138 research outputs found

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    A Topology Based Routing Protocols Comparative Analysis for MANETs

    Full text link
    MANET is a dynamic topology wireless network in which each mobile works as a sender and receiver wireless router. MANET have very low deployment cost, a low cost option to extend network coverage and ease of maintenance due to their self healing properties. MANETs are powered by batteries that have very limited capacity and it is a very important issue. The primary goal of MANET routing protocols is to find out an efficient route between any two mobile nodes with minimum time and less resource consumption. The MANET routing protocol designing is a very challenging due to various challenges such as the nodes have short battery life, small bandwidth, number of paths between source and destination, variable population of nodes and lose links. The central focus of this paper is to comparative study of different kinds of routing protocols and comparing on the basis of some common properties. Therefore, it is quite difficult to determine which protocols may perform best under a number of different network scenarios, such as increasing node density and traffic mobility. In this paper, we try to provide an overview of a topology based routing protocols proposed in the literature

    Would Current Ad Hoc Routing Protocols be Adequate for the Internet of Vehicles? A Comparative Study

    Get PDF
    In recent years we have seen a great proliferation of smart vehicles, ranging from cars to little drones (both terrestrial and aerial), all endowed with sensors and communication capabilities. It is hence easy to foresee a future with even more smart and connected vehicles moving around, occupying space and creating an Internet of Vehicles (IoV). In this IoV, a multitude of nodes (both static and mobile) will generate a continuous multihop flow of local information to support local smart environment applications. Therefore, one interesting environment for the IoV would be in the form of 3-D mobile ad-hoc networks (MANETs). Unfortunately, MANET routing protocols have generally been designed and analyzed keeping in mind a 2-D scenario; there is no guarantee on how they would support a 3-D topology of the IoV. To this end, we have considered routing protocols deemed as the state-of-the-art for classic MANETs and tested them over 3-D topologies to evaluate their assets and technical challenges

    SURVEY STUDY FOR VEHICULAR AD HOC NETWORKS PERFORMANCE IN CITY AND URBAN RESIDENTIAL AREAS

    Get PDF
    This thesis it survey study for VANET (Vehicular Ad-Hoc Networks) and it performance in city and urban residential areas, when the the number of vehicles on roads is increasing annually, due to the higher amount of traffic, there are more accidents associated with road traffic complexity. VANET can be used to detect dangerous situations which are forwarded to the driver assistant system by monitoring the traffic status.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Multipath routing and QoS provisioning in mobile ad hoc networks

    Get PDF
    PhDA Mobile Ad Hoc Networks (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without utilizing any fixed based-station infrastructure and centralized management. Each mobile node in the network acts as both a host generating flows or being destination of flows and a router forwarding flows directed to other nodes. Future applications of MANETs are expected to be based on all-IP architecture and be capable of carrying multitude real-time multimedia applications such as voice and video as well as data. It is very necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes an on-demand Node-Disjoint Multipath Routing protocol (NDMR) with low broadcast redundancy. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is also beneficial to avoid traffic congestion and frequent link breaks in communication because of the mobility of nodes. The important components of the protocol, such as path accumulation, decreasing routing overhead and selecting node-disjoint paths, are explained. Because the new protocol significantly reduces the total number of Route Request packets, this results in an increased delivery ratio, smaller end-to-end delays for data packets, lower control overhead and fewer collisions of packets. Although NDMR provides node-disjoint multipath routing with low route overhead in MANETs, it is only a best-effort routing approach, which is not enough to support QoS. DiffServ is a standard approach for a more scalable way to achieve QoS in any IP network and could potentially be used to provide QoS in MANETs because it minimises the need for signalling. However, one of the biggest drawbacks of DiffServ is that the QoS provisioning is separate from the routing process. This thesis presents a Multipath QoS Routing protocol for iv supporting DiffServ (MQRD), which combines the advantages of NDMR and DiffServ. The protocol can classify network traffic into different priority levels and apply priority scheduling and queuing management mechanisms to obtain QoS guarantees

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation
    • 

    corecore