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1 Introduction

The emergence of different fabrication techniques of silicon nanowires (SiNWs)
raises the question of finding a suitable architectural organization of circuits based

on them. Despite the possibility of building conventional CMOS circuits with

SiNWs, the ability to arrange them into regular arrays, called crossbars, offers
the opportunity to achieve higher integration densities. In such arrays, molecular

switches or phase-change materials are grafted at the crosspoints, i.e., the crossing
nanowires, in order to perform computation or storage. Given the fact that the

technology is not mature, a hybridization of CMOS circuits with nanowire arrays

seems to be the most promising approach.

This chapter addresses the impact of variability on the nanowires in circuit

designs based on the hybrid CMOS-SiNW crossbar approach. A large part of this

chapter has been published in [1].1 The variability stemming from the shrinking

nanowire dimensions is modeled and its impact on the interface between the CMOS

circuit and the nanowire arrays, the decoder, is investigated. The approach pre-

sented is based on the abstract representation of nanowires as a sequence of codes.

Based on the impact of variability on codes, optimized design methodologies for

encoding the nanowires and for testing the array decoder are derived.

2 Fabrication Technologies

Nanowire crossbars have attracted increasing interest over the last few years

because the fabrication techniques have become more mature and versatile. Parallel

research works have been carried out at different levels of the IC design hierarchy,

ranging from device to circuit and system level, in order to identify and address the
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challenges facing the utilization of this emerging paradigm in the future. Circuit

design depends on properties of the fabrication techniques. Thus, understanding the

fabrication techniques and device properties enables a better assessment of the

global problem. In the following discussion, we survey the different fabrication

techniques for bare nanowires and nanowire crossbars.

2.1 Nanowire Fabrication Techniques

The existing nanowire fabrication techniques follow two main paradigms: the so-

called bottom-up and top-down approaches. Bottom-up approaches are based on the

growth of nanowires from nanoscale metallic catalysts. In contrast, top-down

approaches use various types of patterning techniques.

2.1.1 Bottom-Up Techniques

One of the widely used bottom-up techniques is the vapor–liquid–solid (VLS)
process, in which the generally very slow adsorption of a silicon-containing gas

phase onto a solid surface is accelerated by introducing a catalytic liquid alloy

phase. The latter can rapidly adsorb vapor to a supersaturated level; then

crystal growth occurs from the nucleated catalytic seed at the metal–solid interface.

Crystal growth with this technique was established in the 1960s [2] and silicon

nanowire growth is today mastered with the same technique. A related technique to

VLS is the laser-assisted catalytic growth. The silicon-containing gas is generated

by irradiating a Si substrate with high-powered, short laser pulses [3]. On the other

hand, the chemical vapor deposition (CVD) method uses materials that can be

evaporated at moderate temperatures [4, 5].

2.1.2 Top-Down Techniques

The top-down fabrication approaches have in common the utilization of CMOS

steps or hybrid steps that can be integrated into a CMOS process, while keeping the

process complexity low and the yield high enough. They also have in common the

ability to define the functional structures (nanowires) directly onto the functional

substrate.

Standard photolithography techniques: These techniques use standard photo-

lithography to define the position of the nanowire. Then, by using smart processing

techniques, including the accurate control of the etching, oxidation and deposition

of materials, it is possible to scale the dimensions down far below the photolitho-

graphic limit [6–11].

Miscellaneous mask-based techniques: The electron-beam lithography

[12, 13] offers a higher resolution below 20 nm than standard photolithography.
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It, however, has a lower throughput. The highest resolution can be achieved by

using extreme ultraviolet interference lithography (EUV-IL) [14]. However, this
approach needs a highly sophisticated setup in order to provide the required EUV

wavelength.

The stencil technique [15] is a different approach that requires no photoresist

patterning. It is based on the definition of a mask that is fully open in the patterned

locations. The mask is subsequently clamped onto the substrate, and the material to

be deposited is evaporated or sputtered through the mask openings onto the

substrate.

Spacer techniques: The spacer technique is based on the idea of transforming

thin lateral dimensions, in the range of 10–100 nm, into a vertical dimension by

means of an anisotropic etch of the deposited materials. In [16], spacers with a

thickness of 40 nm were demonstrated with a line-width roughness of 4 nm and a

low variation across the wafer. The nanowire count can be duplicated by using the

spacers themselves as sacrificial layers for a following set of spacers [17].

Nanomold-based techniques: Alternative techniques use nanoimprint lithog-
raphy (NIL), which is based on a mold with nanoscale features [18] that is pressed

onto a resist-covered substrate in order to pattern it. The substrate surface is scanned

by the nanomold in a stepper fashion. The as-patterned polymer resist is processed

in a similar way to photolithographically patterned photoresist films. The super-
lattice nanowire pattern transfer technique (SNAP) and the planar edge defined
alternate layer (PEDAL) [19] are examples of NIL.

2.2 Crossbar Technologies

The previously surveyed techniques yield parallel or mashed nanowires. In order to

arrange them into arrays that are generally called crossbars, additional techniques
are required and will be explained in the following.

2.2.1 Crossbars with Bottom-Up Nanowires

Nanowires fabricated with bottom-up processes have the property of generally

being grown on a different substrate from the functional one. Consequently, they

need to be dispersed into a solution and transferred onto the substrate to be

functionalized. The iteration of the transfer operations with different directions

may lead to a crossbar structure [20]. It has been demonstrated that the application

of an electrical field to the substrate improves the directionality of the assembled

nanowires [21, 22]. The approach is, however, limited by the electrostatic interfer-

ence between nearby electrodes, and the requirement for an extensive lithography

to fabricate the electrodes [20].
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2.2.2 Nanomold-Based Nanowire Crossbars

NIL was used in [23, 18] in order to define two orthogonal layers of metallic

nanowires. First, the nanomold was fabricated by electron-beam lithography and

reactive ion etching (RIE) of a SiO2-covered silicon substrate. The mold was then

pressed onto a spin-coated polymer to define a lift-off mask for Ti/Pt nanowires.

A layer of molecular switches, [2]rotaxane, was deposited over the entire substrate

using the Langmuir–Blodgett (LB) method [24]. Then, the fabrication of the top

Ti/Pt nanowire layer was performed in a similar way as explained for the lower

nanowire layer. High-density crossbars were also demonstrated with the SNAP

technique that was explained in Section. 2.1 [25], yielding 160-kb molecular

memories with a density up to 1011 bit/cm2 [26].

2.2.3 Crossbar Switches

Many attempts have been carried out in the last few decades to design molecules

comprising a donor-(s bridge)-acceptor, which have an asymmetric behavior,

allowing the current to flow in a preferential direction [27–29]. Another class of

switching molecules is represented by bistable molecules, such as [2]rotaxanes,

pseudorotaxanes and [2]catenanes. They consist of two mechanically interlocked,

or threaded, components having two stable states and can be switched between

them when the appropriate bias voltage is applied [30, 31]. Other research groups

have focused on phase change materials as a switching material at the nanowire

crosspoints [32] operating as diodes.

3 Architecture of Nanowire Crossbars

Nanowire crossbars are defined on a scale that can be far below the lithographic

limit. The ability to hybridize CMOS technology with the previously surveyed

nanowire techniques (Section. 2) promotes the organization of the overall system in

a regular way, where globally CMOS parts are operational, while locally nanowire

crossbars are used. This raises the questions of the way in which crossbars should be

connected to the outer CMOS circuit on the one hand, and the type of functions that

crossbars can execute on the other hand. This section introduces the crossbar

organization, surveying some emerging crossbar architectures and focuses on the

design of the decoder.

