case 1 then
roll_parricipant (i) = roll_participant (i} + roll_child (k),
mark a single & in roll_participant (i),
else /* case2 ¥/
delete a & which is unmarked [rom rell_parricipant (i);
endif;
if all members in roll participanr (i) have been marked then
send (*‘roll_finish™’, r) to P; and P, for all & in roll_participanr (i),
roll_participant (i} := G,
endif;,

end roll_response_colleclion;

Comments: P; will execute this procedure only if P; is the coordinator of the rollback
transaction 7(r). An element k& is marked in chkpe_participant (i) if P, is a true participant.
An element £ is deleted from chkpt_parricipant (i) if Py rejects the rollback request. In case I,
P, agrees to be a participant of the rollback transaction, and informs the coordinator of more
potential participants recorded in the set roll_child (k). The *‘+'" operator unions the two sets
without eliminating duplicate elements. In case 2, P, has already been a participant or the
coordinator of the rollback (ransaction, and thus rejects the rollback request. Elements in
roll_participant (i) will all be marked after every process that has received a rollback request
has replied to the coordinator. After receiving responses from ail participants of the rollback

transaction, P; sends (‘‘roll_finish'’, r) to every participant (including itself).

34

Condition b8: P; receives (*‘roll_finish'’, ¢} from P;
procedure roll_[inish(;
begin

roll lock ser(i):=roll lock ser(iy— {1 }:

if roll lock ser ={J then

no=n;+1;
endif;
end roll_fAnish;

Comments: P, is the coordinator of the roliback transaction with T (r). P; may be a
participant of several concwrrent rollback transactions. rolfl_lock_ser (i) records the limestamps

of these transactions. P; releases a u-lock upon a *‘roll_finish’” message from the coordinator,

3.4. [llustrative Examples

This subsection gives (wo examples. Example 1 shows the execution of a single
checkpoint transaction. Example 2 shows concurrent execution of two checkpoint
ransactions. Each figure shows only normal message passing but not control message
passing.

Example 1 (see Fig. 6).

As mentioned earlier, checkpoints in each process are numbered in increasing order.
Based on the intervals, the labels of the normal messages x, /, m are all 1. The checkpoints
o, Oy and oy in Fig. 6. are created by the transaction. First, P, initiates the checkpoint
transaction T (r) by making o, autonomously, and sending P ; the message (*‘chkpt_req"’, r, 2,
maxj,), where max,; bas the value 1. Upon the message, P4 makes a new checkpoint .
Then P4 replys with (*‘chkpt_yes™, r, | 4 }), where 4 is the index of the potential checkpoint
participant P4, and sends P, the message (‘‘chkpt_req’’, ¢, 2, maxy;), where max,; has the
value 1. Upon the message, P4 makes a new checkpoint ¢y, and replys with (‘‘chkpt_yes’’, r,
{ }). After all checkpoint operations are execuled, P, sends (‘‘commit’’,) to P, £5 and P,.

Oy s, Oy commit, and compose a new consistent recovery line. A,, Az, Ay are discarded. U

35

¥
Mg ;o oy
Py ¥ L 3¢ -

Figure 6. The process timing diagram and the checkpoint spanning iree

for example 1.

Example 2 (see Fig. 7).

P4 3 L S -

-
%]
&
bl “'_&
o & o
Lad
¥

Figure 7. The process timing diagram and the checkpoint spanning trees

for example 2.

In this example, two checkpoint transactions run concurrently. As in Example 1, Pa
initiates one checkpoint transaction T (f) by making checkpoint ¢ autonomously. P, initiates
the other checkpoint transaction T (+*) by making checkpoint ¢, autonomously, and sends P 3
the message (‘‘chkpt_req”, ¢/, 1, maxy), where maxy, has the value |. P, sends Pj
(*‘chkpl_req”’, f, 2, max;,). Then P, makes o upon the request of P, or of P whichever

comes first. Both checkpoint requests are propagated from P3 to P4. Therefore, P4 receives

38

two checkpoint requests originaling from £, and P,. In this case. the uncommitted
checkpoint ¢y is shared between the two checkpoint lransactions. P53 can commit lhe shared
checkpoint ¢ if at least one of the two tranmsactions can commit. Evenwally o) o o, oy
commit, and compose a new consistent recovery line. The previous checkpoints
A, A2, Ay, Ay are discarded. Since processes propagates checkpoint requests for each
transaction, the two checkpoint transactions will nol- block each other, Each transaction ¢an

cventually be expanded. O

4. Correctness Proof

This section shows the correciness of the algorithm, and derives some properties of the

algorithm.

