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ABSTRACT 

 

SKYBRIDGE: A NEW NANOSCALE 3-D COMPUTING FRAMEWORK FOR 

FUTURE INTEGRATED CIRCUITS  
 

September 2015 

 

B.Sc., NORTH SOUTH UNIVERSITY, DHAKA, BANGLADESH 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST 

 

Directed by: Professor Csaba Andras Moritz 

 

 

Continuous scaling of CMOS has been the major catalyst in miniaturization of 

integrated circuits (ICs) and crucial for global socio-economic progress. However, 

continuing the traditional way of scaling to sub-20nm technologies is proving to be very 

difficult as MOSFETs are reaching their fundamental performance limits ‎[1] and 

interconnection bottleneck is dominating IC operational power and performance ‎[2]. 

Migrating to 3-D, as a way to advance scaling, has been elusive due to inherent 

customization and manufacturing requirements in CMOS architecture that are 

incompatible with 3-D organization. Partial attempts with die-die ‎[3] and layer-layer ‎[4] 

stacking have their own limitations ‎[5]. We propose a new 3-D IC fabric technology, 

Skybridge ‎[6], which offers paradigm shift in technology scaling as well as design. We 

co-architect‎Skybridge’s‎core‎aspects,‎from‎device‎to‎circuit‎style,‎connectivity,‎thermal‎

management, and manufacturing pathway in a 3-D fabric-centric manner, building on a 

uniform 3-D template. Our extensive bottom-up simulations, accounting for detailed 

material system structures, manufacturing process, device, and circuit parasitics, carried 

through for several designs including a designed microprocessor, reveal a 30-60x density, 
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3.5x performance/watt benefits, and 10x reduction in interconnect lengths vs. scaled 16-

nm CMOS ‎[6]. Fabric-level heat extraction features are found to be effective in managing 

IC thermal profiles in 3-D. This 3-D integrated fabric proposal overcomes the current 

impasse of CMOS in a manner that can be immediately adopted, and offers unique 

solution to continue technology scaling in the 21
st
 century. 
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1. CHAPTER 1 

 

INTRODUCTION 

 

 

 Tremendous progress in miniaturization of integrated circuits (ICs) has been crucial 

for the socio-economic developments in the last century. So far, this miniaturization was 

mainly enabled by the ability to continuously scale the CMOS technology. However, as 

we are reaching sub-20nm technology nodes, maintaining traditional way of scaling is 

becoming very challenging. This is mainly because CMOS scaling follows a device 

centric mindset, where shrinking device dimensions is the primary scaling factor, and all 

circuits and interconnections are designed as afterthoughts to accommodate scaled 

devices. Scaling MOSFET channel lengths below 20nm results in minimum to no 

performance benefits regardless of channel optimizations ‎[1]; moreover, device 

performance starts to degrade due to secondary scattering effects ‎[1]. Furthermore, 

customized sizing, doping and placement requirements of scaled devices for CMOS 

circuits result in reduced noise margin ‎[7], connectivity bottleneck ‎[2] and huge 

escalation of manufacturing complexities ‎[8]. 

 To continue the historical Moore's law scaling trend for higher density, reduced 

power and improved performance, 3-D integration of CMOS has been sought for long 

time, since it could provide a possible pathway without extensively relying on ultra-

scaled transistors. Until now, however, the migration of CMOS to 3-D has been 

unattainable.  CMOS architecture uses C-MOSFETs in an inverted logic, where both 

pull-up and pull-down transistors share the same input. The complementary MOSFETs 
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have opposite doping profiles and each MOSFET contains multiple doping regions. In 

order to achieve correct circuit operation, these MOSFETs have to be carefully sized and 

precisely doped in a 3-D stack. In terms of connectivity, 3-D implementation of CMOS 

circuits would imply that each input signal have to be vertically routed twice for C-

MOSFETs. Mapping such connectivity in 3-D even for a 4 fan-in logic, where pull-down 

transistors are stacked, and pull-up transistors are isolated or vice versa, would yield 

connectivity bottlenecks; for a large circuit these complexities would explode. In terms of 

manufacturing, CMOS in 3-D would imply extreme lithography to create various vertical 

shapes for 3-D for C-MOSFETs, and each MOSFET has to be doped precisely in isolated 

3-D regions, which is impractical. In addition to these, there is no heat extraction 

capability inherent to CMOS to prevent hotspot development. To the best of our 

knowledge, since the inception of vertical devices in 2000 ‎[9], there has been no 

demonstration of 3-D CMOS despite a significant industrial push, which is indicative of 

these above-mentioned challenges.  

 Partial attempts for 3-D organizations with CMOS die-die ‎[3] and layer-layer ‎[4] 

stacking have failed so far to become mainstream technologies. The Die-die stacking 

offers linear density benefits with number of dies stacked, but suffers from several critical 

challenges such as connectivity limitations between dies with large area vias or peripheral 

wirings, lack of heat dissipation and increased assembly cost ‎[3]‎[5]. Recently sequential 

CMOS integration with multiple silicon layers was proposed ‎[4]. Although this approach 

alleviates some of the challenges of die-die stacking with fine-grained Vias, new 

complexities emerged such as increased thermal budget to crystallize top silicon layers, 

layer to layer device variations, and reliability concerns due to thermo-mechanical 
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stress.  Both these approaches are additive and inherit the scaling challenges that are 

intrinsic to 2-D CMOS. 

 In contrast to CMOS and CMOS stacking approaches, we propose a truly fine-

grained 3-D nanofabric alternative, called Skybridge ‎[6], which offers paradigm shift in 

technology scaling. Starting from a template of uniformly doped vertical nanowire arrays 

functionalized with nanostructures, this fabric is envisioned to address device, circuit, 

connectivity, thermal management, and manufacturability aspects, in an integrated 3-D 

compatible manner. The integrated approach is essential in achieving this 

compatibility.  Our extensive theoretical and experimental work demonstrates its 

feasibility and potential. If realized, Skybridge can lay the foundation for orders of 

magnitude area and power/performance benefits vs. projected, scaled CMOS, and pave 

the way for advancing charge-based integrated circuits beyond 2-D CMOS for many 

years to come. 

 In this dissertation proposal, we show core aspects of the fabric design including (i) 

fabric nanostructures, (ii) 3D vertical integration of devices with limited customization, 

(iii) associated 3-D circuit style for arbitrary logic and volatile memory, (iv) 3-D 

connectivity schemes, and (v) fabric-level heat management support. Our bottom-up 

simulations, accounting for detailed material system structures, device, circuit and 

assembly, carried through for several designs including a 4-bit microprocessor, show 

more than 30x density and 3.5x performance/watt benefits vs. projected scaled 16-nm 

CMOS. Higher bit-widths show increasing benefits: our 16-bit CLA design achieves 

60.5x density, and 16.5x performance/watt benefits. Our analytical projections for 10M-

transistor designs indicate 10x reductions in interconnect lengths. Detailed thermal 



4 

 

modeling‎ reveals‎ Skybridge’s‎ fabric-level heat extraction features to address 3-D heat 

management requirements. The envisioned manufacturing pathway for large-scale 

assembly follows established foundry processes, and does not add any new 

manufacturing constraints. The doping and lithographic precision requirements for fabric 

assembly are significantly less, and are required only at the beginning; all device, contact 

and interconnect formations are primarily with depositions, which is lower cost and can 

be controlled to few Angstroms precision. We have experimentally validated the core 

device concept ‎[10] and performed several of the steps required in the manufacturing 

pathway. Key contributions of this proposal include: 

(i) 3-D Nanoscale Fabric Design: Starting from a template of uniformly doped 

vertical nanowire arrays, nanostructures to jointly address device, circuit, 

connectivity, thermal management and manufacturing challenges, while 

maintaining 3D compatibility, are architected. 

(ii) 3-D Circuit Designs: Various 3-D circuit styles, placement and routing schemes 

specific for Skybridge fabric are devised. Fabric level optimizations for high fan-

in circuits, and noise mitigation are shown. Logic, arithmetic and volatile memory 

circuit examples using Skybridge circuit styles are demonstrated. 

(iii) Bottom-up Fabric Evaluation Methodology and Detailed Benchmarking: An 

extensive bottom-up evaluation methodology that include detailed material 

considerations, 3D TCAD process and device simulations with experimental data, 

and circuit-level simulations using the device models,  3-D parasitics is 

developed. Detailed design rules and guidelines for 3-D circuits are derived that 

conform to manufacturing requirements. HSPICE circuit level simulations are 
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carried out using this methodology, and benchmarking is done against projected 

scaled CMOS designs for high bit width arithmetic circuits and a microprocessor 

design. Analytical modeling using parameters from Skybridge processor design 

are used to estimate interconnect length, and to predict repeater requirements; 

comparison is done with CMOS. 

(iv) Intrinsic Heat Management: Degrading circuit reliability due to lack of heat 

dissipation paths is a key concern for nanoscale circuits ‎[19] and critical in 3-D. 

Skybridge introduces fabric-intrinsic heat extraction mechanisms to ensure heat 

management in 3-D – an integral part of the design mindset and a new dimension 

in physical design. Detailed analysis of thermal profiles in Skybridge circuits is 

shown through fine-grained modeling and simulations.  

(v) Manufacturing Pathway: A manufacturing pathway for large-scale assembly is 

proposed that uses established foundry processes. 

(vi) Experimental Prototyping: Small-scale experimental prototyping is carried out 

to demonstrate key manufacturing steps and to validate the device concept. A 

detailed process and device simulation framework is developed to determine 

process parameters for the experiments.   