3.1 Organization of Nanowire Crossbars

The baseline organization of a nanowire crossbar circuit is depicted in Fig. 1a. An

arrangement of two orthogonal layers of parallel nanowires defines a regular grid of

intersections called crosspoints. The separation between the two layers can be filled
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with phase change material or molecular switches at the crosspoints. Information

storage, interconnection or computation can be performed with these crosspoints

[30, 33]. A set of contact groups is defined on top of the nanowires. Every contact group

makes an ohmic contact to a corresponding distinct set of nanowires, which represents

the smallest set of nanowires that allows contacts with lithographically defined lines,

calledmesowires (MWs). Themesoscale corresponds in thecontext of this chapter to the
lithography scale; while the nanoscale corresponds to the sublithographic scale.

This configuration bridges every set of nanowires within a contact group to the

outer CMOS circuit. In order to fully bridge the scales and make every nanowire

within this set uniquely addressable by the outer circuit, a decoder is needed. It is

formed by a series of transistors along the nanowire body, controlled by the

mesowires and having different threshold voltages Vth (Fig. 1b ). The distributions

of Vth’s is called the nanowire pattern. Depending on this pattern and the pattern of
applied voltages in the decoder (VA’s), one single nanowire in the array can be

made conductive (Fig. 1c ). In this case, this nanowire is said to be addressed by the

applied voltage pattern.

It is possible to think of replacing each transistor at the diagonal crosspoints by an

ohmic contact and to eliminate all other transistors; thus, mapping each horizontal

wire onto a vertical one. However, this method is technologically difficult, because

the nanowire pitch is defined below the photolithographic limit, which justifies the

proposed decoder design.

3.2 Architectures Based on Nanowire Crossbars

Before the emergence of the crossbar architecture, many experiments were per-

formed with a massively parallel computer built at Hewlett-Packard laboratories,

Decoder

CrosspointsMesowires

Nanowires
Contact Group

Mesowire

VT1

VA1 VA2 VA3 VA4

VT2 Nanowire

Nanowire

a
b

c

Fig. 1 Baseline organization of a crossbar circuit and its decoder. (a) Architecture of a crossbar

circuit. (b) Decoder layout. (c) Decoder circuit design
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the Teramac [34], in state-of-the-art CMOS technology. Despite the high defect

rate affecting single components in the Teramac, the approach seemed to be

efficient, resulting in 100� faster robust operation than a high-end single-processor

computer in some configurations. The required architectural elements are a large

number of computing instances, parallelism of their operation and high bandwidth.

Since these elements naturally exist in the crossbar architecture, this architectural

paradigm emerged as a possible approach for reliable massively parallel computing

with highly defective basic components [35], where molecular devices can perform

a logic operation or information storage at the crosspoints.

Some crossbar prototypes were fabricated with different sizes [18, 26, 30], and

the basic function that these prototypes implemented is information storage. Cross-

bars implementing computational units, such as the nanoBlock [36, 37], are also

conceptually possible. However, they need restoration stages and latches that can

be implemented using resonant tunneling diodes (RTDs) or by hybridizing cross-

bars with CMOS. The CMOS part can also provide the necessary gain and input/

output interface. It is not excluded that the CMOS part performs more functions

than the crossbars in a hybrid architecture, however, the parallelism, reconfigur-

ability and high connectivity will be the main advantages provided by crossbars

owing to their matrix form, in addition to their ability to scale down below the limit

imposed by photolithography.

The nanoPLA architecture is a concept based on semiconducting SiNWs

organized in a crossbar fashion with molecular switches at their crosspoints. The

switches can be programmed in order to perform either signal routing or wired-OR

logic function. The input of the crossbar represents a decoder, which is used in order

to uniquely address every nanowire independently of the others. The decoder

design assumes that the nanowires are differentiated by a certain doping profile

[38]. This will be explained in more detail in Sect. 3.3. The output of the crossbar is

routed to a second crossbar, in which the signals can be inverted by gating the

nanowires carrying the signals. A cascade of these two planes is equivalent to a

NOR plane [39]. Two back-to-back NOR planes can implement any logic function

in two-level form.

3.3 Decoding Nanowires

The decoder is the element of the crossbar circuit that bridges the meso- to

nanoscale. Even though the structure of the decoder circuit is simple, its reliable

fabrication and design are challenging. The need to use different transistors neces-

sitates different doping levels in specific regions on the nanowires whose location

cannot be controlled precisely because the nanowire scale is below the lithographic

limit. Thus, nanowires that are already doped during the fabrication process may

simplify the task. We distinguish, therefore, between fabrication techniques that

yield differentiated and those that yield undifferentiated nanowires. Differentiated

nanowires have a certain doping profile; they are generally fabricated using a
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bottom-up approach and the doping profile is defined during nanowire growth.

Undifferentiated nanowires have no specific doping profile; they are generally

fabricated using a top-down approach.

3.3.1 Decoders for Differentiated Nanowires

Differentiated NWs have an axial or radial doping profile which is defined during

the NW growth process. An axial decoder was presented in [40], in which

the distribution of the Vth’s is fully random. The NWs are dispersed parallel to

each other and they are addressable when they have different Vth patterns. The

probability that their addresses are different may be increased by increasing the

number of addressing wires. On the other hand, the radial decoder [41] relies on

NWs with several radial doping shells. The remaining shells after a sequence of

etchings depends on the etching order in every region. The suite of shells along

the NW after all etching steps defines the NW patterns. While both axial and

radial decoders require the same estimate of the number of MWs needed to

address the available NWs; the radial decoder has the advantage of being less

sensitive to misalignment of NWs. To address N NWs, M MWs are needed,

M ¼ [2.2 � log2(N)] þ 11. With these dimensions, the decoders address every

nanowire with a probability greater than 99%.

3.3.2 Decoders for Undifferentiated Nanowires

On the other hand, for undifferentiated nanowires, namely those fabricated in a

top-down process, a mask-based decoder was presented in [42] and its ability to

control undifferentiated NWs was proven. The MWs are separated from the NWs

by a nonuniform oxide layer: in some locations, a high-k dielectric is used, in

others, a low-k dielectric. The high-k dielectric amplifies the electric field gener-

ated by the MWs relatively to the low-k dielectric. Consequently, the field-effect

control by the MWs happens only at the NW regions lying under the high-k
dielectric. The oxide mask is lithographically defined; making the decoder depen-

dent on lithography limits. In order to address N nanowires, the mask-based decoder

necessitates the use ofM ¼ 2� log2(N)þ emesowires, with e a small constant�1,

which depends on the fabrication technique and the degree of redundancy to be

achieved.