Theorem 5 Each checkpoint transaction will eventually terminate (either commitled or
aborted). Also each rollback transaction will eventually terminate.
Progf: Each transactions is expanded hierarchically. The coordinator recognizes each
potential participant before it replys. Upon a checkpoint request, a process will always reply
to the coordinator with either a “*chkpt_yes'' or a ““chkpt no’” or a **chkpt_abort'’ message.
Similarly, upon a rollback request, a process will always respond with either a “*roll_yes’’ or a
“‘roll_no’" message. Thus, once a process identifies itself as the coordinator, it will eventually
receive responses from all the participants of the transaction. Since the number of processes in
the system is finite, each transaction has a fhnite number of participants. Each participant-

expands the transaction at most once. Each transaction will evenmally terminate, o

Theorem 6. Each partial recovery line and each partial rollback line established by a
checkpoint transaction or a rollback transaction is consistent.
Proof:
1) When a single checkpoint transaction or a single rollback transaction is executed without
interference:

Since transactions follow Lhe locking protocol specified earlier, the dependency belween

37

any message (ransaction and the transaction is acyclic. Also according to the algorithm,
when P; — P;, then if P; is a process of a checkpoint iransaction, then P; is also a
process of Lhe transaction. On Lhe other hand, if 7; is a process of a rollback transaction,
then P; is also a process of the transaction. Therefore, there is no dangling receive

message.

ii) When checkpoint transactions T, and T), are executed concurrently:
Suppose P; reccives checkpoint requesis from T, and Ty, und chipr lock ser(i) # &
upon a checkpoint request from 7). Then P; makes a checkpoint for T,, but not for .
This does not affect the consistency from Theorem 3, because P; does not send or

receive nonnal messages when chkpr_fock_set(i) is not empty.

iiiy When roflback wransactions T, and T, arec cxecuted concurrently:
Suppose P; rcceives rollback requesis from T, and T}, and roll_fock_set (i) # & upon a
rollback request from T,,. Then P; rolls back for T, but not for T;,. This does not affect
the consistency from Theorem 4, because P; does not send or receive normal messages

when roll_lock_ser(i} is not empty.
iv) When a checkpoint transaction and a rollback transaction are executed concurrently:

iv)-A When a checkpoint request is issued to £; from P;, and P; has undone the-sending of a
message to P

P; will inform the checkpoint coordinator to abort the checkpoint transaction.
iv)-B When a rollback request is issued to P; from 2;, and chkpt_lock_sez (i) is not empty:

Case I P; is the coordinator of the rollback transaction, i.e., i = j:
P; rolls back to the last uncommitted checkpoint, and the rollback (ransaction is

completed. In such a case, the rollback transaction has only one rollback operation.

Case 2 P; has nol receive any messages 1o be undone by F;:

P; ignores this rollback request,

Case 3 Otherwise:

P; becomes a pariicipant of the rollback transaction. P; roils back to the last

38

committed checkpoinl, and discards the uncommitted checkpoinl. We nexl show
that the checkpoint transaction [or which P; s a participant has not commilted any
checkpoint, and will be aborted.

Fbr any P;, P; does not receive normal messages when chkpr_fock_set(i} 13 not
empty. Therefore, if P; becomes a rollback participant., and discards its
uncbmmilled checkpeint, there must cxist a normal message received before that
checkpoint is made. Supposc P, is the coordinator of the checkpoeint transaction,
and P, the coordinator of the rollback (ransaction. P; participates in both the
checkpoint (ransaction and the rollback transaction. According lo the expansion rule
of checkpoint transactions and rollback transactions, we have P, —" P; and
P; 5% P,.. where —* is defined in Definition 6. Hence, P, —»™ P.. There must
exist P, and P, on the path from P, 10 P, such that i} P, — Ph; ii) P, parlicipates
in the rollback transaction before the checkpoint transaction; and iii} P, parlicipates
in the checkpoint transaclion before the rollback transaction. Then £, will inform

P, to abort the checkpoint transaction upon a checkpoint request from £,,. O

Suppose P | is the coordinator of a checkpoint transaction, and P,,..., P are the
participants, Let C=|[C,, Ca,..., Cg } be the recovery line established by the checkpoint

transaction. The next theorem states the minimeliry of the checkpoint transaction.

‘ Theorem 7, Each checkpoint transaction has the minimal number of participants. That
is, the recovery line C=C- {C Yo C_', } is inconsistent for any 2 <7 < k, where C_', is the
last committed checkpoint of P; made before C;

Proof: By Theorem 6, C is a consistent recovery line. Since P;, 2 <7 <k, is not the root of
the checkpoint spanning tree, P; must have a parent P; in the tree, 1 £ j < k. From definition
5, P; = P;. That is, there exists a normal message m sent by P; after a and received by P;
before C;. Then the order betwecen the message transaction of m and the checkpoint

transaction Lhat establishes the recovery line Cis cyclic. a

Suppose P, is the coordinator of a rollback tramsaction, and P»,,..., P, are the

participants. Let U={ U, /., **+, U, } be the roilback line established by the rollback

39

transaction. The next theorem states the minimaliry of the rollback transaction.

Theorem 8. Each rollback ransaction has the minimal number of participants. That is,
the rollback line U=U— { U, } is inconsistent for any 2 < i < k.
Proof: Since P;, 2 <j <k, is not the root of the rollback spanning tree, P; must have a
parent P; in the tree, 1 £/ <k From Definilion 3, P; —)Pj. PJ- must have received a
message m from P; upon the rollback rcquest from P;. If P; does not roll back, the actions
triggered by the message at P; are not undone. Therefore, this recover line U produces a

dangling receive message. O

5. Comparison with Related Work

Several distributed checkpointing and recovery mechanisms can be found in [BARI33,

KOO087, TAMIS84]. Their dislinguishing features arc as follows:
Barigazzi-Strigini algorithm [BARI83]:
- The sending and receiving of a message is alomic, which is more restrictive than FIFO

channels. Under this constraini, sending a message will block the operations of the sender

until the message is received.