  

 The rest of this dissertation proposal is organized as follows: Chapter 2 presents an 

overview of the Skybridge fabric and details its core components. Chapter 3 discusses 3-

D device, circuit style and memory elements. Chapter 4 and 5 details high bit-width 

arithmetic circuit examples and a microprocessor design in Skybridge. Chapter 6 

introduces fabric evaluation methodologies, and Chapter 7 presents benchmarking 
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results. Details about thermal management and modeling results are presented in Chapter 

8. Envisioned manufacturing pathway for large-scale assembly is discussed and 

experimental prototyping results are shown in Chapter 9 and 10 respectively.   
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2. CHAPTER 2 

SKYBRIDGE FABRIC OVERVIEW 

  

 Skybridge fabric design follows a fabric-centric mindset, assembling structures on a 

3-D uniform template of single crystal vertical nanowires, keeping 3-D requirements, 

compatibility, and overall efficiency as its central goal. All active components and fabric 

features are formed on these nanowires through material depositions. In this fabric, 3-D 

device, circuit, connectivity, and thermal management issues are solved by carefully 

architecting towards 3-D organization. From architectural perspective, this is in stark 

contrast to the CMOS component-centric mindset, where transistors are the primary 

design components and the main technology scaling factor, wherein circuits, 

interconnection network, power and system level heat-management schemes are 

engineered to accommodate these transistors.  

 Beyond the Skybridge template based on the uniform single-doped vertical silicon 

nanowires, the key components functionalized include vertical Gate-All-Around (V-

GAA) Junctionless transistors, Bridges, Coaxial routing structures, Heat Extraction 

Junctions (HEJs) and large area Heat Dissipating Power Pillars (HDPPs). V-GAA 

Junctionless transistors are stacked on the vertical nanowires and are interconnected for 

realizing 3-D circuits. Local interconnection is primarily through unique routing features: 

Bridges and Coaxial routing structures. The heat management features HEJs and HDPPs 

are used in conjunction with Bridges to extract and dissipate heat from heated regions in 
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the logic implementing nanowires. In this chapter, we discuss the core fabric components 

and show how they are used in unison to achieve desired functionality.  

2.1 Core Fabric Components 

2.1.1 Vertical Silicon Nanowires  

 Regular Arrays of single crystal vertical silicon nanowires are fundamental building 

blocks of Skybridge fabric. All logic and memory functionalities are achieved in these 

nanowires. These nanowires are classified such that some of them are used as (i) logic 

nanowires to accommodate logic gates with each gate consisting of a stack of vertical 

transistors, and (ii) signal nanowires to carry Input/Output/Global signals themselves and 

facilitate routing of other signals for logic gates. All the nanowires are heavily doped; this 

is necessary for the V-GAA Junctionless transistors employed and for metal silicidation. 

The nanowires that are used for Input/Output/Global signal routing are silicided to reduce 

their electrical resistance.  

 Fig. ‎2.1A shows arrays of regular vertical silicon nanowires that are patterned from 

highly doped silicon substrate with discrete SiO2 islands (Details about wafer preparation 

and nanowire patterning can be found in Chapter 9). The SiO2 islands are used to isolate 

signal-carrying nanowires from contacting the bulk silicon substrate.   

2.1.2 Vertical Gate-All-Around Junctionless Nanowire Transistors 

 Active devices in this fabric are n-type vertical Gate-All-Around (V-GAA) 

Junctionless nanowire transistors. Junctionless transistors are well-suited‎for‎Skybridge’s‎

3-D implementation, since they eliminate the requirement of precision doping in 3-D. 

Junctionless transistors have uniform doping across Drain, Channel and Source regions;  
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their behavior is modulated by the workfunction difference between the gate and the 

heavily doped channel. In addition, there is no requirement for raised Source/Drain 

structure for Contact formation: contacting the low workfunction metal with heavily n-

doped Source and Drain regions can form a good Ohmic contact. In Chapter 3.1, we 

present more details of V-GAA device characteristics through 3-D TCAD process and 

device simulations. Previously, we have also experimentally validated the Junctionless 

device concept ‎[10]. 

 In Skybridge, structural simplicity of Junctionless transistors is exploited to easily 

form devices in vertical direction. As shown in Fig. ‎2.1B, V-GAA Junctionless transistors 

are formed by just depositing materials; in the beginning Drain contact metal (Ti) layer is 

deposited, and is followed by spacer (Si3N4), Gate oxide (HfO2), Gate electrode (TiN), 

spacer (Si3N4) and Source metal (Ti) layer deposition. Since depositing materials forms 

the devices, there is no requirement for lithographic or doping precision. A wafer/IC level 

a priori doping is sufficient for devices and contacts (See Chapter 9 for the envisioned 

manufacturing pathway). 

2.1.3 Bridges 

 Bridges are unique to the Skybridge fabric; they enable high degree of connectivity in 

3-D with minimum area overhead, and also play a key role in heat extraction. Based on 

their roles, Bridges can be classified into two categories: signal carrying Bridges and 

heat extraction Bridges.  
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Fig. ‎2.1. Core fabric components. A) Arrays of regular single crystal vertical Si 

nanowires, B) vertical Gate-All-Around Junctionless nanowire transistor, C) nanowire 

linking Bridges, D) Coaxial routing structures, E) sparse large area Heat Dissipating 

Power Pillars, F) Heat Extraction Junctions 
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 The primary role of signal-carrying Bridges is to form links between two adjacent 

nanowires, and carry Input/Output/Global signals (Fig. ‎2.1C). Depending on the circuit 

implementation, Bridges can be placed at different nanowire heights, and can propagate 

relatively long distances in the layout by hopping nanowires; Coaxial routing structures 

are used in conjunction with Bridges to facilitate this nanowire hopping. These routing 

features provide flexibility, and allow dense 3-D interconnection minimizing interconnect 

congestion.   

  In addition to their usage as signal carrying links, the Bridges also facilitate heat 

extraction. Heat extraction Bridges provide thermally conductive paths for heat transfer 

from the heat source. They are used in conjunction with Heat Extraction Junctions 

(HEJs) and large area Heat Dissipating Power Pillars (HDPPs) to maximize heat 

extraction and dissipation. Subject to the thermal profile of the nanowires, HEJs and 

Bridges can be connected to any heated region in the logic-nanowire. Fig. ‎2.1F shows an 

example of a Bridge connected to a HEJ in the logic gate output region (see Chapter 8 for 

thermal modeling and heat extraction results for 3-D circuits).  

2.1.4 Coaxial Routing Structures 

 Coaxial routing refers to a routing scheme, where a signal routes coaxially to another 

inner signal without affecting each other. This routing is unique for Skybridge, and is 

enabled by the vertical integration approach. Fig. ‎2.1D‎shows‎an‎example:‎signal‎‘A’‎is‎

carried by‎the‎vertical‎nanowire,‎whereas‎the‎signal‎‘B’‎is‎routed‎by‎Bridges;‎the‎Coaxial‎

routing‎structure‎allows‎signal‎‘B’‎to‎hop‎the‎nanowire‎and‎continue‎its‎propagation.‎This‎

coaxial routing is achieved by specially configuring material structures, insulating oxide 
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and contact metal. By controlling the thickness of the insulating oxide, and by choosing 

low workfunction metal as Contact Metal, proper signal isolation can be achieved. A 

thick layer of SiO2 as insulating oxide and Titanium (Ti) as Contact metal is well suited 

for this purpose. Workfunction difference between Ti and n-doped Si is such that there is 

no carrier depletion; moreover a thick layer of SiO2 ensures no electron tunneling 

between the Contact metal and silicon nanowire.  

 Using multiple coaxial layers can provide noise isolation and route multiple signals. 

Coupling noise in dense interconnect networks and in dynamic circuits is a well-known 

phenomenon. By configuring the Coaxial routing structure to incorporate a GND signal 

for noise shielding, coupling noise can be mitigated. Fig. ‎2.1D also illustrates this 

concept; the GND signal in between signal A and B acts as noise shield, and prevent 

coupling between these two signals. More details on noise mitigation can be found in 

Chapter 3.2.2.  

2.1.5 Heat Extraction Junctions 

 Heat Extraction Junction (HEJ) is an architected feature (Fig. ‎2.1F) used to extract 

heat from a heated region in logic-nanowire without affecting the underlying logic 

operation. An HEJ is a thermally conductive but electrically isolated junction. When 

combined with Bridges, the HEJs provide flexibility to be connected to any heated region 

in the logic-nanowire to prevent hotspot development.   

 These junction properties of an HEJ are achieved by carefully architecting material 

requirements. A sufficiently thick layer (6nm) of Al2O3 is used for this purpose – Al2O3, a 
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good insulator with excellent thermal conduction property (thermal conductivity 39.18 

Wm
-1

k
-1 
‎[20]

 
).  

2.1.6 Heat Dissipating Power Pillars 

 Large area Heat Dissipating Power Pillars (HDPPs) serve both the purpose of 

reliable power supply and heat dissipation. Depending on electrical and thermal 

requirements, these pillars are placed intermittently throughout the layout and are 

connected by Bridges. They occupy large area, and are specially designed to have low 

electrical resistance, and maximum heat conduction. As shown in Fig. ‎2.1E, HDPPs 

occupy a 2 x 2 nanowire pitch and would typically be placed on the periphery of circuit 

layouts. The 4 nanowires used in HDPPs are all metal silicided, and the region is filled 

with Tungsten (W) to maximize thermal conductance and minimize electrical resistance.  