For undifferentiated NWs, a random contact decoder has been presented in

[43, 44]. Unlike the other decoders for which the NW codes are among a known

set of codes, the connections established between MWs and NWs for this decoder

are fully random. It results from a deposition of gold particle onto the NWs, where

the only controlled parameter is the density of particles. In order to control each

of the N NWs uniquely with a high probability, M ¼ 4.8 � log2(N) þ C mesowires

are needed, with C being a large constant that depends on the design parameters.
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4 Decoder Logic Design

The sequence of Vth’s along every NW defining the NW pattern associates a unique

code word with the NW that can activate it. Previously explored nanowire encoding

schemes, i.e., codes, are binary. The code length impacts the decoder size and the

overall crossbar area. It is, therefore, interesting to investigate the benefits of

reducing the code length by using multivalued logic (MVL) codes. The generaliza-

tion of the usual codes to MVL produces novel code families that have not been

explored before. In this section, the construction rules for new code families are

presented. Defects that can affect them are modeled. Then, the fault tolerance of the

considered codes and their impact on the crossbar circuit in terms of reliability and

area are investigated.

4.1 Semantic of Multi-valued Logic Addressing

In the following discussion, we generalize the notion of encoding to multiple-

valued bits by first defining some basic relations needed to identify possible

codes. Some basic concepts used in coding theory are generalized from the binary

definitions stated in [45] to multiple-valued logic. The matching of a code word and

its pattern corresponds here to conduction. Before introducing the impact of

defects, we consider the code (O) and pattern (A) spaces to be identical, realizing

a one-to-one mapping between each other. Algebraic operations are performed as

defined in the ring of integers.

Definition 1. A multiple-valued pattern a, or simply a pattern a, is a suite of

M digits ai, in the n-valued base B; i.e., a ¼ (a0,. . ., aM�1) ∈ BM, B ¼ {0,. . .,
n� 1}. A multiple-valued code word c, or simply a code word c, is defined the same

way as a pattern.

A pattern represents a serial connection of M transistors in the silicon nanowire

core; each digit ai of the code word represents a threshold voltage Vth,i, with the

convention ai < aj , Vth,i < Vth,j, 8i, j ¼ 0,. . ., M � 1. An analogous equivalence

holds for ai ¼ aj and, Consequently, for ai > aj. This convention is equivalent to

discretizing theM values ofVth and ordering them in an increasing order. In Fig. 2a, b,

we illustrate the pattern 002120 representing the Vth sequence (0.2 V, 0.2 V, 0.6 V,

0.4 V, 0.6 V, 0.2 V).

A code word represents the suite of applied voltages VA at the M mesowires.

These are defined such that every VA,i is slightly higher than Vth,i, and lower than

Vth,iþ1 (Fig. 2c, d).

Definition 2. A complement of digit xi in a code word or pattern x is defined as:

NOT(xi) ¼ xi ¼ (n � 1) � xi. The operator NOT can be generalized to vector x,

acting on each component as defined above. Note that NOT(NOT(x) ) ¼ x.

160 M.H.B. Jamaa and G. De Micheli



Definition 3. A pattern a is covered by a code word c if and only if the following

relation holds: 8i ¼ 0,. . ., M � 1, ci � ai. By using the sigmoid function:

sðxÞ ¼ 0 x � 0

1 x > 0

n

generalized to vectors: s(x) ¼ (s(x0),. . ., s(xM�1) ), the definition above becomes:

a is covered by c,ks(a� c)k ¼ 0. Alternatively, we can define the order relations

on vectors c and a:

c<a , 8i; ci<ai

c>a , 8i; ci>ai:

The relation becomes relaxed (i.e., � or �) if there exists i such that ci ¼ ai. Then,
a pattern a is covered by a code word c if and only if a � c. The same definition for

covering can be generalized to two patterns or two code words.

Covering a given pattern with a certain code word is equivalent to applying a

suite of gate voltages making every transistor conductive. Then, the nanowire is

conducting and we say that it is controlled by the given sequence of gate voltages.

Figure 3a illustrates the case in which the code word covers the pattern and the

nanowire is conducting, while Fig. 3b illustrates the opposite case.

Definition 4. A pattern a implies a pattern b if and only if ks(b � a)k ¼ 0; i.e., b is

covered by a. We note this as follows: a) b. Since a one-to-one mapping between

the patterns and codes was assumed, we generalize this definition to code words:

(ca ) cb) , ks(cb � ca)k ¼ 0; i.e., cb is covered by ca.

This means that if a nanowire with pattern a corresponding to code word c
a is

covered by a code word c*, then the nanowire with pattern b corresponding to code

VT,i
VT, i

VA,i

VA,i

ai

ci

0.2 V

0.7 V 0.3 V 0.7 V 0.5 V 0.5 V 0.5 V

0.2 V 0.6 V 0.4 V 0.6 V 0.2 V

0.2V 0.4V 0.6V

0.3V 0.5V 0.7V

0

00

0

0

1

1

111

2

0 1 2

2 2

22

a

c

b

d

Fig. 2 Mapping of threshold and applied voltages onto discretized values. (a) Pattern 002120

and its Vth sequence. (b) Discretization of Vth values. (c) Code word 202111 and its VA sequence.

(d) Discretization of VA values
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word cb is also covered by the same code word c*. Applying the voltage suite c* will

result in turning on the nanowires with either pattern (see Fig. 4).

Definition 5. Code words ca and cb are independently covered if and only if ca does
not imply cb and cb does not imply ca.

This definition means that there exists a voltage suite that turns on the nanowire

with pattern a corresponding to ca, but not with pattern b corresponding to cb (see

Figs. 5a, b ). Reciprocally, there exists a second voltage pattern that turns on the

nanowire with pattern b corresponding to cb, but not with pattern a corresponding to

ca (see Figs. 5c, d ).

Definition 6. Code word ca belonging to set O is addressable if and only if it does

not imply any other code word in O\{ca}. We define set O to be addressable if and

only if every code word in O is addressable.

Fig. 3 Example of

conducting and

nonconducting nanowires.

(a) Conducting nanowire

(code word covers pattern).

(b) Nonconducting nanowire

(code word does not cover

pattern)

Fig. 4 Example of

implication between patterns:

c* covers a; since a) b, then

c* also covers b

Fig. 5 Example of independent covering: code words ca and cb are independently covered
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Assuming that there is a one-to-one mapping between code space O and pattern

space A, then saying that a code word ca implies no other code word in O\{ca}
is equivalent to saying that it covers only pattern a and no other pattern in A\{a}.

Thus, there exists a voltage sequence that activates only the nanowire with pattern

a and no other nanowire having its pattern in A\{a}.

Proposition 1. A set O of code words is addressable if and only if every code word
in O is independently covered with respect to any other code word in O.

Proof. This follows directly from Defs. 5 and 6.

Consequently, an admissible set of applied voltages that uniquely addresses each

nanowire corresponds to the set of code words O that independently covers every

pattern in A. This set of patterns can be simply taken as O itself, if O is addressable.

4.2 Code Construction

4.2.1 Hot Encoding

In binary logic, the (k, M) hot code space is defined as the set of code words with

lengthM having k occurrences of bit ‘1’ and (M � k) occurrences of bit ‘0’ in every
code word (k�M). It is also known as the k-out-of-M code; which was first used as a

defect-tolerant encoding scheme [46]. This definition can be generalized to the

n-valued logic. We first define k as an n-dimensional vector (k0,. . ., kn�1), such thatP
i ki ¼ M. Then, themultivalued (k,M)-hot encoding is defined as the set of all code

words having lengthM such that each ki represents the occurrence of digit i, i¼ 0,. . .,
n� 1.We consider, for instance, the ternary logic (n¼ 3), and we set k¼ (4, 3, 1) and

M ¼ 8. Then, every code word in the considered (k, M)-hot space contains 4� the

digit ‘0’, 3� the digit ‘1’ and 1� the digit ‘2’. The considered code space includes, for

instance, code words 00001112 and 00210110. The code space defined by a multi-

valued (k, M)-hot encoding is addressable and its size is maximal for ki ¼ M/n, 8
i¼ 0,. . .,n� 1.The sizeof themaximal-sized space is asymptotically/ nM/M(n�1)/2 for

a given n. In this chapter, it is implicitly understood that the (k, M)-hot code with the

maximal-sized space is used, even when just (k,M)-hot code is mentioned.