- A process suspends all normal operations while the process is a participating process of a

checkpoint instance or a rollback instance.
Tamir-Séquin algorithm [TAMI84]:
- All the processes in the system need to take checkpoinis or roll back together.

- A process suspends all normal operations while the process is a participating process of a

checkpoint instance or a rollback instance.
Koo-Toueg algorithm (KOO37]:
- Messages are assumed to be transmitted in First-in-First-out order.

- Only processes that have exchanged messages since their last checkpoints need to take

checkpoints or roll back together. Concurrent execution of multiple checkpoint instances

40

or rollback instances is not allowed. Each rollback process rolls back only after every

other process in the instance agrecs lo roll back.

- A process cannot send normal messages while the process is a participaling process of a

checkpoint instance or a rollback instance.

- Muliiple process failures usually block the algorithm, The algorilhm needs to wail until

the lailed processes recover. Also Network parlitioning is not considered.
Leu-Bhargava algorithm:
- Normal messages and most of the control messages can be transmilted in any order.

- Only processes that have exchanged messages since their last checkpoints need to take
checkpoints or roll back together. Concurrent execution of checkpoint transactions or
rollback transactions is allowed. Each rollback transaction always commits without being
aborted or blocked. Each roliback process rolls back without waiting until other
participants agree to roll back. Once it roils back, il can immedialely continue ali its

operations except sending and receiving normal messagces.

- A process cannot send or receive normal messages while the process is a participating

process of a checkpoint transaction or a rollback transaction.

- Blocking possibility of checkpoint (ransactions due to multiple process failures and
network partitioning is reduced. Blocking of a rollback transactions can always be

resolved.

5.1. Advantages of Non-FIFO Channels

Qur algorithm allows normal messages to be transmitted in any order, not necessarily in
First-in-First-out order. Due to the message delay or loss of messages, it is more expensive to
implement FIFO channels than non-FIFO channels. Some applications prefer non-FIFO
semantics to FIFQ semantics. One example is distributed discrete event simulation [JEFF82].
Second example is that a sender may set up a ‘‘mailbox’ storing all the outgoing messages,

which are subsequently *‘pulled out’’ by the receivers based on some priorily, not necessarily

41

in the order in which they are produced by the sender. Some messages may not be inspected
at all. Third cxample is that two processes may be connected by more than one logical FIFO
channel for different purposes. Then the overall effect will make these FIFO channels look

like one single non-FIFO channel.. ...

6. Performance Evaluation

Distributed checkpointing and recovery has becn studied in various literature. Not much
research has been done on performance analysis. We have implemented the algorithm on a
network of SUN-3! worksiations, and have collecied performance data. This section analyzes

the performance of the algorithm.

6.1. Experimental Design

6.1.1. Experimental Procedures
This experiment is done in the RAID sysiem [BHARS88c], which runs on SUN-3
workstations connected by Ethernet. Each experimental scenario performs the following steps:
a) Execute normal processes which send normal messages to one another.

b) Invoke a checkpoint starter or a rollback starter which sends a special message o
designated processes. A process that receives this message initiates a checkpoint
transaction or a roliback transaction respeclively. Before the transaction terminates,

the process does not send or receive normal messages.

¢} Run a special command (o stop Lhe experiment.

1. SUN-3 is a wademark of Sun Microsysiems, Inc.

42

6.1.2. Measured Data

In the experimenls we measure the performance of the coordinaior and parucipants
separately during the execution of a checkpoint transaction or a rollback transaction. In the
following discussion, ‘‘transaction’” means either a chcckpoint -transaction or a rollback
transaction. Each tramsaction is executed by lwo lo eight processes., We have measured
elapsed rime and cpu usuge during the cxccution of transactions. Elapsed time is the total
lime a process spends during the execution of a lransaction. This peried starts from the lime
when the process receives a checkpoint request or a rollback request until it reccives a commit
or an abort decision of the coordinator. Elapsed time contains three components: a) lime o
lake a single checkpoint or roll back to the last checkpaint, b) cpu time, and ¢) idle time

waiting for messages.

Single checkpoint delay is the time to wrile the image of a process into the disk, while
single rollback delay is the time to read the image of a process from the disk. For processes
ranging from 4K bytes to 48K bytes, the checkpoint and rollback were measured 10 take time
ranging from 89 ms (milliseconds) to 496 ms (milliseconds). Reading memory images or
restoring images can be done by a back-end processor, which does not consume ¢pu resource.
So we simulate this approach by requiring a process to sleep for a period of time while taking

a single checkpoint or rolling back.

Processes coordinate with one another to synchronize their checkpoint operations and
rollback operations. Each process spends cpu time sending, receiving, and processing
synchronization messages. CPU time contains iwo components: a) communication cost, and

b) computalion cost for the execution of the algorithm.

A process can be a participant of lwo or three concurrent lransactions. We have
measured elapsed times of processes during the execution of a single transaction and that of

concwrent transactions. The following nolation is used in the analysis.

Notation.