 HDPPs that carry GND signals are connected to Bulk silicon at the bottom, whereas 

HDPPs carrying VDD signals are isolated from the bulk with SiO2 islands (Fig. ‎2.1E). 

For heat extraction purposes, Bridges connect to HDPPs (GND) on one end and to HEJs 

on the other; this configuration ensures that the heat extraction Bridges are at reference 

temperature for maximum heat extraction. Details on HDPPs, and thermal analysis can be 

found in Chapter 8.  

2.2 Logic Implementation Example in Skybridge Fabric 

Fig. ‎2.2 shows a logic implementation example in Skybridge fabric; a full adder logic 

is implemented using core fabric components. As shown in Fig. ‎2.2, logic nanowires are 

used to stack V-GAA Junctionless transistors, and signal nanowires are used to facilitate 

input/output signal propagations. All interconnections for the full-adder logic is through 
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Fig. ‎2.2. Skybridge Full Adder. Full-Adder logic implementation in Skybridge fabric 

utilizing core fabric components. 4 logic-nanowires are used for this implementation, 

peripheral signal carrying nanowires are shared with other logics.  
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fabric’s‎ routing‎ features‎Bridges‎ and‎Coaxial‎ routing‎ structures.‎The‎ full-adder logic is 

implemented using compound dynamic circuit style that is specific for Skybridge fabric 

(More details about circuit style can be found in Chapter 3). The density benefits of 

Skybridge’s‎vertical‎ integration‎are‎obvious‎ from‎Fig. ‎2.2; only four transistor carrying 

nanowires are necessary to implement the full-adder logic that utilizes 32 transistors. 

2.3 Chapter Summary 

 In this chapter an overview of the Skybridge fabric was presented; its core 

components were detailed and an example logic implementation utilizing these core 

components was shown. The 3-D integration of the Skybridge fabric is enabled by 

following a template approach with vertical nanowires and by architecting fabric 

components to address device, circuit, connectivity, heat, and manufacturing 

requirements in unison.  
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3. CHAPTER 3 

3-D DEVICE, CIRCUIT STYLE AND MEMORY 

 

 The manufacturing compatibility and the ability to efficiently implement logic and 

memory functionalities in 3-D without incurring detrimental connectivity overhead are 

key requirements for realizing circuits in 3-D. The CMOS circuit style is not suitable for 

this purpose, since it requires customizations in complementary device doping, sizing and 

placements for functionality; such an implementation in 3-D would result in significant 

connectivity bottleneck, and escalate manufacturing complexities. 

 In Skybridge, 3-D circuit and connectivity requirements are met by synergistically 

exploring device, circuit and architectural aspects without compromising on 

manufacturability. A dynamic circuit style that is amenable to implementations in 3-D is 

chosen for realizing arbitrary logic and volatile memory circuits. This dynamic circuit 

style uses only single type uniformly sized Junctionless transistors. It is easily mapped 

onto arrays of regular vertical nanowires without requiring any customizations in terms of 

doping, sizing or incompatible routing; formation of active components is primarily by 

layer-by-layer material depositions. As discussed before, to meet 3-D inter-circuit 

connectivity requirements, Skybridge has intrinsic routing features: signal nanowires, 

Bridges and Coaxial structures.  

 The dynamic circuit style, along with the 3-D integration scheme allows various 

choices to design for either high performance or low power, or a balance of both, at a 
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very high density. The tuning knobs for Skybridge circuit implementations are cascading 

choices and compound gates, dual rail vs. single rail implementations, and fan-in. In the 

following, we present more on these choices, and discuss trade-offs with example 

circuits. We also show how coupling noise due to ultra-dense 3-D integration, is 

mitigated through optimizing circuit clocking scheme and architecting fabric features. 

The discussion begins with analysis of active device components, and follows by details 

on logic circuit styles and volatile memory design. 

3.1 Vertical Gate-All-Around Junctionless Transistor 

 N-type vertical Gate-all-around (V-GAA) Junctionless nanowire transistor were 

chosen as active devices in the Skybridge fabric. V-GAA Junctionless transistors do not 

require abrupt doping variations within the device; as a result complexities related to 

precision doping in 3-D and high temperature annealing are eliminated. Stacking of 

transistors for circuit implementation requires only material deposition steps on pre-

patterned vertical nanowires.  

 In V-GAA Junctionless transistors, channel conduction is modulated by the 

workfunction difference between the heavily doped channel and the gate. Due to this 

workfunction difference, the n-type devices used in Skybridge are normally OFF, and the 

channel carriers are depleted (note, p-type Skybridge fabrics would follow similar 

mindset as our n-type version). With the application of gate voltage, carriers start to 

accumulate and the channel conducts. Source/Drain contact formation is done by metal-

Si Ohmic contacts; there is no need for raised Source/Drain structures ‎[21]. We have 

carried out extensive process and device simulations to characterize the V-GAA 

Junctionless devices based on specific material and sizing in Skybridge. We have also 
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experimentally demonstrated the 

Junctionless device concept; a p-

type horizontal Tri-gated 

Junctionless nanowire device was 

fabricated and characterized 

recently ‎[10] in our group. 

 The 3-D Synopsys Sentaurus 

Process simulator ‎[11] was used to 

create the device structure 

emulating actual process flow. In 

the process simulation, the 

substrate was initially doped to 

have 1e19 dopants/cm
3
 doping 

concentration; the doping step was followed by vertical nanowire patterning using 

anisotropic etching, followed by sequential anisotropic material deposition steps to 

complete the V-GAA Junctionless transistor formation. The resulting device structure 

had 16nm long Si channel, 2nm of HfO2 as gate oxide, 10nm thick TiN as gate electrode, 

10nm thick and 5nm long Si3N4 as spacer material, and 10nm thick, 10nm long Ti as 

contact material (Chapter 2, Fig. 2.1B). 3-D Sentaurus Device simulations ‎[12] were 

performed on this device to characterize its behavior, while taking nanoscale effects into 

account. Silicon bandstructure was calculated using the Oldslotboom model ‎[12], charge 

transport was modeled using hydrodynamic charge transport ‎[12]; quantum confinement 

effects were taken into account by using density gradient quantum correction model ‎[12]. 

 

Fig. ‎3.1. 3-D TCAD simulation results. Id-Vgs 

characteristics in log (left) and linear (right) 

scale for V-GAA Junctionless transistor. 16nm 

channel length, width and thickness; doping: As 

dopant, 1e19 dopants/cm3; 2nm HfO2 gate 

dielectric; 10nm thick TiN gate electrode. 

Simulation shows 27µA Ion, 0.1nA Ioff, SS 

78mV/dec. 
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Electron mobility was modeled taking into account effects due to high doping, surface 

scattering, and high-k scattering. The simulated device characteristics are shown in 

Fig. ‎3.1. This device had an On current of 27µA, Off current 0.1nA; subthreshold slope 

was found to be 78mV/dec, and threshold voltage (Vth) was 0.35V. These simulated 

device characteristics were used to generate a behavioral device model for HSPICE 

circuit simulations. 

3.2 Skybridge’s Circuit Style 

 As outlined before, Skybridge circuits follow a dynamic circuit style that is 

compatible with 3-D integration requirements. The circuit style allows various design 

choices including cascaded NAND-NAND or single stage AND-of-NAND compound 

implementations for logic gates with dual rail or single rail inputs; these can be also 

combined in a hybrid logic style with high fan-in support. These design choices are 

generic and can realize any arbitrary logic; moreover, they provide flexibility to optimize 

Skybridge circuit designs for power or performance, or a balance of both at a very high 

density. In the following discussions we analyze each circuit style supported, and discuss 

their trade-offs. Other circuit implementations may be possible. 

 Fig. ‎3.2 illustrates the cascaded NAND-NAND and compound dynamic logic gate 

implementations. An example of cascaded dynamic logic is shown through XOR gate 

design in Fig. ‎3.2A, corresponding HSPICE simulated behavior and physical layout are 

shown in Fig. ‎3.2B and Fig. ‎3.2E. In cascaded dynamic logic style, complex logic is 

implemented in two stages using NAND-NAND logic. The output of one NAND stage is  
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Fig. ‎3.2.  Cascaded NAND-NAND and Compound dynamic circuit styles for XOR 

gate. A) Cascaded circuit style with two logic stages, each stage is controlled by 

separate PRE and EVA clock signals; B) HSPICE simulated waveforms for the XOR 

in (A); C)compound dynamic circuit style; logic computation in one stage; two NAND 

gate outputs are combined in AND of NAND logic; D) HSPICE validations; E) 

physical layout of cascaded XOR in (B), occupying 3 logic nanowires, and 6 signal 

nanowires; F) physical layout of XOR gate in (C), only one logic nanowire is occupied 

for circuit implementation; 4 peripheral nanowires are used signal routing, which are 

shared with other circuits.   
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propagated to another NAND stage to complete logic behavior; both stages are micro 

pipelined for seamless signal propagation. The dynamic NAND gates in Fig. ‎3.2A 

operate with only n-type uniform V-GAA Junctionless transistors; dynamic circuit 

behavior is controlled by precharge (PRE1, PRE2), evaluate (EVA1, EVA2) and hold 

(HOLD1, HOLD2) clock phases. During precharge, the output node is pulled to VDD, 

and during evaluate period it is either pulled to GND or remains at VDD depending on 

the input pattern. During the hold phase, the output of current stage is propagated to next 

stage.‎‎In‎order‎to‎have‎full‎voltage‎swing‎in‎the‎output‎node,‎the‎pull‎up‎transistor’s‎gate‎

voltage is regulated to have higher voltage than VDD. Cascaded dynamic logic has the 

potential to achieve high performance, since the load capacitance at output is small for 

each NAND stage. More details on other types of cascaded dynamic circuits and their 

analysis can be found in our previous work ‎[22]‎[23]‎[26].   