4.2.2 N-ary Reflexive Code

The binary tree code with lengthM is a 2-to-2M encoder representing the 2M binary

numbers 0 � � � 0 to 1 � � � 1. Similarly, an n-ary tree code with lengthM is defined as

the set of nM numbers ranging from 0 � � � 0 to (n � 1) � � � (n � 1). For instance, the

ternary (n ¼ 3) tree code with length M ¼ 4 includes all ternary logic numbers

ranging from 0000 to 2222. As one can easily see, some code words imply many

others from the same space: for instance, 2222 implies all other code words. It is

possible to prevent the inclusive character of the n-ary tree code by attaching the
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complement of the code word (i.e., 2222 becomes 22220000). The as-constructed

code is the N-ary Reflexive Code (NRC). The code space defined by the NRC is

addressable and its size is nM. In a similar fashion, the reflection principle works for

any other code (e.g., Hamming code), making the whole code space addressable.

However, in return it doubles the code length.

4.3 Defect Models

4.3.1 Basic Error Model

Figure 6 illustrates the main assumptions behind basic error models. We assume

that the threshold voltages Vth,i are equidistant; i.e., Vth,iþ1 � Vth,i ¼ 2aV0, V0 being

a given scaling voltage and a is given by the technology. The applied voltages VA,i

are set between every two successive threshold voltages Vth,i and Vth,iþ1, not

necessarily in the middle, rather shifted by uV0 towards Vth,i; where u is a design

parameter.

If the variability of Vth,i is high or the spacing between two successive Vth,i’s is

low due to the large number of doping levels, then Vth,i may exceed a voltage VX,i

given by VA,i� d · V0; where d will be derived later. When Vth increases, the sensed

current, while ai is applied to digit ci, decreases (ai ¼ ci) and the sensed current,

P
ro

ba
bi

lit
y 

de
ns

ity
: f

(V
T

,i)

VT,i VA,i VT,i+1VA,i−1VT,i−1

Flip−upFlip−down No defect

αV0

δV0

υ: displacement of VA,i

pu
pd

Fig. 6 Coding defects induced by Vth variability
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while ai þ 1 is applied to the same digit, increases. Voltage VX,i is defined as the

gate voltage which results in the decrease of the sensed current for ai by a factor q
from its value at Vth;i. Higher the q, more accurate the sensing. Thus, q is also

considered a design parameter. Assuming that the transistors are saturated, then the

current in the saturation region is proportional to (VA,i � Vth)
2, where Vth is the

actual threshold voltage. Consequently, the following condition on VX must hold:

(VA,i � Vth;i)
2/(VA,i � VX,i)

2 ¼ q; which gives: d ¼ (a þ u)/
ffiffiffi
q

p
for long-channel

transistors.2 This fixes the values of VX,i; when Vth,i exceeds VX,i, digit ai acts as
ai þ 1; its address becomes ci þ 1 and we call this case the flip-up defect.

Now, consider the case when Vth,i falls below VA,i�1 � d · V0 ¼ VX,i�1, then the

current flowing while ai� 1 is applied is not�0 anymore, and always greater than q
times the current flowing while ci� 2 is applied. Then, ai is implied by ci and ci� 1

but not by ci � 2; its address is ci � 1 which means that ai acts as ai � 1; this case is

called the flip-down defect. The probabilities of flip-ups and flip-downs are given by
the following expressions, which are independent of i. Here, fi is the probability

density function of Vth,i:

pu ¼
Z 1

VX;i

fiðxÞdx pd ¼
Z VX;i�1

�1
fiðxÞdx

When Vth,i falls within the range between the threshold values for flip-up and

flip-down defects, the digit is correctly interpreted. We notice that the flip-down

error never occurs at digits having the smallest value, 0, since the corresponding

Vth;i is by definition smaller than the smallest VA,i available. For the same reason,

the flip-up error never occurs at digits having the largest value, n � 1. In order to

study the size of the addressable code space, we consider flip-up and flip-down

errors in the code space instead of flip-up and flip-down defects at the nanowires,

since the two considerations are equivalent.

4.3.2 Overall Impact of Variability

If Vth varies within a small range close to its mean value, then the pattern does not

change, since the nanowire still conducts under the same conditions. Then, a one-

to-one mapping between the code and the pattern space holds, which is shown in

Fig. 7 for a ternary hot code with M ¼ 3. On the contrary, if the Vth variation is

large, then some digits may be shifted up or down, as explained above. When a

pattern has a sequence of errors, it can be either covered by one or more code words

or it can be uncovered. When we consider the code words, some of them cover one

or more patterns and some cover no pattern under the error assumptions. The

following example explains this conjecture:

2 If we consider short-channel transistors, then the saturation current is proportional to (VA,i � Vth)

and d ¼ (a + u)/q.
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Example 1. Figure 7b illustrates the digit shift at some patterns. We notice that the
first pattern 022 (which underwent a defect) is not covered by any code word
anymore. Thus, its nanowire cannot be addressed. All the other patterns are
covered at least by one code word. Two categories among these covered patterns
can be distinguished. On the one hand, the fourth pattern 120 is covered by the
fourth code word, which in turn covers another pattern (the fifth). Thus, by
activating the fourth nanowire, the required control voltages activate either the
fourth or fifth nanowire. Consequently, the fourth nanowire cannot be addressed
uniquely. This case represents the patterns covered only by code words covering
more than a single pattern. On the other hand, the complementary case is illu-
strated by the fifth pattern 100, which is covered by many code words. However, one
of these code words (201) covers no other pattern except the considered one. Thus,
it is possible to uniquely activate the fifth nanowire by applying the voltage
sequence corresponding to code word 201.

The examples shown in Fig. 7 demonstrate that a pattern undergoing defects can

be either (1) not covered by any valid code word, in which case the nanowire cannot

be identified as addressable and the pattern is useless; or (2) covered by at least one

valid code word. In the second case, if two patterns or more are covered by the same

code word, then this code word cannot be used because more than one nanowire

would have the same address. Thus, in the second case, the pattern is only useful if

at least one code word covering it covers no other pattern, insuring that the covered

pattern can be addressed.

Assuming that, on an average, every code word covers n patterns when errors

occur, let pI be the probability that a pattern becomes uncovered, and pU the

probability that a code word covers a unique pattern (�pU ¼ 1 � pU). Let jOj be
the original size of the code space and jO0j the size after errors occur. Set O0

contains useful addresses under defect conditions, i.e., those that address unique

nanowires even though the nanowires are defective. The size of O0 indicates the
number of nanowires that remain useful under high variability conditions. Then:

jO0j ¼ jOj � ð1� pIÞð1� �pnUÞ (1)

Fig. 7 Mapping of the code space onto the pattern space. (a) Mapping in the defect-free case.