43

elap, elapsed time of the coordinator of a single transaction.
elap, elapsed time of a parlicipant of a single transaction.
elap,P elapsed time of a process that is the coordinator ol one transaction and

also a participant of the other transaction. In this case, [wo (ransactions

are executed concurrently.
elapy, elapsed time of a process that is a common parlicipant of lwo transactions.

elap ,, elapsed (ime of a process that is the coordinator of one transaction and
also a common participant of the other two transactions. In this case,

three transaclions are executed concurrcnily.

elap,,, clapsed time of a process that is a common participant of three

transactions.

Similarly, CPU,, CPU,, CPU_,, CPU,,, CPU

p> pp? cpp» and CPU,,, denote the corresponding cpu

times of processes during the execution of a single (ransaction and that of concurrent

transactions.

6.2. Performance in Concurrent Execution

In the synchronous checkpointing approach, it is likely to have more than one
coordinator at a time. Each coordinator initiates a transaclion. Different transactions may
interfere. If concurrent execution is not allowed, one transaction would have to wail for the
other to finish. The delay may be accumulated as there are more transactions runnming. For
example, suppose transactions Ty, T2, * - , Tr4 are initiated at the same time, and they have
the same number of participants. T, takes time x to finish. Each process takes Ay lo make a
checkpoint, and propagate the checkpoint request. Process P is a common participant of
transaction T; and T;,;. P, can execute a checkpoint operation for T, only after 7 has
terminated. Therefore, ransaction Ty, will finish Ay time later than T,. The finish time of

transaction T} is x + (k — 1)Ay.

44

If each common participant can execute checkpoint operations concurrently for two
{ransactions, the two transactions can precede simultaneously. The common participant spends
2Ay executing two checkpoint operations. The finish time of each transaction will be the

same,

Table 4. Elapsed times (in milliseconds).

number of processes of each transaction: 5
Each process is on a different sile.
single checkpoint/rellback delay: 251 ms

clapsed time elapsed time

of checkpoint | of rollback

process process
single elap. 559 301
transaction elap, 322 303
two concurrent ¢lapep o83 334
transactions elap,, 360 359
three concurrent elapepp 617 400
ransactions elap,,, 389 405

We have done some optimization in concurrent execution. Concurrent transactions can
share checkpoints or rollback points. Therefore, each common participant spends less than
2Ay executing checkpoint operations for the two transactions. We have studied experimentally
the effect of sharing checkpoints and.rollback points on the elapsed time. Table 4 shows the
elapsed time of the coordinator and thal of a participant during the execution of a single
transaciion and thai of concurrent transactions. Each process is of 20K bytes, and spends 251
ms making a single checkpoint or rolling back. In the experiment of concurrent transaction
processing, each transaction is executed by the same five processes. A process can be a
coordinator of at most one transaction, but can be a common participant of two or three

Lransactions.

45

Due to the sharing of the checkpoints and rollback points, the elapsed time of a process
that cxccules operations for concurrent transactions will be smaller. From Tables 4, we found

the following relationships:

elap, = elap. + elap, — d

clap,, = elap, + elap, ~ d

elap.,, = elap, + elap, - d

elap,,, = elap,, + elap, ~ d

d = 251 ms, which is the time to take a

single checkpeint or 1o roll back.

Data on the left side of = are measured experimentally, The expressions on the right
side represent expected values. When a process executes checkpoint operations for two
concurrent checkpoint transactions, the process makes a single checkpoint instead of two.
Thérefore, elap., and elap,, can be expected to be d milliseconds shorter than if the process
makes two checkpoints. When a process executes operations for two concurrent rollback
transactions, the process rolls back once instead of (wice. Therefore, elap., and elap,, can be
expected to be ¢ milliseconds shorter than if the process rolls back twice. For checkpoint
processes, the measured data are even smaller than expected, because processes tend to utilize

CPU idle time more efficiently in concurrent transaction processing.

6.3. Performance in Rollback-Recovery

In our algorithm, rollback transactions can always commit without being aborted. A
process rolls back without wailing until other participants agree 1o roll back. Therefore, the
process can recover from Iransient errors faster. The period of time during which normal

operations are suspended is about the same as the time for the process Lo roll back.

If processes roll back only after other participants agree to do so, their normal operations
will be suspended for a longer period of time. This period will include the time to

synchronize with other processes, and the time to await decisions from the coordinator. Table

46

5 shows the elapsed time of a process during the execution of a roliback transaction with
respect 1o three different rollback delays in a single site environment. This period of time is

about 1.4 10 4 times the single rollback delay.
Table 5. Elapsed times (in milliseconds).
number of processes of the rollback transaction: 8

All the eight processes irc on the same sile.
single rollback delays: 89 ms, 251 ms, 496 ms

rollback delay
89 | 251 [496

ceordinator || 363 | 472 | 719

participant 316 | 438 | 684

Table 6. Maximum number of synchronization messages.

number of processes of the transaction: 5
There are one coordinator and four participants.

number of * number of total
messages sent messages received

coordinalor 13 26 39
participant 8 5 13
total 13+4x8=45 26+4x5=46

6.4. Overhead of the Algorithm

Processes synchronize their checkpoint operations and rollback operations by sending
messages. The total message overhead is no worse than other synchronous checkpointing
algorithms presented in [BARI83, KOOS87]. In our algorithm, the message overhead is not
uniformly distributed. The total number of messages sent and received by the coordinator is
in the order O (n*). The total number of messages sent and received by a participant is O (»),

where n is the number of the processes of the transaction. It costs CPU time to process the

47

messages. We study the worst case when (he maximum number of synchronization messages
are sent among the processcs. Table 6 shows the maximum number of synchronizalion
messages a process sends and receives in executing a single transaction. This number only
depends on the number of participants of the transaction. -The maximum number of messages-
used in the execution of a checkpoint transaction is the same as that of a rotlback transaction if
they coniain lhe same number of participants.