 Compound dynamic logic is another variation of dynamic logic style that is unique 

for the Skybridge fabric. The compound circuit style is designed such that maximum 

density benefits can be achieved in 3-D implementations. This also alleviates fine-grained 

clocking requirements. In a single stage, complex logic gates such as XOR, AND-of-

NAND gates, etc. can be realized. An example of compound dynamic logic is shown in 

Fig. ‎3.2C, Fig. ‎3.2D and Fig. ‎3.2F. As shown in Fig. ‎3.2C, circuit operation is controlled 

by precharge (PRE), evaluate (EVA) control signals, and there is no need for cascading of 

stages; outputs of NAND gates are shorted to achieve AND-of-NANDs logic behavior. 

Fig. ‎3.2D shows HSPICE simulated waveforms that validate the compound logic 

behavior. Like cascaded NAND-NAND designs, this compound logic style is also 

generic for any logic function. 
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 As evident from the physical layouts in Fig. ‎3.2E and Fig. ‎3.2F, Skybridge’s‎ 3-D 

implementation achieves tremendous density benefits. Cascaded NAND-NAND logic 

based XOR implementations require three logic nanowires (Fig. ‎3.2E), whereas a 

compound XOR implementation uses only one logic nanowire (Fig. ‎3.2F); the signal 

nanowires are shared with other logic gates. The compound dynamic style achieves 

maximum density by eliminating signal and clock routing overheads of cascaded logic, 

but lacks slightly in performance compared to cascaded logic since the load capacitance 

is higher due to output sharing. Our Skybridge designs for arithmetic circuits and 

microprocessor (Chapters 4, 5) follow typically a hybrid logic style, where both the 

benefits of cascaded NAND-NAND and AND-of-NAND compound logic are combined 

for maximum density and performance.  

 These above circuit styles support both dual-rail and single-rail implementations, and 

thus allow flexible design choices for logic. In dual-rail logic, all true and complimentary 

signals are used as inputs, and the circuit is configured to generate both true and 

complimentary outputs at the same stage (Fig. ‎3.3A, Fig. ‎3.3B). On the contrary, single-

rail logic uses only a combination of inputs required to generate true/complimentary 

output, a separate inverter stage is used to generate the opposite signal. Fig. ‎3.3C 

illustrates single-rail implementation, and Fig. ‎3.3D shows HSPICE simulation results. 

The clocking schemes are different for single-rail and dual-rail circuit styles. Single-rail 

logic uses two overlapping clock sequence PRE1, EVA1, HOLD1 and PRE2, EVA2, 

HOLD2 (Fig. ‎3.3D). In dual-rail logic, only one sequence of clock phases is used: PRE, 

EVA, HOLD (Fig. ‎3.3B), since all operations are performed in one stage. Single-rail logic 
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is suitable to be used in Cascaded NAND-NAND circuit style, whereas dual-rail logic is 

more suitable for Compound AND-of-NAND circuit style.  

 Both dual-rail and single-rail designs have associated trade-offs; in order to optimize 

circuit performance dual-rail logic is used, whereas single-rail logic results in lower 

power‎ and‎ higher‎ density.‎ ‎ In‎ addition‎ to‎ aforementioned‎ choices,‎ Skybridge’s‎ unique‎

 

Fig. ‎3.3. Dual rail vs Single rail logic for Skybridge circuits. A) Example of dual 

rail logic using 2 input NAND gate; both true and complementary signals are 

generated at the same stage; B) Simulated waveform of the NAND gate in (A); C) 

Single rail implementation of the same 2 input NAND gate using two clock stages; 

complementary output is generated in the second stage NAND gate; D) HSPICE 

validations of the single rail circuit in (C).  
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dynamic circuit styles and fabric integration provides opportunities for more compact 

circuit implementations with high fan-in to maximize density. In the following we 

elaborate on fan-in choices for Skybridge circuits. 

3.2.1 High Fan-In Support 

 High fan-in logic is a well-known driver for compact circuit designs. Since they have 

fewer transistors and interconnects. Therefore, they are advantageous for both improving 

density and power consumption. However, high fan-in circuits are not widely used due 

their detrimental impact on performance compared to low fan-in cascaded designs. The 

performance degradation is particularly severe in CMOS, where the circuit style requires 

complementary devices, and the devices have to be differently sized, which adds to load 

capacitance, and thus lowers the performance. Generally, CMOS circuits are limited to 

 

Fig. ‎3.4. Comparative analysis of high fan-in implications. A) Skybridge NAND gate 

with‎‘m’‎number‎of‎fan-ins;‎B)‎CMOS‎NAND‎gate‎with‎‘m’‎number‎of‎fan-ins; C) fan-

in sensitivity: CMOS delay increases sharply with increasing fan-in,‎Skybridge’s‎delay‎

increases almost linearly with high fan-in; the difference is primarily due to the higher 

load capacitance of CMOS circuit; CMOS uses complementary devices, higher fan-in 

results in higher parasitic capacitances.  
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only 4 or 2 fan-in‎based‎designs.‎ In‎contrast,‎Skybridge’s‎circuit‎ style‎with‎only‎single‎

type uniform transistors and 3-D layout implementation, allows high fan-in logic without 

corresponding typical performance degradation. 

 To evaluate the feasibility of high fan-in logic in Skybridge, we have carried out fan-

in sensitivity analysis using a NAND gate as an example circuit. For Skybridge HSPICE 

simulations, TCAD generated V-GAA Junctionless device characteristics (Fig. ‎3.1) were 

used. Equivalent CMOS designs were simulated for comparison using 16nm tri-gated 

high-performance PTM device models [25]. The outputs of both Skybridge and CMOS 

NAND gates were connected to load capacitances that are equivalent to fan-out to 4 

inverters in respective designs. The worst-case delay was captured during the falling edge 

of the output node.  

 As shown in Fig. ‎3.4A and Fig. ‎3.4B,‎ Skybridge’s‎ NAND‎ gate uses all n-type 

transistors, whereas the CMOS NAND gate uses both n- and p-type transistors. The total 

capacitance‎ at‎ the‎ output‎ node‎ of‎ Skybridge’s‎ NAND‎ gate‎ is‎ from‎ two‎ adjacent‎

transistors and from 4 inverter fan-out load capacitance. Inverter implementation in 

Skybridge is equivalent to one fan-in NAND gate with three transistors; one transistor is 

gated with input signal, and other two are gated with control clock signals. As a result, 

the load capacitance at the output node in Fig. ‎3.4A is from 4 n-type transistor gate 

capacitances and interconnects. On the other hand, the total capacitance at the output 

node of CMOS NAND gate in Fig. ‎3.4B is from adjacent transistors, which increases 

with fan-in, and from 4 inverter fan-out load capacitance. In a CMOS inverter, same 

input is driven to both n- and p-type devices; in addition, p-type devices are sized to be 
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twice that of n-type. Hence the load capacitance in CMOS is from 4 n-type and 4 double 

sized p-type transistors, and interconnects.  

 The impact of higher capacitance at output node is evident from results in Fig. ‎3.4C. 

These results are normalized to one fan-in delay for respective designs. As shown in 

Fig. ‎3.4C, CMOS delay increases rapidly with higher fan-in, as more transistor parasitic 

capacitances are added to the total‎ capacitance.‎ On‎ the‎ contrary,‎ Skybridge’s‎ delay‎

increases almost linearly and the impact is less prominent, since the load capacitance 

remains same; the linear increase in delay is mainly due to increased resistance of 

additional transistors in the discharge path. By optimizing V-GAA Junctionless device 

characteristics, this delay can be improved further.  

  In Chapter 4, we show high fan-in circuit implementations for large-scale designs. 

The benchmarking results indicate significant benefits can be obtained for Skybridge 

designs compared to CMOS. 

3.2.2 Noise Mitigation 

 While the dynamic circuit style provides opportunities for efficient circuit 

implementations in 3-D, it is not immune from coupling noise. In dynamic circuits, the 

output is not driven during the hold phase; hence it is susceptible to coupling noise due to 

‘1’‎ to‎ ‘0’‎and‎ ‘0’‎ to‎ ‘1’‎ transitions‎ in‎cascaded‎ logics ‎[26]. In a dense 3-D integration, 

coupling noise from interconnects can also affect the circuit functionality.  

 In order to mitigate coupling noise affects, Skybridge has intrinsic architected 

features that provide noise shielding. The coaxial routing capability (Chapter 2.4), which  
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Fig. ‎3.5. Analysis of coupling noise. A)worst case noise scenario; a victim signal is 

carried through outer metal shell in the middle nanowire, signals in inner nanowire, and 

in‎ adjacent‎ metal‎ layers‎ are‎ transitioning‎ from‎ ‘1’‎ to‎ ‘0’‎ while‎ the‎ victim‎ signal‎ is‎

floating‎at‎‘1’;‎B)‎layout‎with‎GND‎shielding‎layer‎to‎protect‎against‎coupling‎noise;‎C)‎

the circuit depicting worst case scenario; D) the circuit schematic when GND shielding 

layers are incorporated; E) when one aggressor is active (Agg1 switching); F) when 

two aggressors are active (Agg 1 and 2 switching); G) when three aggressors are active 

(Agg 1,2 and 3 switching) 
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is normally used for signal routing, is specially configured to incorporate a noise-

shielding layer. A GND signal is routed in between inner nanowire and outer metal2 

shell. The key concept of noise shielding using GND signal is to increase the overall 

capacitance at the floating nodes, thereby reducing the impact of coupling capacitance.  