(b) Mapping and in the case of defects
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A model for multidigit errors in multivalued logic codes was presented in [47]

and gives an estimate of pI and pU for both types of code space. Parameter n is

estimated as a fit parameter from Monte Carlo simulations.

4.4 Impact of the Encoding Scheme

In order to assess the variation of the addressable code space under variable Vth, we

plotted separately the uncovered part jOjun ¼ pI · jOj, the addressable part jO0j, and
the immune part jOjim in which no defects occur. The fit parameter n was estimated

with Monte-Carlo simulations. Figure 8 shows the sizes of these subspaces for a

ternary (3, 14)-reflexive code depending on the 3s-value of Vth. The Monte-Carlo

simulation confirms in the same figure the analytical results and gives the value 2.8

for the fit parameter n. The size of the addressable space jO0j drops quickly when 3s
reaches 0.4 V. At the same time, more patterns become uncovered. Interestingly,

there are more addressable than immune patterns, because some defective patterns

can be randomly addressed. This tendency increases for unreliable technologies,

and around 10% of the original code space size can be randomly addressed under

extreme conditions. The simulation of hot codes was not shown, because the result
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is similar, except for large defect probabilities: under these conditions, the size of

the addressable space goes faster towards 0 because the construction of hot codes

imposes more constraints than the NRC.

The sizing of memory blocks (i.e., the size of contact groups in Fig. 1) and the

number of Vth’s are interdependent. As a matter of fact, Fig. 9 shows that increasing

the number of Vth’s has two opposite effects: on one hand, it enables the addressing

of more wires with the same code length; on the other hand, it makes the transistors

more vulnerable to defects and increases the number of lost code words. A typical

trade-off situation is illustrated in Fig. 9 with the ternary (3,9) and binary (2,12) hot

codes (with (n, k) ¼ (3,3) and (2,6), respectively) yielding almost the same number

of addressable nanowires for 3s around 0.4 V. The first one saves area because it

has shorter code words, whereas the second one is technologically easier to realize

(only two different Vth’s). The use of the ternary decoder is recommended for

reliable technologies (ensuring less area and more code words), but when the

technology becomes more unreliable, there is a trade-off between area savings

and easier fabrication process.

The benefits of using multivalued logic to design bottom-up decoders is sum-

marized in Table 1. Among the decoders presented in Sect. 3.3, the radial decoder

would need several oxide shell thicknesses and the random contact decoder would
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need more than one level of conduction in order to be extended to n-ary logic. These
features are not inherent to the decoders, as shown in [41] and [44]; thus they cannot

be extended to multilevel logic. On the contrary, it is possible to assume more than

two levels of doping for the axial decoder and more than one oxide thickness for

the mask-based decoder in order to perform MVL addressing without altering the

underlying decoding paradigm. Consequently, only these two decoders were

extended to MVL addressing. The bottom-up approaches promise a high effective

density under technological assumptions that are still to be validated. The use of

ternary logic in 32 kB raw area memories saves area up to 20.2% for memories with

axial decoder, and up to 11.8% for memories with mask-based decoder.

5 Testing Crossbars

The physical defects affecting the nanowires have been modeled at a high abstrac-

tion level as changes in the nanowire addresses. A defect can cause a change of the

nanowire address such that the nanowire becomes unaddressable in the considered

code space, or it shares the same address with another nanowire. In these cases, it is

required that defective nanowire addresses are detected and discarded from the used

set of addresses. This task can be performed by testing the decoder circuit.

Testing the decoder, in order to keep only defect-free parts of the code space,

highly simplifies the test procedure of the whole crossbar circuit. This section

proposes a test method that identifies the defective codes. The method quantifies

the test quality, measured as the probability of test error, and it investigates the

dependency of the test quality on the decoder design parameters. Without loss of

generality, crossbar circuits considered in the following implement a memory

function.

5.1 Testing Procedure

This section presents an overview of a test method that can be applied to nanowire

arrays. This is an exhaustive method used to illustrate the testing principle. More

Table 1 Yield of different

decoders in terms of area

per working bit (nm2) at

the technology node 45 nm

Raw size (kB) Base Axial decoder Mask-based

8 2 1,576 622

8 3 1,196 550

8 D 24.1% 11.5%

32 2 846 423

32 3 676 373

32 D 20.2% 11.8%
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efficient pseudo-random techniques also exist. However, the focus here is only on

the thresholder design and the test quality.

The nanowire testing is performed for every layer separately. Thus, we depicted

a single nanowire layer with its additional test circuitry in Fig. 14. Besides the

nanowire layer, the system comprises the interfacing circuit (decoder) and a CMOS

part formed by a thresholder, a control unit and a lookup table (LUT). The thresh-
older measures the output current and indicates whether a single nanowire is

detected. The control unit regulates the execution of the testing phase and other

functions, such as the reading and writing operations. The LUT stores the valid

addresses, i.e., those that activate a single nanowire each.
The test can be performed by applying the following exhaustive procedure. First,

the two nanowire layers are disconnected by setting the power (VP) and sense

(GND) electrodes of every layer to the same voltage, such that a large voltage

drop is created between the two layers. Then, we consider every layer separately.

By going through all possible addresses, a voltage VP is applied; then the address is

stored in the LUT if the sensed current indicates the activation of a single nanowire.

The same procedure is repeated for the second layer and it is linear with N.
The output of the nanowire layer (Is) is sensed by the thresholder. We assume

that the variability mainly affects the sublithographic part of the memory represent-

ing the nanowire array. This part is fabricated using an unreliable technology,

unlike the rest of the circuit, defined on the lithography scale and assumed to be

more robust. Thus, we consider that the thresholder, the control circuit or the LUT

are defect-free. The thresholder senses Is, it possibly amplifies it, then it compares Is
to two reference values (I0 and I1 with I0 < I1). If the sensed current is smaller than

I0, then no nanowire is addressed. If the sensed current is larger than I1, then at least
two nanowires are activated with the same address. If the sensed current is between

the reference current levels, then only one nanowire is activated and the address is

considered to be valid. Given the statistical variation of the threshold voltages, the

ability to correctly detect addresses can be expressed with the following probabil-

ities (Fig. 10):

Fig. 10 Crossbar memory and testing unit: besides the memory array and the decoder, the system

comprises a CMOS part formed by a thresholder that detects the bit state, a control unit that

synchronizes the test operation, and a LUT that saves correct addresses
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P0 ¼ PrfðIs � I0Þ given that no nanowire is addressedg
P1 ¼ PrfðI0<Is<I1Þ given that 1 nanowire is addressedg
P2 ¼ PrfðI1 � IsÞ given that � 2 nanowires are addressedg

8><
>: : (2)

Then, the probability that all three events happen simultaneously is given by:

P0 � P1 � P2, assuming that the considered events are independent. We can define

the error probability of this test procedure as follows:

e ¼ 1� P0 � P1 � P2 (3)

The purpose of the following is to design the thresholder in order to obtain the

best test result with the smallest e. In the next sections, we derive the analytical

expressions of P0, P1 and P2, then we optimize I0 and I1 in order to minimize e.