We have measured the CPU time a process spends during the execution of a single
transaction and that of concurrent transactions. Each transaction is exccuted by the same five
processes. Table 7 shows the CPU costs when all five processes are on a single site. Table 8
shows the CPU costs when each process is on a different site. We have the following

observations:

- The CPU cost of a checkpoint transaction is about the¢ same as that of a rollback

transaction with the samc number of participants.

- When each process is on a different site, the CPU cost is about 2.2 times that when all
five processes are on a single site. This is because remote communication is more
expensive than local communication.

- CPU cost contains lwo components: a) conmmunication cost, and b) computation cosr for
the execution of the algorithm. Communication cost is about 45% of the total CFU cost
in a single site environment, and increases (o 75% when each process is on a different

sile.

48

Table 7. CPU costs (in milliseconds).

number of processes of each transaction: 5
All the five processes are on Lhe same site.

CPU cost CPU cosl
of checkpoint | of roliback
process _process
: CPU_ 47.0 48.8
single
(ransaction CPU, 18.3 18.6
CPU,, 67.1 63.1
(w0 concurrent
transactions CPU,, 36.3 38.6
three concurrent CPUecpp 80.9 79.9
transactions CPU,,, 55.5 579
Table 8. CPU costs (in milliseconds).

number of processes of each transaction: 5
Each process is on a different site.

CPU cost CPU cost
of checkpoint | of rollback
process process
. CPU. 102.0 991
single
transaction CPU, 41.6 410
CPU,, 135.1 136.7
lwo concurrent
transactions CPU,, 877 86.3
(hree ConcHIrent CPU,,, 173.0 174.9
transactions CPU,, 138.8 135.6

49

6.5. Effect of Multiprogramming Level on Elapsed Time

We study how mulliprogramming level may alfect the clapsed lime of a process during
the execution of a transaction. When all processes of a transaclion are on the same site, the
clapsed time will be the longest. When there is one process per site, the elapsed time wiil be
the shoriest. Table 9 shows the clapsed time of processes at different multiprogramming
levels. There are four processes in a transaction. The checkpoint defay and rollback delay are
251 ms. We choosc I, 2, 4 as the multiprogramming levels. That means, each sitc has onc

process, each site has two processes, and one site has all the four processes respectively.

multiprogramming levels: 1, 2, 4 (# of processes per site)
number of processes of the transaction: 4
single checkpoint/rollback delay: 251 ms

Table 9. Elapsed times at different multiprogramming levels.

multiprogramming level
1 2 4
] coordinator 542 587 645
checkpoint
transaction | participant 308 344 395
coordinator 299 327 374
rollback
transaction | participant 291 302 328

From Tables 9, we have the observations:

- Multiprogramming level affects the coordirator more than a participant. This is because
the coordinator has higher CPU cost, which incurs more time sharing delay. Therefore,
as the multiprogramming level increases, the elapsed time of the coordinator increases

faster than that of a participant.

50

- Multiprogramming level affects processes of a checkpoint transaction more than those of
a rollback transaction. This is because the lwo-phase commit protocol used in the
execution of a rollback transaction has a higher degree of parallclism than that of a
checkpoint transaction. Upon a rollback request, a process, replys Lo the coordinator, and
propagates the rollback request before it rolls back 10 iis last checkpoint. The
coordinalor can process some messages while other participants are rolling back, which
does not consume the cpu resource. Therefore, rollback processes can utilize CPU idle
time more efficiently than checkpoint processes. On the other hand, upon a checkpoint
request, a process replys to the coordinator, and propagates the checkpoint request only
after it has made a checkpoint. From Table 9, the elapsed time of a checkpoint process

mcreases faster than that of a rollback process.

6.6, Comparison with the Independent Checkpointing Algorithm and

Concluding Remarks

We compare the performance with that of the independent checkpointing algorithm
[BHARS88b]. In this algorithm, processes lake checkpoints independently without
synchronization. Since the last checkpoints of processes may not compose a consistent
recovery line, a process may not discard old checkpoints when a new checkpoint is generated.
When a coordinator process decides to roll back, it initiates a rtollback instance. The
coordinator collects checkpoint information from all other processes in the system, and

determines a consistent recovery line to which the other processes need to roll back.