This approach ensures coupling noise mitigation during logic cascading, and signal 

propagation in dense interconnect network. In addition to the noise shielding layer, the 

Skybridge circuit style uses a clocking control scheme that is known to provide noise 

resilience ‎[26]. 

 To‎ evaluate‎ the‎ effectiveness‎ of‎ Skybridge’s‎ noise‎ shielding‎ approach,‎ we‎ have‎

performed detailed simulations accounting for worst-case scenarios. The scenarios 

considered, are depicted in Fig. ‎3.5A. Worst case scenario 1 considers the case when a 

signal carried through outer metal layer is floating, and is affected by a driven signal that 

is routed through the inner nanowire; the nanowire signal in this case is aggressor 1. 

Worst case scenario 2 and 3 considers coupling from adjacent metal2 layers that carry 

driven signals; they are denoted as aggressor 2 and aggressor 3 (Fig. ‎3.5A). In all 

scenarios the victim signal is input to another NAND gate with single input; the 

switching‎activity‎of‎this‎NAND‎gate‎degrades‎floating‎node’s‎stability‎even‎further.‎‎The‎

corresponding circuit that emulates these worst-case scenarios is shown in Fig. ‎3.5C. The 

modified circuit schematic after incorporation of GND shielding layer is shown in 

Fig. ‎3.5D, and its physical representation is shown in Fig. ‎3.5B. Simulation results are 

shown in Fig. ‎3.5E-G. Skybridge simulations use 3-D TCAD simulated V-GAA 

Junctionless device characteristics for HSPICE simulations, and takes into account 

interconnect parasitics from the actual 3-D layout. Capacitance calculations for Coaxial 
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routing structures use the methodology in ‎[27] and assume average routing lengths from a 

Skybridge microprocessor design (Chapter 5). 

 In‎all‎scenarios,‎the‎victim‎signal‎(carried‎through‎metal2)‎is‎kept‎floating‎at‎‘1’,‎and‎

the aggressor signals (carried through inner nanowire, and adjacent metal2 lines) are 

transitioning‎from‎‘1’‎to‎‘0’.‎For‎clarity,‎only‎the‎results‎during‎transitions are shown in 

Fig. ‎3.5 E-G. As shown in Fig. ‎3.5E, for scenario 1, due to interconnect coupling from 

aggressor 1, the floating voltage drops from 0.8V to 0.58V; during the evaluation phase 

of cascaded stage, it drops further to 0.39V. The situation worsens for scenario 2 and 3, 

and in the worst-case the voltage drops to 0.39V. The performance degradation due to 

low input voltage is obvious, and in the worst case it reduces by 416% (Fig. ‎3.5G). The 

GND shielding approach increases the noise margin significantly with none to small 

degradation in performance. For scenario 1, the GND shielding recovers the noise margin 

completely and there is no performance degradation; for scenario 2 and 3 the noise 

impact is minimal, in the worst case the voltage drops by 0.08V, and the performance 

degradation from nominal is 12%. 

3.2.3 Mitigation of Performance Impact Due to Long Interconnects 

 Long interconnect RC delays are critical factors that impact overall performance of 

nanoscale integrated circuits. Typically in CMOS, this issue is addressed by custom 

sizing of transistors to increase signal drive strength. In Skybridge, the 3-D circuit style 

and the fabric integration scheme provides several options to minimize this performance 

impact without any device customization. One such option is insertion of Dynamic 

buffers; dynamic buffers allow partitioning of a long interconnect into small segments, 
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and allow seamless signal propagation in a pipelined design, without impacting the 

overall throughput.  Dynamic buffers are one fan-in NAND gates that are gated by 

complementary inputs. All Skybridge circuit designs are such that both true and 

complementary values are present in the output. These dynamic buffers were used 

extensively in our arithmetic circuits and microprocessor designs (Chapters 4, 5). Other 

choices for performance improvement are through fan-in optimization and logic 

replication. Both these choices can be used to boost drive current, and as a result to 

reduce long interconnect delay. By reducing the fan-in of the driver circuit, the total 

resistance at the output node can be reduced, which in turn can increase the drive current 

at the output. Similarly, by replicating the driver logic in neighboring nanowires and by 

shorting the outputs, the drive current in a long interconnect can be increased to reduce 

delay. In addition to these choices, CMOS-like repeaters can be employed to reduce the 

delay for very long interconnects that are used for semi-global and global signals. These 

repeaters can be placed in dedicated locations of the die similar to other mixed-signal 

analog power and clock generation circuits. Such repeater requirements for Skybridge 

large scale designs are up-to 100x less than in CMOS (See Chapter 7).  

3.3  Skybridge’s Volatile Memory 

 In addition to logic, ability to incorporate high performance volatile memory is a key 

requirement in integrated circuits.  In Skybridge, the volatile memory implementation 

conforms to the 3-D integration requirements, and follows the aforementioned dynamic 

circuit styles. In this memory, two cross-coupled dynamic NAND gates are used to store 

true and complimentary values, and a separate read logic is employed to perform read 
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similar to our previous design for 2-D fabrics ‎[15]. The 8T-NWRAM schematic and 

HSPICE validations are shown in Fig. ‎3.6A-B.  

 As shown in Fig. ‎3.6A-B, the memory operation is synchronized with the input 

clocking scheme‎ and‎ the‎ control‎ signals.‎ In‎ order‎ to‎write‎ ‘1’‎ or‎ ‘0’,‎ the‎ clock‎ signals‎

(xpre, xeva, ypre, yeva)‎are‎selectively‎turned‎ON.‎For‎example,‎to‎write‎‘1’‎in‎node‎out, 

xpre and xeva signals are turned ON, and this is followed by ypre, yeva signals. Once the 

node out is‎pulled‎to‎‘1’,‎the‎complementary‎node‎gets‎pulled‎to‎‘0’‎during‎the‎ypre, yeva 

clock phases. A gated read logic is employed for memory read, and the operation is 

synchronized with the read signal. During the read operation, bl is initially precharged, 

and is subsequently discharged or remains at precharged voltage depending on the nout 

state, when the read signal is ON.  

 

Fig. ‎3.6. Volatile memory design in Skybridge. A) 8T-NWRAM circuit schematic; 

volatile memory implementation with two cross-coupled dynamic NAND gates, a 

separate read logic for read operation; B) HSPICE results showing write and read 

operations; C) 8T-NWRAM’s‎physical‎layout. 
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 A key feature of this NWRAM is that it is not dependent on precise sizing of 

complementary transistors for memory operations as it is in the CMOS SRAM; as a 

result, device sizing-related noise concerns prevalent at nanoscale are mitigated. 

Furthermore, the read logic is separated from the write logic mitigating bit-flipping 

concerns during read operations. In addition, during periods of inactivity, all control 

signals are switched OFF, which reduces leakage power. At certain intervals, the clock 

signals are switched ON again to restore the stored values but there is no need for read-

back and write for this periodic restoration.  

 The layout of this volatile memory is shown in Fig. ‎3.6C; noticeably, all 8 transistors 

required for memory operation are stacked in only one nanowire, whereas two adjacent 

nanowires are used for signal propagation, which can be shared by other memory cells. 

The ultra-dense implementation with reduced interconnections has huge implications on 

reducing active power and improving performance. Moreover, the Coaxial routing 

structures used for intra-cell routing provide additional storage capacitance, which is 

beneficial for prolonging bit storage without restoration, and thus help in reducing 

leakage power consumption. Benchmarking results are shown in Chapter 7. 

3.4 Section Summary 

 In this section Skybridge's device, circuit style and volatile memory elements were 

detailed. The Vertical Gate-All-Around Junctionless transistor geometry, and TCAD 

simulated device characteristics was shown. We presented the 3-D compatible circuit 

style, and showed different approaches to design for high performance and low power at 

ultra-high‎density.‎We‎also‎introduced‎Skybridge’s‎volatile memory approach equivalent 

with the CMOS SRAM.   
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4. CHAPTER 4 

ARITHMETIC CIRCUIT DESIGN EXAMPLES AND SCALABILITY STUDY  

 

 In this chapter we detail on arithmetic circuit implementations using carry look-ahead 

adders and array multiplier circuits. These arithmetic circuits combine compound and 

cascaded dynamic logic styles in dual rail logic for optimum performance at low power 

and ultra-high density. The density benefits are maximized by using high fan-in logic.  

Connectivity requirements are met by utilizing‎the‎fabric’s‎routing‎features.‎The‎effect‎of‎

coupling noise due to dynamic circuit style and dense interconnections is mitigated 

through the noise shielding approach introduced in Chapter 3.2.2.  

 In order to study the scalability aspects of Skybridge designs, we have implemented 

arithmetic circuits at 4, 8 and 16-bit-widths, and benchmarked against CMOS designs at 

16nm. In the following we present various circuit design examples and show our 

scalability study. 

