13 research outputs found

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    A superconvergent HDG method for stokes flow with strongly enforced symmetry of the stress tensor

    Get PDF
    This work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types

    A superconvergent HDG method for stokes flow with strongly enforced symmetry of the stress tensor

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10915-018-0855-yThis work proposes a superconvergent hybridizable discontinuous Galerkin (HDG) method for the approximation of the Cauchy formulation of the Stokes equation using same degree of polynomials for the primal and mixed variables. The novel formulation relies on the well-known Voigt notation to strongly enforce the symmetry of the stress tensor. The proposed strategy introduces several advantages with respect to the existing HDG formulations. First, it remedies the suboptimal behavior experienced by the classical HDG method for formulations involving the symmetric part of the gradient of the primal variable. The optimal convergence of the mixed variable is retrieved and an element-by-element postprocess procedure leads to a superconvergent velocity field, even for low-order approximations. Second, no additional enrichment of the discrete spaces is required and a gain in computational efficiency follows from reducing the quantity of stored information and the size of the local problems. Eventually, the novel formulation naturally imposes physical tractions on the Neumann boundary. Numerical validation of the optimality of the method and its superconvergent properties is performed in 2D and 3D using meshes of different element types.Peer ReviewedPostprint (author's final draft

    Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations

    Get PDF
    We present well-posedness and an a priori error analysis of the hybridized discontinuous Galerkin method for the stationary form of the Navier-Stokes problem proposed in (J Sci Comput, 76(3):1484{ 1501, 2018). This scheme was shown to result in an approximate velocity  eld that is pointwise divergence-free and divergence-conforming. As a consequence we show that the velocity error estimate is independent of the pressure. Furthermore, we show that estimates for both the velocity and pressure are optimal. Numerical examples demonstrate pressure-robustness and optimality of the scheme.Natural Sciences and Engineering Research Council of Canada, Discovery Grant program (RGPIN-05606-2015) || Natural Sciences and Engineering Research Council of Canada, Discovery Accelerator Supplement (RGPAS- 478018-2015)

    A second‐order face‐centred finite volume method on general meshes with automatic mesh adaptation

    Get PDF
    A second‐order face‐centred finite volume strategy on general meshes is proposed. The method uses a mixed formulation in which a constant approximation of the unknown is computed on the faces of the mesh. Such information is then used to solve a set of problems, independent cell‐by‐cell, to retrieve the local values of the solution and its gradient. The main novelty of this approach is the introduction of a new basis function, utilised for the linear approximation of the primal variable in each cell. Contrary to the commonly used nodal basis, the proposed basis is suitable for computations on general meshes, including meshes with different cell types. The resulting approach provides second‐order accuracy for the solution and first‐order for its gradient, without the need of reconstruction procedures, is robust in the incompressible limit and insensitive to cell distortion and stretching. The second‐order accuracy of the solution is exploited to devise an automatic mesh adaptivity strategy. An efficient error indicator is obtained from the computation of one extra local problem, independent cell‐by‐cell, and is used to drive mesh adaptivity. Numerical examples illustrating the approximation properties of the method and of the mesh adaptivity procedure are presented. The potential of the proposed method with automatic mesh adaptation is demonstrated in the context of microfluidics

    Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier--Stokes equations

    Get PDF
    Inf-sup stable FEM applied to time-dependent incompressible Navier--Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-robustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on an essential regularity assumption for the gradient of the velocity, which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-free H1-conforming FEM (like Scott--Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems
    corecore