6.6.1. The Independent Checkpointing Algorithm

- This algorithm is more efficient in checkpointing because no synchronization is needed.
However, it is less cfficient in rollback-recovery. During rollback-recovery, a
coordinator nceds to collect information from ail other processes in the system. It may
determine a recovery line composed by very early checkpoints. Then processes have 1o

roll back to the very early checkpoints. Based on the experimental results [BHAR88a],

51

the rollback distance depends on the message exchange pattern among the processes.
When processes exchange messages very frequently, a rollback rccovery is likely 10
cause all processes to roll back to very early checkpoints. To cope with this kind of
problem, the checkpoint intervals of processes should be made adaptable. Checkpoint
intervals should be made smaller when failure rate is high or when message exchange
ratc is high. Therefore, this algorithm will have a high overhead when message
cxchange rate is high, because cach process cither needs to lake checkpoints more
frequently or tends Lo roll back 10 a very earlier checkpoint. To discard old checkpoinis,
processes also necd 1o lake checkpoints more frequently. In such a way, new

checkpoints more likely compose a consistent recovery line,

- The size of synchronization messages isin a quadratic order of all the processes in the
system. The total number of messages is in a linear order of all the processes in the
system. In the cxperiment [BHARSBSa], each process keeps 4 10 10 checkpoints in the
stable storage. Message size also depends on the number of checkpoints kept by cach

process.

- This algorithm does not allow concurrent execution. Rollback-recovery is slower

compared Lo the synchronous algorithm.

6.6.2. The Synchronous Algorithm

- Only processes that have exchanged messages since their last checkpoints need to
coordinate with one another. The algorithm will perform better when the processes have
a bigger image size. For smaller processes, we can group them together as a checkpoint
unit or a rollback unit. In such a way, we can reduce the message overhead at the

expense of increasing single checkpoint cost and single rollback cost.

- The last committed checkpoints of all processes always compose a comsistent recovery
line. The rollback distance is independent of the message exchange rate. We can

determine an optimal checkpoint interval based on the failure rate.

52

- The size of synchronization messages is in a lincar order of the number of processes of
the transaction. The total number of messages is in a quadralic order of the number of
processes in the transaction. Processes spend less lime processing each message. In our

experiment, the message size is only 22 bytes.

- The synchronous algorithm allows concurrent execution. We have shown that
concurrent exccution reduces the response time of checkpoint (ransactions and rollback

transactions, and improves the performance of rollback recovery.

7. Resolving Blocking due to Process Failures and Network
Partitioning

While checkboin[transactions or rollback transaclions are run on some processes, some
process may fail and block other processes. We adopt the tollowing assumptions about
failures. a) Process failures are clean; that is, a process lails and stops without sending any
forged control messages. b) Process failures do not affect the stable storage [LAMPS79].
Thus a recovering process can always restore its last checkpointed state. c) Operational
processes are informed of process failures in finite time. The mechanisms monitoring the
process status information have been studied in {BHAR36, HAMMES0, WALTS2].) After a
process nolices a process failure, it discards all subsequent normal messages from the failed
process. These messages are in transit when the process fails. e) A recovering process can
always collect all its lost incoming control messages either from its message spoolers
[(HAMMBSO] or from some other processes. These messages addressed to the failed process
were redirected to its message spoolers. Messages can be replicated on multiple spoolers to
enhance reliability. If all message spoolers fail, the recovering process must inquire irs
cooperating processes of the same transaction. So, the recovering process can catch up with

its cooperaling processes.
In our algorithm, a rollback operation can always commit. Under the assumptions about

failures, blocking of rollback ransactions can always be resolved. However, blocking of a

checkpoint transaction may not be resolved. If the checkpoinl transaction has not committed

33

any checkpoint operation, the checkpoint transaction should be completely aborted.
Otherwise, operational processes must commit or abort their uncommitled checkpoints based
on the decision of the coordinator. However, if the operational processes cannot tell if the
coordinator has made a decision in case of cascading failures, the transaction is blocked until
failed processcs recover. However, operational processes are still allowed to conlinue their

own operations except sending and receiving normal messages.

8. An Algorithm that Allows Multiple Checkpoints in Stable Storage

In the earlier algorithm, each process keeps in stable siorage exactly one commilted
checkpoint and at most one uncommitted checkpoinl. In some applications, it is necessary (o
allow a process to make new checkpoints before its previous checkpoints commit. Also, a

process may have to keep previously committed checkpoints for rollback purposes.

The Applicarions

We study the following applications where a process may keep mulliple checkpoints in

stable storage:

1) Application 1: In the original algorithm, when a checkpoint transaction is blocked due to
process failures or melwork pariitioning, participating processes cannot commit their
checkpoints or initiate new. checkpoint transactions. An altenative approach is lo allow
participating processes to initiate nmew checkpoint transactions. In such a case, the

checkpoints made by the old checkpoint transaction are kept uncommilted.

2) Application 2: In this case, Lhe system may not detect transient errors immediately. It is
possible that a checkpoint may save a state comtaining lransient errors. Then, rolling
back to the youngest committed checkpoint is not sufficient to eliminate the transient
errors. Thus, each process may keep in stable storage previously commiited checkpoints.
From time to time, a process starts verifying ils commilted checkpoints in stable storage.

If they contain no transient errors, some of them can be discarded.

54

In applications 1, P; keeps exactly one committed checkpoint and multiple uncommitted
checkpotnts in stable storage. In application 2, P; keeps multiple committed checkpoints and
ar most one uncommilted checkpoint in stable storage. To deal with a combination of the two,
P; needs lo keep muitiple committed checkpoints and multiple uncommirtted checkpoints in
stable storage. We next modify (he original algorithm. We describe how checkpoint
transactions and rollback transactions are expanded on a tree of processes, when each process

may keep multiple checkpoints in the stabie storage.