4.1 Circuit Design Examples and Scalability Aspects  

4.1.1 Basic Arithmetic Circuits 

 Adders and multipliers are core arithmetic computing blocks in ALUs, and are often 

extended to implement other arithmetic operations such as complement, subtraction and 

division. Some of the circuits presented here are also used for the Skybridge 

microprocessor design (Chapter 5). 
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4.1.1.1  Carry Look-Ahead Adder 

 CLA is well-known parallel adder for fast computation. A block diagram of a 4-bit 

CLA is shown in Fig. ‎4.1A; it consists of propagate-and-generate, carry, buffer and 

summation blocks. The propagate-and-generate block is used to produce intermediate 

signals Pi and Gi (where i = 0 to 3), which are used for calculating Sum and Carry 

respectively; the logic expressions used are Pi = (Ai⨁Bi)  , Gi = Ai Bi.  The carry block 

is used to compute intermediate carry signals and final carry output. The logic expression 

for carry generation is Ci = Gi−1 + Pi−1 Ci−1,‎where‎‘i’‎is‎from‎1‎to‎4.‎The‎buffer‎block‎

is used to buffer a signal and maintain signal integrity. The sum block generates the final 

sum output using the intermediate Pi and Ci signals; the logic expression is Si =

Ai⨁Bi⨁Ci = Pi⨁Ci.  

 The Skybridge specific implementations of these logic blocks use both compound and 

cascaded dual-rail dynamic logic styles (see Section 2 for details). The circuit schematics 

are shown in Fig. ‎4.1B-D. As shown in Fig. ‎4.1B, and 4.1D, the XOR logic for 

computing Pi and Si, and their complementary signals, is done using compound dynamic 

gates. The Ci and ~Ci computations also use dynamic compound gates in AND-of-

NANDs logic, as shown in Fig. ‎4.1C. The generated intermediate signals are propagated 

to the next stage of compound gates through cascading.  HSPICE simulation results 

validating the CLA circuit behavior are shown in Fig. ‎4.1E.  

 The physical implementation of a CLA is shown in Fig. ‎4.1G. The circuit mapping 

into Skybridge follows the guidelines summarized in Chapter 6. 




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Fig. ‎4.1. 4-bit carry look-ahead adder (CLA). A) Overall block diagram of 4-bit 

CLA; it contains propagate and generate (PG), carry, buffer and sum blocks; B) 

circuit schematic of PG block; both true and complementary values are generated in 

the compound dual rail logic; C) schematic for carry block using the same circuit 

style, inputs from PG block is used; D) schematic of sum block, inputs from both PG 

and carry blocks are used; E) HSPICE simulated waveforms validating the expected 

adder behavior; F) physical layout of a CLA in the Skybridge fabric. 
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4.1.1.2 Array Multiplier 

 Array based multipliers are widely used for fast parallel multiplications. The core 

concept is illustrated in Fig. ‎4.2A: multiplication is achieved by a series of additions. The 

hardware implementation of the algorithm uses adder units for these iterative additions. 

The block diagram for the multiplier is shown in Fig. ‎4.2B. As illustrated, the 

multiplication is performed with the help of AND logic, half adder and full adders. AND 

operation is performed simply by using a compound gate with two inverted inputs (to 

perform AND-of-NANDs).  The half adder and full adder implementations follow ripple 

carry logic, and are implemented using XOR and NAND gates. Implementation of these 

logic units use similar compound circuit implementations as in CLA. The result of each 

addition is cascaded to other adder units to generate the total multiplication output. 

HSPICE simulated waveforms for this multiplier circuit are shown in Fig. ‎4.2C; the two 

operands illustrated for the 4-bit multiplication are 0011 and 0111, yielding 00010101. 

The physical layout of this multiplier can be seen in Fig. ‎4.2D.   

4.1.2 High Bit-Width Arithmetic Circuits 

 In order to evaluate the potential of Skybridge designs at higher bit-widths, we have 

extended the 4-bit CLA designs to 8- and 16-bit CLAs. An additional objective was to 

evaluate the impact of high fan-in on key design metrics such as density, power and 

performance.  

 8-bit and 16-bit CLA block diagrams are shown in Fig. ‎4.3. Both designs use 4-bit PG 

and Sum blocks as core building blocks. The implementations of these 4-bit blocks 

remain the same irrespective of the bit-width‎choices.‎However,‎the‎carry‎block’s‎ 
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Fig. ‎4.2. 4-bit Array Multiplier A) 4-bit array multiplication algorithm; B) block 

diagram of the array multiplier; in order to do iterative additions half adder and full adders 

are used, the multiplication is completed in 9 stages; in this figure, the flow is from the top 

towards bottom; C) HSPICE validations of the multiplier; multiplication between 0011 

and 0111 results in 00010101; the final result is generated at the 9
th

 clock phase; D) 

physical layout of a 4-bit multiplier in Skybridge. 
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complexity increases with bit-width, since Ci is calculated using logic expression: 

𝐶𝑖 = 𝐺𝑖−1 + 𝑃𝑖−1 𝐶𝑖−1. For higher orders of Cout, the complexity increases exponentially. 

As a result, two carry blocks cannot be used in the same clock stage without cascading in 

8-bit CLA design; such partitioning of the carry block will result in throughput 

degradation.  

 However, for a 16-bit CLA design (Fig. ‎4.3B), two 8-bit carry blocks were used. A 

single 16-bit carry block in a single clock stage would result in 17 fan-in circuits, which 

would cause severe degradation of overall performance (details on fan-in sensitivity can 

be found in Chapter 3.2.1). The maximum fan-ins assumed are 4, 9 and 9 for 4-bit, 8-bit 

and 16-bit CLAs respectively.  

  



 

Fig. ‎4.3. High bit-width arithmetic examples: 8-bit and 16-bit CLAs. A) 8-bit CLA 

block diagram; it consists of 4-bit propagate and carry (PG), 4-bit buffer, 8-bit carry and 

2 4-bit sum units. PG blocks generate intermediate signals for parallel addition, buffer is 

used for signal synchronization, and for signal propagation; sum and carry blocks 

generate sum and carry respectively; B) 16-bit CLA block diagram; it consists of 4 4-bit 

PG, 4 4-bit buffer, 2 8-bit carry and 4 4-bit sum blocks. 
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4.2 Section Summary 

 This section presented various circuit design examples in Skybridge fabric. We 

presented detailed designs of arithmetic circuits such as Adders, Multipliers at different 

bit-width. Scalability aspects were investigated through high bit-width CLA designs. 

Benchmarking results against projected scaled CMOS designs for these arithmetic 

circuits are provided in Chapter 7.  
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5. CHAPTER 5 

SKYBRIDGE MICROPROCESSOR DESIGN   

 

 In this chapter, a Skybridge processor design is shown. A 4-bit WIre Streaming 

Processor (WISP-4) was built at the transistor level, and functionally verified at the 

circuit level. The WISP-4 processor design uses a load-store architecture, which is 

common in modern RISC processor designs. It is composed of blocks such as program 

counter (PC), read-only memory (ROM), register file, buffers, decoders, multiplexers and 

arithmetic logic unit (ALU), and is capable of performing memory access and arithmetic 

operations. WISP-4 was designed with five stages of pipeline, and each stage is micro-

pipelined with internal clock signals driving Skybridge dynamic circuits. Design of all 

logic‎and‎memory‎circuits‎for‎processor‎follow‎the‎Skybridge’s‎circuit‎styles‎(see‎Chapter‎

3). Circuit placements and layouts are in accordance to the Skybridge fabric design rules 

and guidelines (see Chapter 6).  

 Using the bottom-up evaluation and benchmarking methodology discussed in Chapter 

6.1, extensive simulations were carried out to validate the WISP-4 design, and to evaluate 

its potential against equivalent CMOS implementation. Benchmarking results are shown 

in Chapter 7.  

5.1 WISP-4 Architecture  

 The architecture of WISP-4 is shown in Fig. ‎5.1. It has five pipeline stages: 

Instruction Fetch, Decode, Register Access, Execute and Write Back. During Instruction 

Fetch, an instruction is fetched from ROM and is fed to instruction decoder. In 
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Instruction Decode, the 

fetched instruction is 

decoded to generate 

control signals, and to 

buffer the register 

addresses and data. In the 

next stage, buffered data is 

stored in register file and 

prepared for sequential 

execution in the Execute 

stage. After ALU 

operations in the Execute 

stage, results are stored in 

the register file during 

Write Back. The synchronization of pipeline stages is maintained through micro 

pipelining of logic blocks at each stage; this is possible, since all logic block 

implementation is through the Skybridge logic style, which uses clock signals as control 

inputs.  

 The instruction fetch unit consists of a program counter (PC) and a ROM (Fig. ‎5.2A). 

The PC is a 4-bit binary up counter that is used to continuously increment the instruction 

address every clock cycle. This implementation uses a 4-bit CLA; one of its inputs is 

constant‎’1’,‎and‎another‎is‎the‎result‎of‎previous‎calculation.‎The‎result‎of‎PC‎is‎fed‎to‎a‎

4:16 decoder to select one of the 16 rows from the instruction ROM. The ROM stores a 

 

Fig. ‎5.1. Skybridge 4-Bit Wire Streaming Processor 

(WISP-4). Block diagrams showing the WISP-4 

organization; it has 5 pipelined stages: Instruction Fetch 

(IF), Instruction Decode (ID), Register Access, Execute 

and Write Back. 5 instructions are supported: move 

(MOV), move immediate (MOVI), addition (ADD), 

multiplication (MULT) and stall (NOP). 
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set of instructions to be executed and has a total capacity of 16x9bits in this prototype. 