5.2 Perturbative Current Model

During the code testing phase, every nanowire is disconnected from the crossing

nanowires. It can be modeled as a wire connecting the power electrode to the

sensing electrode and formed by two parts (see Fig. 15): the decoder part that is a

series of M pass transistors, and the memory part. Since the memory part is

disconnected from the second layer of nanowires, it can be modeled as a resistive

load RM. We model the devices (SiNWFETs) in this section in a general way as a

voltage-controlled current sources, i.e.,: I ¼ f(VDS, VGS, VT) where I is the drain-

source current, VDS, VGS and VT are respectively the drain-to-source, gate-to-source

and threshold voltages. The decoder design is based on two different VT’s (VT,Ref0

and VT,Ref1 such that VT,Ref0 < VT,Ref1, and we define DVT ¼ VT,Ref1 � VT,Ref0).

When a nanowire is addressed, every variation of VT results in a variation of the

current through the nanowire, which can be noted the following way (Fig. 11):

I ¼ IOP þ dI (4)

Fig. 11 Electrical parameters of a biased nanowire under test: the decoder part is represented by

M transistors in series, and the memory part is represented by a resistance RM. Notice that the

perpendicular nanowire layer is disconnected from the nanowire under test
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The signal I is linearized around the operating point (OP) and divided into a

large IOP and a small signal dI. This approach is widely used in circuit and network
theory and in sensitivity analysis [48]. The large signal can be estimated with a

SPICE simulator. The small signal can be calculated by linearizing all the equations

describing the circuit around the OP:

dI ¼ � 1

RM

� vT � A�1 � B � dVT (5)

with the variational vector dVT¼ [dVT,1,. . ., dVT,M]
T for the threshold voltages, and

the small signal matrices A and B given by:

A ¼

1þ r1 � gDS;1 1 � � � 1

1� r2 � gm;2 1þ r2 � gDS;2 � � � 1

..

. ..
.

1� rM � gm;M 1� rM � gm;M � � � 1þ rM � gDS;M

2
66666664

3
77777775
;

B ¼

�r1 � gT;1 0 � � � 0

0 �r2 � gT;2 � � � 0

..

. ..
.

0 0 � � � �rM � gT;M

2
66666664

3
77777775
:

We used the following notations: gDS,i¼ ∂fi/∂VDS,i, gm,i¼ ∂fi/∂VGS,i, gT,i¼ ∂fi/
∂VT,i and ri ¼ RMjjg�1

m;i (parallel resistance connection). All the components of the

matrices A and B are considered at the operating point.

5.3 Stochastic Current Model

We divide the sensed current into a useful and a noisy part. The useful signal (Iu) is
the current that flows through a nanowire when the code corresponding to its pattern

is applied. On the other hand, the noise can be generated by two different processes:

intrinsically (Ii), or defect-induced (Id). The intrinsic noise is generated by nano-

wires that are switched off, which generate subthreshold current. The defect-

induced noise is generated by unintentionally addressed nanowires. Their number

is denoted by Ndef, while the number of nanowires generating intrinsic noise is Noff.

Since the total number of nanowires is N, the following equation must hold

Nuse þ Noff þ Ndef ¼ N, where Nuse ¼ 0 if no nanowire is activated by the applied

code, and Nuse ¼ 1 otherwise.

172 M.H.B. Jamaa and G. De Micheli



5.3.1 Distribution of the Useful Signal

Every VT is considered as an independent and normally distributed stochastic

variable with mean value VT and standard deviation sT: VT � N(VT, s2T). If the
nanowire pattern is correct, then the operating point of VT coincides with its mean

value. If a defect happens so that the bit representing VT flips, then the operating

point of VT is shifted from the mean value of VT by �DVT.

We consider a nanowire with a defect-free pattern a, which is controlled by its

corresponding code ca, and which generates the useful signal Iu. Then, V
OP
T ¼ VT

and dVT � N(0, s2T � v) hold. Then, a useful signal follows the distribution resulting
from (Eq. 10) to (Eq. 11). The operating point is the on-current of the transistors Ion,
which is calculated with SPICE simulator; whereas the variable part is given by

(Eq. 11). We obtain the following mean value and standard deviation of Iu:

�Iu ¼Ion

su ¼ sT
RM

� k vTA�1B k

8<
: (6)

5.3.2 Distribution of the Defect-Induced Noise

Now we consider a nanowire NWb with the pattern b that undergoes some defects

and turns into b*. This defective nanowire can be activated by the code ca of another

nanowire NWa having the pattern a. In this case, NWb generates a defect-induced

noise Id. This defect can be described by a series of shifts at the digits of b

represented by the vector s∈ {0, 1}M, where DVT · si ∈ {0, DVT} indicates whether

a threshold voltage shift happened at the transistor i (i ¼ 1,. . ., M). Assuming that

Ndef nanowires generate a defect-induced noise, then every one of them is char-

acterized by a given threshold voltage shift vector si, i ∈ {1,. . ., Ndef}. By applying

the summation rule of independent Gaussian distributions, we obtain the following

mean value and standard deviation of Id:

�Id ¼Ndef � Ion � DVT

RM
� vTA�1B �

X
i¼1...Ndef

si

sd ¼
ffiffiffiffiffiffiffiffi
Ndef

p � sT
RM

� k vTA�1B k

8>>><
>>>:

: (7)

5.3.3 Distribution of the Intrinsic Noise

The intrinsic noise is generated in the subthreshold regime of the transistors

forming the decoder part of the nanowire. If Noff nanowires are not conducting,
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then Ii ¼ Noff � Ioff is the maximum expected intrinsic noise, assumed to be an

additive constant to the total sensed current.

5.4 Test-Aware Design Optimization

The model was implemented using the bulk MOSFET model for the considered

SiNWFET, as described in [49]. The linearization around the operating point was

performed in the linear region, in order to keep VDS,i, and consequently VP, as low

as possible. It is desirable to obtain a symmetrical device operation, i.e., the same

value of the operating point at all transistors, in order to simplify the matrices A and

B. We assumed also the simple case of a binary reflexive code with the length M,

and we set VP ¼ 0.9 V.
The thresholder parameters that we are investigating in this work are I0 and I1.

The minimal value of I0 has to be greater than N · Ioff in order to insure that P0 ¼ 1.

While keeping I0 larger than this critical value, we plotted I1 that gives the best test
quality (i.e., the minimal error e). The results are shown in Fig. 16 for different

technology and design parameters. Among the considered technology parameters,

b has the strongest influence on I1. However this influence is globally weak: for

RM ¼ 10 kO, increasing b by a factor of 10, adds just 4% to I1. It is unlikely to have
both b and RM large; because b increases with the nanowire width W; while the

opposite happens to RM. Increasing the design parameter M from 12 to 18 has less

impact than increasing b by a factor of 10�, because s � b/
ffiffiffiffiffi
M

p
, showing that the

dependency on M is weaker. Consequently, I1 has a robust value �1.2 � Ion with
respect to design and technology variation. On the other hand, I0 should be large

enough compared to the intrinsic noise Ii, but not too large, in order to separate the

useful signal from the intrinsic noise. For a wide range of reasonable technological

assumptions and array size, I0 � 0.66 � Ion holds.
By using these optimized thresholder parameters, we investigated the test quality

under different conditions. The test quality is improved by reducing the minimum

test error, as plotted in Fig. 17. As expected, the best test quality is obtained for

I1 � 1.2� Ion. For a small-granularity array withM ¼ 12, the test error is e� 10�4.