The Modified Aleoritiin

Suppose £; kceps in stable storage the checkpoints oldchkpi, (i), oldchkpt,, (i)
oy vldehipro (D), newchipr, (i), newchkpty 11(i), ..., newchkprp(i). The checkpoints
record the states of #; in an increasing order indicated by the subscrip;s. Each oldchipr(i) is a
committed checkpoint, and cach newchkpr(i} is an uncommitted checkpoint. Each
uncommitted checkpoint can be shared among multiple checkpoint transactions. We use
chkpt_tock_ser(i) to record the timesiamps of the checkpoint transactions for which P; holds
C-locks. roll lock_set(i) records the timestamps of the rollback transactions for which P;
holds u-locks. P, does not send or receive normal messages if either chkpe fock set(i) or
roll_lock set(i) is not emply. However, if checkpoint transactions for which P; holds c-locks
are all blocked due 1o process failures, P; is still allowed to send and receive normal messages.
Let max;;, denote the maximum label of the messages senf from P; and received within the
interval [newchkpr,(j).seq — 1, newchkpry(j).seq]. Each checkpoint transaction and each
rollback transaction is dynamically expanded on a tree of processes. The coordinator commits
the transaction after every participant has executed the checkpoint or rollback operation. We
classify uncommitted checkpoints into marked ones and unmarked ones. Initially, any
uncommilted checkpoint is unmarked. Suppose P; issues a checkpoint request to P; for
transaction 7(r). P, is the coordinator. Upon the request (“‘chkpt_req"’, ¢, s, max;;.) from Pj,
P; may have the following cases for any previous outgoing message m o P; with the label

max;;,:

55

Case 1 P; has undone the sending of the message with the label max;j,:

P; requests the coordinator 10 aborl T (¢).

Case2 P; sends m within the inlerval [newchkpt,(i).seq — 1, newchkp,(i).seq], ie.,
max;;, = newchipt,(i).seq — 1, and newchkpr, (i) is not marked:
P; does not make another checkpoint upon the request. Let maxg;, be the maximum
label of the messages sent from P, and received within Lhe interval
[newchibpt,(iY.seq —~ |, newclhpi,().5eq]. P; then regards Py for which maxy,, is not
zero as a potential parlicipant of the transaction 7 (r), and sends out the checkpoint

request (*‘chkpt_req™’, r, 5, maxg;,,) to Py.

Case 3 P; sends m wilhin the interval {;, o0), L.e., X, =
P; must make a new checkpoint newcitkpty, (i), wiere newchipty,(i).seq is set to
n + 1. Let maxy.y be the maximum label of the messages sent from P, and
received within the interval [newchkpty,(f).seq — 1, newchiprty . (i).seq]. P; then

regards P for which maxy; 1y is not zero as a potential participant of T'(r), and

sends out the checkpoint request. (‘‘chkpt_req’, r, &, MaXy 1)) t0 P.

Case4 Otherwise:

P; rejects the request from P;.

P; can be a participant of several checkpoint transacttons, which share the checkpoint
newchipn,(i). If at least one of the checkpoint transactions can commit, P; marks
newchkpr,(i). P; releases a c-lock upon a final decision from the coordinator. When P;

releases all ¢-locks and commits its checkpoint, P; increments n; by 1.

When newchipt, (i), newchipty (). ..., newchipt,(i) are all marked, newchipr, (i}
can now commit. That is, a new committed checkpoint aldchkpt, (i) is created with the

conlent in newchkpr, (i), and newchkpt, (i}, newchkpey . (1), ..., newchkpr, (i) are discarded.

Operations for rollback also need modification: When a transient error is detected in P;,
P; initiates a rollback Lransaction by rolling back to the last committed checkpoint. The

transaction 7'(r) is dynamically expanded on a tree of processes. Suppose P; issues a

56

checkpoint request to P; for transaction T'(r). P, is the coordinator. Upon the rollback request
(“*roll_req™’, ¢, 5, undo_seq) from P;, P; may have the following cases for all incoming normal

messages that are sent from P; and have the label undo_seq:

Case ! P; has not received from P; any message with the label undo_seq, or has already
held a u-lock for T(r):

P; tejects the rollback request.

Case 2 All (he incoming messages are received after the siate oldchkpr,(i).srare, a £ h £ 0.,
oldchkpr, (i) is the latest checkpoint such that this condition holds:
P; sends (*‘roll_req”, «, s, n;) to polential participants of T'(¢). Then P; rolls back to

oldchkpi,(i).state, and discards oldclikpr, 14(i),..., newchkptp(i).

P, can be a parlicipant of several rollback transactions. P; releases a u-lock upon a final

decision from the coordinator. When P; releases all u-locks, P; increments »; by 1.

9. Conclusions

We have modcled concurrent checkpointing and recovery as a concurrent transaction
processing problem. This model unifies the concepts of concurrent checkpointing and
concurtent lransaction processing. We have shown that the concurrent checkpointing and
recovery problem can be solved by enforcing serializability on the corresponding transactions.
A locking protocol has been designed to synchronize the transactions. Several optimizations
are discussed. We incorporated these optimizations in the checkpoint/rollback aigorithm. The
algorithm executes checkpoint transactions or rollback transactions concurrently. Rollback
ransactions will never be aborted or blocked. A checkpoint transaction may be aborted only
when it interferes with a rollback tramsaction. Blocking of a rellback transaction due to
process failures can always be resolved. Blocking possibility of a checkpoint transaction has
been reduced. Also, it allows normal messages o be transmitted n any order. We further
generalize this algorithm when processes keep multiple checkpoints in the stable storage. A
process may need to roll back to any previous checkpoint. The algorithm is more general than

all the previous work.