The output of ROM is a 9-bit instruction and contains 3-bit operation instruction 

(opcode), two 2-bit source/destination register addresses or 4-bit data (see Fig.  5.1).  

  As shown in Fig.  5.2B, the instruction decode unit consists of a 3:8 decoder and 

 

Fig. ‎5.2. Block diagram of each pipeline stages. A) Instruction Fetch stage contains 

4-bit CLA for program counter, 4:16 decoder to decode ROM address and 16*9 ROM 

to store instructions; B) Instruction Decode stage contains a 3:8 decoder to decode 

opcode and two 2-bit buffers for buffering address and data; C) Register Access stage 

has four 4-bit registers to store operands, two 4:1 multiplexers and one 2:1 multiplexer 

for operand selection; D) Execute stage contains arithmetic units: 4-bit CLA and 

multiplier for addition and multiplications, a buffer for data buffering, and two 2:1 

multiplexers for result selection.  
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buffers to decode operation type in an instruction (opcode), and to buffer the address and 

data. Five operations are supported in the current design: MOV, MOVI, ADD, MULT, 

NOP. MOV (move) and MOVI (move-immediate) opcodes are used to move or store 

data in registers. ADD and MULT opcodes are used for addition and multiplications 

respectively. NOP stands for no operation, and is used for stalling the pipeline.  

 The Register file (Fig.  5.2C) consists of registers, 2:1 and 4:1 multiplexers, and 

buffers. Registers are used to store operands, and multiplexers are used to generate 

control signals for ALU. Buffers are necessary for synchronization of data between 

stages.  

 The ALU in WISP-4 consists of a CLA, array multiplier, buffer, and 2:1 multiplexers. 

The block diagram of ALU is shown in Fig.  5.2D. 4-bit CLA and multiplier units are 

used for addition and multiplication on 4-bit operands. The buffer unit is used for data 

buffering and to write back in the next stage. 2:1 multiplexers select the output of ALU, 

which is stored in the register file during Write Back stage.  

 Circuit-level implementation of these processor units follows the Skybridge circuit 

style. Both Compound and cascaded dynamic logic styles are combined for efficient 

implementations. 4-bit CLA and multiplier circuits and HSPICE validations were shown 

in Chapter 4; in this section we show the core supporting circuits.  

 Fig. ‎5.3 shows 2-bit ROM, 2:4 decoder, and a latch. The ROM is pre-configured to 

generate‎either‎‘1’‎or‎‘0’‎output‎at‎selected‎locations.‎For‎example,‎to‎emulate‎permanent‎

storage‎ of‎ ‘1’‎ and‎ ‘0’‎ in‎ word1,‎ bit1‎ and‎ word2,‎ bit2 locations, 3 dynamic one input 

NAND gates are used. As shown in Fig.  5.3A, the bit1 location is associated with  
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Fig. ‎5.3. 2-bit ROM, 2:1 decoder and a latch. A) 2-bit ROM implementation using 

Skybridge’s‎circuit‎style.‎The‎circuit‎is‎preconfigured‎to‎produce‎‘0’‎or‎‘1’‎output‎at‎

selected locations;‎ the‎ schematic‎ (top)‎ is‎ configured‎ to‎produce‎ ‘1’‎ at‎ bit1‎ location‎

when‎W1‎is‎selected,‎‘0’‎at‎bit2‎when‎W2‎is‎selected.‎HSPICE‎results‎are‎shown‎in‎

the bottom figure;  B) 2:4 decoder schematic and HSPICE results are shown; 

cascaded logic style is used for this; output of first stage is propagated to the second 

stage for inversion operation; C) A latch implementation; latch operation is 

controlled by Sel0 and Data inputs; HSPICE simulation results are shown in the 

bottom subfigure. 
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a NAND gate that has only word2 (W2) as input; whereas, the bit2 location is associated 

with shorted outputs of two NAND gates, whose inputs are word1 (W1) and word2 (W2) 

respectively. All NAND gates shown in Fig.  5.3A  are controlled by the same PRE, EVA 

control signals. During W1 select, W2 is‎ ‘0’,‎ therefore bit1 read-out‎ value‎ is‎ ‘1’,‎ and‎

during W2 select both bit1 and bit2 read-out‎values‎are‎‘0’‎as‎expected.‎Fig.  5.3B shows 

the HSPICE simulated waveform validating ROM behavior.  

 The 2:1 decoder implementation uses a cascaded dynamic logic style; output of first 

stage is propagated to second stage for inverted final output. Fig.  5.3C-D shows the 

circuit schematic and related HSPICE simulation results. The dynamic latch 

implementation is shown in Fig.  5.3E-F. It uses a 2:1 multiplexer and a NAND gate for 

required functionality; depending on the input (Data) and select signal (Sel0), either new 

data is latched or old data (out) is retained through the feedback logic. Fig.  5.3F shows 

the HSPICE simulations for this latch, validating circuit operation.   

5.2  Section Summary 

 A 4-bit Skybridge microprocessor (WISP-4) was presented, details of microprocessor 

architecture and its core elements were shown. The WISP-4 design lays the foundation 

for processor implementations in Skybridge fabric. This design can be easily extended to 

higher bit-width, arithmetic circuits similar to the ones shown in Chapter 4 can be used. 

In‎addition,‎Skybridge’s‎volatile‎RAM‎can‎be‎used‎to‎realize‎high‎performance‎on-chip 

caches. 
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6. CHAPTER 6 

FABRIC EVALUATION METHODOLOGIES, 3-D CIRCUIT DESIGN RULES 

AND GUIDELINES 

   

 Comprehensive methodologies, from the material layer to system, were developed to 

evaluate the potential of Skybridge vs. CMOS. All circuit simulations followed a bottom-

up simulation methodology that included detailed effects of material choices, confined 

dimensions, nanoscale device physics, 3-D circuit style, 3-D interconnect parasitics, and 

3-D coupling noise. For benchmarking purposes, equivalent CMOS designs were 

implemented using state-of-the-art CAD tools, and were scaled to 16nm using standard 

scaling rules. 

 All Circuit design and layout in Skybridge adhere to 3-D specific design rules and 

guidelines. The design rules ensure conformity to necessary material structure 

requirements and manufacturing assumptions, as presented earlier. The guidelines allow 

efficient mapping of circuits in this 3-D fabric without routing congestion, helps in 

mitigating coupling noise, ensures thermal management and manufacturability.  

 3-D connectivity implications for large-scale designs in Skybridge were analyzed 

using a detailed methodology. 3-D interconnect modeling was done for a 10 million logic 

gate based design with Skybridge specific parameters; equivalent estimation was done for 

CMOS designs at 16nm technology node for comparison. Thermal analysis of Skybridge 

circuits was carried out using fine-grained model accounting for thermal properties of 

materials, nanoscale dimensions and 3-D layout. 

.   
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6.1 Fabric Evaluation Methodologies 

6.1.1 Methodology for 3-D Circuit Evaluation   

 As mentioned earlier, Skybridge circuit evaluation followed a bottom-up simulation 

methodology. Detailed simulations were done at device, core circuit and system levels. 

V-GAA Junctionless device behavior was characterized using 3-D TCAD Process and 

device simulations.  Process simulation was done to create the device structure emulating 

the actual process flow; process parameters (e.g., implantation dosage, anneal 

temperature, etc.) used in this simulation were taken from our experimental work on 

Junctionless transistor ‎[10]. Process simulated structure was then used in Device 

simulations to characterize device behavior. Detailed considerations were taken to 

account for confined device geometry, nanoscale channel length, surface and secondary 

scattering effects (see Chapter 3.1 Process and Device simulation results).  

 For circuit simulations, the TCAD simulated device characteristics were used to 

generate an HSPICE compatible behavioral device model (Fig. ‎6.1). Regression analysis 

was performed on the device characteristics, and multivariate polynomial fits were 

extracted using DataFit software ‎[26]. Mathematical expressions were derived to express 

the Drain current as a function of two independent variables, Gate-Source (VGS) and 

Drain-Source (VDS) voltages. These  expressions  were  then  incorporated  into  sub-

circuit definitions  for  voltage-controlled  resistors  in HSPICE ‎[24]. Capacitance data 

from TCAD simulations was directly  integrated  into  HSPICE  using  voltage-controlled  

capacitance  (VCCAP)  elements  and  a piece-wise linear approximation.  The  

regression  fits  for  current together  with  the  piece-wise  linear  model  for capacitances  

and  sub-circuits define the behavioral HSPICE model for the V-GAA Junctionless 
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Fig. ‎6.1. Skybridge Circuit Evaluation 

methodology. The bottom-up approach uses 

TCAD Process and Device simulated device 

characteristics in HSPICE simulations. 

Interconnect parasitics and noise effects from 3-D 

layout are also captured in these simulations.  

transistor.  This modeling 

methodology is similar to our 

prior work on horizontal 

nanowire device modeling ‎[26].  

