140 research outputs found

    Deterministic Addressing of Nanoscale Devices Assembled at Sublithographic Pitches

    Get PDF
    Multiple techniques have now been proposed using random addressing to build demultiplexers which interface between the large pitch of lithographically patterned features and the smaller pitch of self-assembled sublithographic nanowires. At the same time, the relatively high defect rates expected for molecular-sized devices and wires dictate that we design architectures with spare components so we can map around defective elements. To accommodate and mask both of these effects, we introduce a programmable addressing scheme which can be used to provide deterministic addresses for decoders built with random nanoscale addressing and potentially defective wires. We describe how this programmable addressing scheme can be implemented with emerging, nanoscale building blocks and show how to build deterministically addressable memory banks. We characterize the area required for this programmable addressing scheme. For 2048 x 2048 memory banks, the area overhead for address correction is less than 33%, delivering net memory densities around 10^11 b/cm^2

    Stochastic assembly of sublithographic nanoscale interfaces

    Get PDF
    We describe a technique for addressing individual nanoscale wires with microscale control wires without using lithographic-scale processing to define nanoscale dimensions. Such a scheme is necessary to exploit sublithographic nanoscale storage and computational devices. Our technique uses modulation doping to address individual nanowires and self-assembly to organize them into nanoscale-pitch decoder arrays. We show that if coded nanowires are chosen at random from a sufficiently large population, we can ensure that a large fraction of the selected nanowires have unique addresses. For example, we show that N lines can be uniquely addressed over 99% of the time using no more than /spl lceil/2.2log/sub 2/(N)/spl rceil/+11 address wires. We further show a hybrid decoder scheme that only needs to address N=O(W/sub litho-pitch//W/sub nano-pitch/) wires at a time through this stochastic scheme; as a result, the number of unique codes required for the nanowires does not grow with decoder size. We give an O(N/sup 2/) procedure to discover the addresses which are present. We also demonstrate schemes that tolerate the misalignment of nanowires which can occur during the self-assembly process

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations

    Skybridge: 3-D Integrated Circuit Technology Alternative to CMOS

    Full text link
    Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, scaling to sub-20nm technologies is proving to be challenging as MOSFETs are reaching their fundamental limits and interconnection bottleneck is dominating IC operational power and performance. Migrating to 3-D, as a way to advance scaling, has eluded us due to inherent customization and manufacturing requirements in CMOS that are incompatible with 3-D organization. Partial attempts with die-die and layer-layer stacking have their own limitations. We propose a 3-D IC fabric technology, Skybridge[TM], which offers paradigm shift in technology scaling as well as design. We co-architect Skybridge's core aspects, from device to circuit style, connectivity, thermal management, and manufacturing pathway in a 3-D fabric-centric manner, building on a uniform 3-D template. Our extensive bottom-up simulations, accounting for detailed material system structures, manufacturing process, device, and circuit parasitics, carried through for several designs including a designed microprocessor, reveal a 30-60x density, 3.5x performance per watt benefits, and 10X reduction in interconnect lengths vs. scaled 16-nm CMOS. Fabric-level heat extraction features are shown to successfully manage IC thermal profiles in 3-D. Skybridge can provide continuous scaling of integrated circuits beyond CMOS in the 21st century.Comment: 53 Page

    Reliable Circuit Design with Nanowire Arrays

    Get PDF
    The emergence of different fabrication techniques of silicon nanowires (SiNWs) raises the question of finding a suitable architectural organization of circuits based on them. Despite the possibility of building conventional CMOS circuits with SiNWs, the ability to arrange them into regular arrays, called crossbars, offers the opportunity to achieve higher integration densities. In such arrays, molecular switches or phase-change materials are grafted at the crosspoints, i.e., the crossing nanowires, in order to perform computation or storage. Given the fact that the technology is not mature, a hybridization of CMOS circuits with nanowire arrays seems to be the most promising approach. This chapter addresses the impact of variability on the nanowires in circuit designs based on the hybrid CMOS-SiNW crossbar approach

    Stochastic assembly of sublithographic nanoscale interfaces

    Full text link

    Polysilicon Nanowire Transistors and Arrays Fabricated With the Multispacer Technique

    Get PDF
    In this paper, we demonstrate the ability of the multi- spacer patterning technique to yield layers of polycrystalline silicon nanowires with a sublithographic pitch, by exclusively using micrometer resolution and CMOS processing steps. We characterize single spacers operating as poly-Si nanowire field effect transistors . We demonstrate also the possibility to lay a spacer perpendicularly to a set of parallel spacers in a crossbar fashion. The extrapolated cross-point density from the small 4 × 1-array is in the range of 10 exp10 cm−2 . We discuss the applications of this technique to improve the density of previously reported poly-SiNW memories and as a future framework for nanowire crossbars and decoders. Then we analyze the limitations and costs of the proposed technique

    A Stochastic Perturbative Approach to Design a Defect-Aware Thresholder in the Sense Amplifier of Crossbar Memories

    Get PDF
    The use of nanowire crossbars to build devices with large storage capabilities is a very promising architectural paradigm for forthcoming nanoscale memory devices. However, this new type of memory devices raises questions regarding how to test their correct operation. In particular, the variability affecting the decoder is expected to make very complex the test of these new devices. In this paper we present a method to simplify the test of these new devices by using a current thresholder to detect badly addressed nanowires. In the proposed method, the thresholder design is based on a stochastic and perturbative model of the current through the nanowires. Thus, the calculated thresholder parameters are robust against technology variation. As our experimental results indicate, the thresholder error probability is initially only ∼ 10−4, which can be also reduced further (up to ~60×) by trading-off only ~35% area overhead in the memory
    corecore