57

Acknowledgment

The authors wish 10 thank Dr. R. Koo and Dr. S. P. Rana for valuable commenlts on an

earlier version of this paper.

References

[BARIB3]

[BERN79]

[BHARS6]

[BHARSSa]

[BHARSSb]

[BHARBSc]

[CHANBSS5]

[FISC82]

[GRAYT9]

(HAMMSO0]

G. Barigazzi and L. Strigini, ‘‘Application-transparent seiting of recovery
points,”” in Proc. 13th IEEE Symp. Fault-Tolerant Compurring, Milano, laly,
Junc 1983.

P. A. Bemstein, D. W. Shipman, and W. S. Wong, ‘‘Formal aspects of
serializability in database concurrency control,”” IEEE Trans. Softw. Eng.
SE-5, 3(May 1979), 203-216.

B. Bhargava and Z. Ruan. *'Site recovery in distributcd database systems
with replicated data,"” in Proc. 6rit IEEE Int. Conf. on Distributed Comput.
Syst., Cambridge. MA, May 1986.

B. Bhargava, P. Leu, and S. Lian, *‘Experimental evaluation of concurrent
checkpointing and rollback-recovery algorithms,”” CSD-TR-790, Dept. of
Computer Sciences, Purdue University, West Lafayette, [N, July 1983.

B. Bhargava and S. Lian, “‘Independent checkpointing and concurrent
rollback recovery for distributed systems - An optimistic approach,’” in Proc.
7th IEEE Symp. on Reliability in Distributed Systems, Columbus, OH, OclL.
1988.

B, Bhargava and J. Riedl, *‘Implementation of RAID,"" in Proc. 7th [EEE
Symp. on Reliability in Distributed Systems, Columbus, OH, Oct. 1988.

K. M. Chandy and L. Lamport, **Distributed snapshots: Determining global
states of distributed systems,”” ACM Trans. Compur. Syst. 3, 1(Feb. 1983},
63-75.

M. Fischer, N, Griffeth, and N. Lynch, '*Global states of a distributed
system,”’ [EEE Trans. Software Eng. SE-85, (May 1932), 198-202.

J. N. Gray, ‘‘Notes on data base operating systems."”’ in Operating systems:
An advanced course. R. Bayer, R. M. Graham, G. Seegmuller, Eds.,
Springer-Verlag, New York, 1979, 393-481.

M. Hammer and D. Shipman, '‘Reliability mechanisms for SDD-1: A system
for distributed databases,”” ACM Trans. Database Sysr. 5, 4(Dec. 1980},
431-466.

[JEFF32]

[KOO87]

[LAMPO78}

[LAMPS79)

[LEU88]

[MOSS83]

[RAND75]

[RAND78]

[SKEES82]

[TAMIB4]

[WALTS2]

58

D. R. Jefferson and H. A. Sowziral, ‘‘Fast concurrent simulation using the
time warp mechanism, Part I: Local control,”” Tech. Report N-1906-AF,
Rand Corporation. Santa Monica. CA, Dec. 1982.

R. Koo and S. Toueg, **Checkpointing and rollback-recovery for distributed
systems,"’ [EEE Trans. Software £ng. SE-13, 1(Jan. 1987), 23-31.

L. Lamport, “Time, clocks and the ordering of cvents in a distributed
system,”” Commun. ACM 21, 7(July 1978), 54-70.

B. Lampson and H. Sturgis, “‘Crash recovery in a distributed storage
system,”” Xerox Palo Alto rescarch Center, Tech. Report, April 1979,

P. Leu and B. Bhargava, ‘*Concurrent robust checkpointing and recovery in
distributed systems,™ in Proc. 4th fEEE [nr. Conf. Data Engineering, Los
Angeles, CA, Feb. 1988.

J. E. Moss, '‘Checkpoint and restart in distributed transaction systems,”’ in
Proc. 3rd IEEE Symp. on Reliability in Distributed Software and Database
Svsr.. July 1983, ’

B. Randell, “*System structure for software fault (olerance,”” IEEE Trans.
Software Eng. SE-I, (June 1973), 226-232.

B. Randell, P. A. Lee, and P. C. Treleaven, **Reliability issues in computing
system design,"” Computing Surveys 10, 2(June 1978), 123-165.

D. M. Skeen, *‘Crash recovery in a distributed database management
system,”” Ph.D. Thesis, EECS Department, University of California,
Berkeley, 1982.

Y. Tamir and C. H. Séquin, **Error recovery in muiticomputers using global
checkpoints,” in Proc. 13th IEEE Int. Conf. Parallel Processing, Aug. 1984,

B. Walter, '*A robust and efficient protocol for checking the availability of
remote sites,”’ in Proc. 6th Int. Workshop on Disiributed Data Management
and Computer Networks, 1982,

	Concurrent Checkpointing and Recovery in Distributed Systems
	Report Number:
	

	tmp.1307986960.pdf.P5hRD