Reducing the power level from 0.9 V down to 0.6 V reduces the current level at the

operating point without reducing its variable part. Thus, it increases the noise level

in the sensed current, and the test quality degrades by a factor of 22�. The

variability level is the most critical parameter: increasing sT to 100 mV degrades

the test quality by a factor larger than 50�. Improving the transistor gain factor b by

10� enhances the test quality by a factor of 3�. Our analytical model and results

show that a better strategy is to increase the number of addressing wiresM by using

redundant decoders (Figs. 12 and 13).

The physical defects affecting the nanowires have been modeled at a high

abstraction level as changes in nanowire addresses. A defect can cause a change

of the nanowire address such that the nanowire becomes unaddressable in

the considered code space, or it shares the same address with another nanowire.
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In these cases, it is required that defective nanowire addresses be detected and

discarded from the used set of addresses. This task can be performed by testing the

decoder circuit.

Testing the decoder, in order to keep only defect-free parts of the code space,

highly simplifies the test procedure of the whole crossbar circuit. This section

proposes a test method that identifies the defective code words. The method

quantifies the test quality, measured as the probability of test error, and investigates

the dependency of the test quality on the decoder design parameters. Without loss of

generality, crossbar circuits considered in the following discussion implement a

memory function.

5.5 Testing Procedure

This section presents an overview of a test method that can be applied to nanowire

arrays. This is an exhaustive method used to illustrate the testing principle. More

efficient pseudo-random techniques also exist. However, the focus here is only on

the thresholder design and test quality.

Nanowire testing is performed for every layer separately. We depict a single

nanowire layer with its additional test circuitry in Fig. 14. Besides the nanowire

layer, the system comprises the interfacing circuit (decoder) and a CMOS part

formed by a thresholder, control unit and look-up table (LUT). The thresholder

measures the output current and indicates whether a single nanowire is detected.

The control unit regulates the execution of the testing phase and other functions,

such as the reading and writing operations. The LUT stores the valid addresses, i.e.,
those that activate a single nanowire each.

Fig. 14 Crossbar memory and testing unit: besides the memory array and the decoder, the system

comprises a CMOS part formed by a thresholder that detects the bit state, a control unit that

synchronizes the test operation, and a LUT that saves correct addresses
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The test can be performed by applying the following exhaustive procedure. First,

the two nanowire layers are disconnected by setting the power (VP) and sense

(GND) electrodes of every layer to the same voltage, such that a large voltage

drop is created between the two layers. Then, each layer is considered separately.

By going through all possible addresses, a voltage VP is applied; then the address

is stored in the LUT if the sensed current indicates the activation of a single

nanowire. The same procedure is repeated for the second layer. The procedure

is linear in N.
The output of the nanowire layer (Is) is sensed by the thresholder. We assume

that the variability mainly affects the sub-lithographic part of the memory repre-

senting the nanowire array. This part is fabricated using an unreliable technology,

unlike the rest of the circuit, defined on the lithography scale and assumed to

be more robust. Thus, we consider that the thresholder, the control circuit or the

LUT are defect-free. The thresholder senses Is, possibly amplifies it, then compares

Is to two reference values (I0 and I1 with I0 < I1). If the sensed current is smaller

than I0, then no nanowire is addressed. If the sensed current is larger than I1, then at
least two nanowires are activated with the same address. If the sensed current is

between the reference current levels, then only one nanowire is activated and the

address is considered to be valid. Given the statistical variation of the threshold

voltages, the ability to correctly detect addresses can be expressed using the

following probabilities:

P0 ¼ PrfðIs � I0Þ given that no nanowire is addressedg
P1 ¼ PrfðI0<Is<I1Þ given that 1 nanowire is addressedg
P2 ¼ PrfðI1 � IsÞ given that � 2 nanowires are addressedg

8><
>: (8)

Then, the probability that all three events occur simultaneously is given by

P0 � P1 � P2, assuming that the considered events are independent. We can define

the error probability of this test procedure as follows:

e ¼ 1� P0 � P1 � P2 (9)

The purpose of the following discussion is to design the thresholder in order to

obtain the best test result with the smallest e. Next, we derive the analytical

expressions of P0, P1 and P2, then we optimize I0 and I1 in order to minimize e.

5.6 Perturbative Current Model

During the code testing phase, every nanowire is disconnected from the crossing

nanowires. It can be modeled as a wire connecting the power electrode to the

sensing electrode and formed by two parts (see Fig. 15): the decoder part that is

a series of M pass transistors, and the memory part. Since the memory part is
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disconnected from the second layer of nanowires, it can be modeled as a resistive

load RM. We model the devices (SiNWFETs) in this section in a general manner

as voltage-controlled current sources, i.e., I ¼ f(VDS, VGS, Vth) where I is the

drain-source current, VDS, VGS, and Vth are, respectively, the drain-to-source,

gate-to-source and threshold voltages. The decoder design is based on two different

Vth’s (Vth,Ref0 and Vth,Ref1 such that Vth,Ref0 < Vth,Ref1; we define DVth ¼ Vth,

Ref1 � Vth,Ref0). When a nanowire is addressed, every variation of Vth results in a

variation of the current through the nanowire, which can characterized as:

I ¼ IOP þ dI (10)

Signal I is linearized around the operating point (OP) and divided into a large
IOP and a small signal dI. This approach is widely used in circuit and network theory
and sensitivity analysis [48]. The large signal can be estimated with a SPICE

simulator. The small signal can be calculated by linearizing all the equations

describing the circuit around OP:

dI ¼ � 1

RM

� vT � A�1 � B � dVth (11)

where variational vector dVth ¼ [dVth,1, � � �, dVth,M]
T for the threshold voltages, and

the small signal matrices A and B are given by:

A ¼

1þ r1 � gDS;1 1 � � � 1

1� r2 � gm;2 1þ r2 � gDS;2 � � � 1

..

. ..
.

1� rM � gm;M 1� rM � gm;M � � � 1þ rM � gDS;M

2
666664

3
777775
;

B ¼

�r1 � gth;1 0 � � � 0

0 �r2 � gth;2 � � � 0

..

. ..
.

0 0 � � � �rM � gth;M

2
666664

3
777775
:

Fig. 15 Electrical

parameters of a biased

nanowire under test: the

decoder part is represented by

M transistors in series, and the

memory part is represented by

a resistance RM. Note that the

perpendicular nanowire layer

is disconnected from the

nanowire under test
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We have used the following notations: gDS,i ¼ ∂fi/∂VDS,i, gm,i ¼ ∂fi/∂VGS,i,

gth,i ¼ ∂fi/∂Vth,i and ri ¼ RMjjg�1
m;i (parallel resistance connection). All components

of matrices A and B are computed at the operating point.

5.7 Stochastic Current Model

We divide the sensed current into a useful and noisy part. The useful signal (Iu) is
the current that flows through a nanowire when the code word corresponding to its

pattern is applied. On the other hand, the noise can be generated by two different

processes: intrinsically (Ii) or defect-induced (Id). The intrinsic noise is generated

by nanowires that are switched off, which generate subthreshold current. The

defect-induced noise is generated by unintentionally addressed nanowires. Their

number is denoted by Ndef, while the number of nanowires generating intrinsic

noise is Noff. Since the total number of nanowires is N, the following equation must

hold: Nuse þ Noff þ Ndef ¼ N, where Nuse ¼ 0 if no nanowire is activated by the

applied code word, and 1 otherwise.

5.7.1 Distribution of the Useful Signal

Every Vth is considered as an independent and normally distributed stochastic

variable with mean value Vth and standard deviation sth: Vth � N(Vth, s2th). If the
nanowire pattern is correct, then the operating point of Vth coincides with its mean

value. If a defect occurs such that the bit representing Vth flips, then the operating

point of Vth is shifted from the mean value of Vth by �DVth.

We consider a nanowire with a defect-free pattern a, which is controlled by its

corresponding code word ca, and which generates the useful signal Iu. Then,

VOP
th ¼ Vth and dVth � N(0, s2th � v) hold. Thus, a useful signal follows the distribu-

tion resulting from (10) to (11). The operating point is the on-current, Ion, of the
transistors, which is calculated using the SPICE simulator; whereas the variable part

is given by (11). We obtain the following mean value and standard deviation of Iu:

�Iu ¼Ion

su ¼ sth
RM

� k vTA�1B k

8<
: (12)

5.7.2 Distribution of Defect-Induced Noise

Next, we consider a nanowire NWb with pattern b that undergoes some defects and

the pattern turns into b*. This defective nanowire can be activated by the code word

ca of another nanowire NWa with pattern a. In this case, NWb generates a defect-

induced noise Id. This defect can be described by a series of shifts at the digits of

b represented by vector s∈ {0, 1}M, where DVth · si∈ {0, DVth} indicates whether a
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threshold voltage shift occurred at transistor i(i ¼ 1,. . ., M). Assuming that Ndef

nanowires generate a defect-induced noise, then every one of them is characterized

by a given threshold voltage shift vector si, i ∈ {1,. . ., Ndef}. By applying the

summation rule of independent Gaussian distributions, we obtain the following

mean value and standard deviation of Id:

�Id ¼Ndef � Ion � DVth

RM

� vTA�1B �
X

i¼1...Ndef

si

sd ¼
ffiffiffiffiffiffiffiffi
Ndef

p � sth
RM

� k vTA�1B k

8>>><
>>>:

: (13)

5.7.3 Distribution of the Intrinsic Noise

The intrinsic noise is generated in the subthreshold regime of the transistors

forming the decoder part of the nanowire. If Noff nanowires are not conducting,

then Ii¼ Noff� Ioff is the maximum expected intrinsic noise, and assumed to be a an

additive constant to the total sensed current.

5.8 Test-Aware Design Optimization

The model was implemented using the bulk MOSFET model for the considered

SiNWFET, as described in [49]. The linearization around the operating point was

performed in the linear region, in order to keep VDS,i, and consequently VP, as low

as possible. It is desirable to obtain a symmetrical device operation, i.e., the same

value of the operating point at all transistors, in order to simplify matrices A and B.

We assume the simple case of a binary reflexive code with length M, and we set

VP ¼ 0.9 V.
The thresholder parameters that we have investigated in this work are I0 and I1.

The minimal value of I0 has to be greater than N · Ioff in order to ensure that P0 ¼ 1.

While keeping I0 larger than this critical value, we plotted I1 that gives the best test
quality (i.e., minimal error e). The results are shown in Fig. 16 for different

technology and design parameters. Among the considered technology parameters,

b (the transistor gain factor) has the strongest influence on I1. However this

influence is globally weak: for RM ¼ 10 kO, increasing b by a factor of 10 adds

just 4% to I1. It is unlikely to have both b and RM large; because b increases with

nanowire width W, whereas the opposite happens to RM. Increasing the design

parameter M (the number of addressing wires) from 12 to 18 has less impact than

increasing b by a factor of 10�, because s � b/
ffiffiffiffiffi
M

p
, showing that the dependency

on M is weaker. Consequently, I1 has a robust value �1.2 � Ion with respect to

design and technology variation. On the other hand, I0 should be large enough

compared to intrinsic noise Ii, but not too large, in order to separate the useful signal
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from the intrinsic noise. For a wide range of reasonable technological assumptions

and array size, I0 � 0.66 � Ion holds.
By using these optimized thresholder parameters, we investigated the test quality

under different conditions. The test quality is improved by reducing the minimum

test error, as plotted in Fig. 17. As expected, the best test quality is obtained for

I1 � 1.2� Ion. For a small-granularity array withM ¼ 12, the test error is e� 10�4.

Reducing the power level from 0.9 V down to 0.6 V reduces the current level at the

operating point without reducing its variable part. Thus, it increases the noise level

in the sensed current, and the test quality degrades by a factor of 22�. The

variability level is the most critical parameter: increasing sth to 100 mV degrades

the test quality by a factor larger than 50�. Improving the transistor gain factor b by

10� enhances the test quality by a factor of 3�. Our analytical model and results

show that a better strategy is to increase the number of addressing wiresM by using

redundant decoders.

6 Conclusions

The crossbar architecture is a possible architectural paradigm for high-density

integration of SiNWs into CMOS chips, and can be applied to a wide range of NW

fabrication technologies. The variability of the nanowires due to their shrinking

dimensions has an impact on the operation of the arrays. In this chapter, the focus

was on the impact of variability on decoder design, which is the part of the circuit

that bridges the array to the CMOS part of the chip. In order to address this problem,

an abstract model of nanowires as a set of code words in a code space was introduced

and the impact of variability was modeled as a sequence of errors that affect the code

words. Based on this model, the decoder design was shown to be made more reliable

by optimizing the choice of encoding scheme. Detection of errors can be performed

by carrying out a test procedure. It was demonstrated that the decoder design can be

optimized with respect to the test procedure in order to minimize the test error

probability.

Exercise 1 Delay in a Crossbar

Consider the following NxN crossbar circuit with N nanowires in every plane and

M = log2(N) access transistors in the decoder of every plane. Determine the delay

through the crossbar when the address corrsponding to the crosspoint (X,Y) is

activated (X and Y are between 1 and M). Assume the following parameters:

– Decoder parameters:
l On-resistance of an access transistor: Ron = 10 kO
l Off-resistance of an access transistor: Roff = 100 MO
l Drain/source capacitances of an access transistor: CD/S = 1 fF
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– Parameters of the functional part of the crossbar
l Resistance of a nanowire length unit equal to the nanowire pitch: RNW= 100Ω
l Capacitance of a molecular switch: CS = 2 fF
l Resistance through a molecular switch: RS = 1 kΩ
l Parasistic capacitance between crossing nanowires, parallel nanowires and

between the nanowires and the substrate: not included

Exercise 2 Process Optimization

In goal of this exercise is to optimize the geometry of mask used in the MSPT

process. The MSPT can used iteratively, starting with a given sacrificial layer,

in order to define the spacers that may be used as sacrifical layers in the

following steps.

This techniques envolves the deposition of a first sacrificial layer (1st step) with

the width W and pitch P. Then, a sacrificial layer with the height W1 = qW is

deposited (2nd step) and etched (3rd step) in order the form the sacrifical layer with

the width W1 and a smaller pitch than P (4th step). These steps can be repeated with

a following deposition of a layer with a height W2 = q W1 (step 5 to 7) in order to

decrease the pitch further.

Questions taken from [50]:

1. Calculate the extension of the spacer underneath and beyond the first sacrificial

layer after n iterations (lout(n) and lin(n) respectively).

2. For a large number of iterations, calculate the optimal values for q and W/P.

Decoder

Mesowire Nanowire Functional Part

VP GND

Ex. Figure 1 Baseline crossbar architecture
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