 In addition to accurate 

device characteristics, Skybridge 

circuit simulations also 

accounted for 3-D layout 

specific interconnect parasitics 

and coupling noise effects 

(Fig. ‎6.1) considering actual 

dimensions and material 

choices. Circuit mapping into 

Skybridge fabric and 

interconnection‎ were‎ according‎ to‎ manufacturing‎ assumptions‎ and‎ followed‎ fabric’s‎

design rules and guidelines. Coupling noise considered was due to cascading of logic 

stages, and signal propagation through dense 3-D interconnect network. V-GAA 

Junctionless transistors used for fabric evaluation had 16nm channel length. All 

manufacturing assumptions and design rules followed ITRS guidelines for 16nm 

technology node ‎[48]. Capacitance calculations for Coaxial routing structures were 

according to the methodology in ‎[27], and resistance calculations were according to the 

PTM interconnect model ‎[35]. The PTM model ‎[35] was also used for metal routing RC 

and coupling capacitance calculations.  
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 For benchmarking CMOS implementations, of arithmetic circuits and a 

microprocessor, state-of-the-art CAD simulation tools (Synopsys Design Compiler, 

Cadence Encounter, and Synopsys HSPICE) were used. Behavioral design, physical 

layout, placement, interconnect extraction, and HSPICE simulations were performed at 

45nm technology node. Extracted results were then scaled to 16nm technology using 

standard scaling rules ‎[13]‎[14].   

6.1.2 Methodology for 3-D Interconnect Modeling, Wire Length Estimation and 

Repeater Count Distribution 

 Predictive models ‎[16]‎[17] for estimation of interconnect distribution in 2-D and 3-D 

fabrics‎were‎employed.‎Parameters‎for‎these‎models‎such‎as‎Rent’s‎parameters,‎average‎

fan-out and gate-pitch were extracted from the microprocessor and arithmetic circuits 

designed for Skybridge and CMOS. In addition, typical CMOS parameters from 

literature ‎[16] were also considered for another level of comparison. This resulted in the 

full interconnect distribution for Skybridge and 2-D CMOS. In order to identify the 

boundaries between interconnect hierarchical levels, delay criterion was used ‎[6]. The 

number of repeaters for each hierarchical level was then estimated based on the optimal 

interconnect segment length for repeater insertion and the number of interconnects for a 

given length (from the interconnect length distribution). The optimal segment length for a 

given hierarchical level was determined based on interconnects resistance and 

capacitance parameters. Fig. ‎6.2 provides an overview; details on the predictive models 

used can be found in ‎[6].  
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Fig. ‎6.2.3-D Interconnect modeling methodology. Methodology for predicting the 

interconnect length distribution in Skybridge and 2-D CMOS; Skybridge parameters 

were taken from WISP-4 microprocessor design, CMOS parameters were taken from 

[16][17]. 

6.1.3 Methodology for 3-D Thermal Analysis 

 To analyze the thermal profile of 3-D circuits, and to quantify the effectiveness of 

Skybridge’s‎heat‎extraction‎features,‎we‎have‎done‎circuit-level thermal evaluation using 

detailed modeling and simulation for the worst-case static heat scenario. The thermal 

modeling was done at transistor level granularity, and was extended for Skybridge 

circuits. In this model, each heat conducting region (e.g., Channel, Drain/Source, 

Contacts etc.) is represented with equivalent thermal resistance, and the thermal 

resistance value is determined from the actual thermal conductivity of material used, and 

material dimensions (see Chapter 8 for material properties). The effect of nanoscale 

confined dimensions on thermal conductivity is captured in thermal resistance 
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Fig. ‎6.3. Thermal evaluation methodology. 

Methodology for worst-case static heat scenario. 

Thermal resistance modeling is done for each 

circuit component, such as device, interconnect, 

power rail, etc. and combined to assemble thermal 

resistance network for the 3-D circuit; electrical 

equivalent circuit model is then used for HSPICE 

evaluations  

calculations. For Skybridge 

circuits the same model was used 

to calculate thermal resistance of 

all active circuit components, 

accurately reflecting material 

dimensions and 3-D layout. 

HSPICE thermal simulations 

were done by analogous 

representation of thermal 

resistance and heat source in 

electrical domain. Worst case 

static heat scenario was 

considered for these simulations. 

Analysis was done on 8 fan-in 

based Skybridge circuits. Several 

conditions were simulated 

including‎ heat‎ conduction‎ with‎ and‎ without‎ Skybridge’s‎ heat‎ extraction‎ features‎ at‎

different gate temperatures. Fig. ‎6.3 illustrates the methodology used for thermal 

modeling. More details about thermal modeling and analysis can be found in Chapter 8.  

6.2 3-D Circuit Design Rules and Layout Guidelines 

 The design rules are a set of numerical rules for circuit layout derived from TCAD 

simulations and envisioned manufacturing pathway. These design rules set the standard 

for minimum length, width, thickness, and spacing of nanowires, transistors, and metal 
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layers. The guidelines for 3-D circuit mapping and layout are based on Skybridge's 

circuit style, global and intermediate signal routing, heat extraction, and 

manufacturability. Ease of implementations of dynamic circuits in 3-D is emphasized in 

these guidelines; careful considerations are taken to enable high fan-in logic 

implementations and to prevent long intra-logic interconnections that are detrimental to 

performance. Basic guidelines are discussed for routing signals using intrinsic features in 

Skybridge (signal carrying nanowires, Bridges and Coaxial routing structures) and 

considerations are taken to mitigate coupling noise through incorporating GND shielding 

layers on signal routing paths. Circuit design guidelines also take into account 3-D heat 

extraction requirements. Heat extraction features are used synergistically with other 

active components to prevent hotspot development in 3-D. Ensuring fabric 

manufacturability is precursor to all these guidelines. 

6.2.1 Design Rules 

 Design rules used for behavioral and thermal simulations of Skybridge circuits were 

derived from material requirements and the manufacturing pathway presented in Chapter 

9. Materials required and their dimensions are specific to design choices, and are 

validated by simulations; for example: choice of 2nm thick HfO2 as gate-dielectric for 

vertical J-GAA device was validated by detailed 3-D TCAD Sentaurus based modeling  

and simulations (see Chapter 3.1). Similarly material dimensions were selected for 

spacer, contact formation, inter-layer dielectric, and interconnect and heat junctions. 

Fig. ‎6.4 shows cross-section of routing-nanowire and logic-nanowire, and illustrates 

dimensions and spacing of different material regions. These dimensions are based on 

their core requirements and manufacturability. For example, as shown in Fig. ‎6.4, the 
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11.5nm thickness of TiN 

layer (Gate electrode for 

vertical J-GAA devices) 

is determined both by 

minimum gate electrode 

thickness requirement for 

device functionality and 

lithographic alignment 

precision (± 3.3nm at 16  

nm node ‎[48]) required 

for UV exposure (Chapter 

9.1.6).  

 Table ‎6.1 lists design 

rules that are specific to 

each fabric component. 

Since Skybridge is a 3-D fabric, design rules are required in all X, Y and Z directions as 

presented in Table ‎6.1. Some choices are customizable to individual circuit designs, such 

as Coaxial routing layer length, heat junction spacing etc.; these are not listed in 

Table ‎6.1.   

6.2.2 Additional Guidelines 

 An abstract view of the Skybridge fabric with key aspects is shown in Fig. ‎6.5. As 

illustrated, local interconnections for input, output and power rails are through Bridges 

 

Fig. ‎6.4. Design rule illustration. A pair of nanowires 

are shown: one logic nanowire and another signal 

nanowire. Transistors are stacked in logic nanowires, 

whereas signal nanowires are primarily used for signal 

routing. The figure depicts different materials and 

dimensions. Logic nanowires outer dimensions are 

determined by transistor gate electrode thickness, gate 

contact requirements; signal nanowires outer dimensions 

are specified by ILD and different metal layer 

thicknesses. 
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and Coaxial structures. 

Intermittent Heat dissipating 

power pillars are also shown 

on the periphery of logic 

blocks. 

 Circuit mapping into the 

Skybridge fabric involves 

placement of device, contacts 

and power rails, and local, 

semi-global and global 

interconnections. This 3-D circuit mapping is made compatible with heat extraction and 

manufacturing requirements.  

 For circuit mapping, arrays of regular vertical nanowires are partitioned into logic and 

signal routing nanowires. Logic nanowires are dedicated for containing transistors stacks, 

and signal nanowires are primarily used for signal routing. Placements of logic and signal 

nanowires are periodic, and are interleaved with each other. All nanowires are assumed to 

have a fixed height of 886nm. The logic nanowires are partitioned to have at most two 

logic stages, each having maximum of 9 fan-in, and occupying half of maximum 

nanowire height. Interconnection in-between logic stages is through Bridges and Coaxial 

routing structures, and utilizes signal nanowires. Bridges form links between nanowires, 

and Coaxial routing structures that are placed on signal nanowires allow signal hoping 

and provide noise shielding. Three signals can be routed with one signal nanowire and 

surrounding metal shells in current designs; one of the three signals is dedicated for GND 

Table ‎6.1. Design rules 

 

Width 

(nm) 

X 

Length 

(nm) 

Z 

Thickness 

(nm) 

Y 

Spacing 

(nm) 

Bridge 

(X,Y,Z) 

16n-

58n 
16n 16n-58n 16n-37n 

Transistor Channel 

(X,Y,X) 
16n 16n 16n 58n 

Transistor Spacing 

(Z) 
- - - 16n 

Gate Electrode (Z) 29n 16n 11.5n - 

Contact (X,Y,Z) 26n 16n 16n 39 

Heat Junction 

(X,Y,Z) 
22n 16n 6n - 

Coaxial (Si-M1) 

(X,Y) 
37n - 37n 

4n (Si-

M1) 

Coaxial (M1-M2) 

(X,Y) 
58n - 58n 

4n (M1-

M2) 
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signal to provide noise shielding. In addition to these routing requirements, logic stages 

that are used in same logic block are placed in close proximity to reduce long intra-block 

connections, and thus to reduce delay. 

 Global signals in Skybridge are primarily clock and power signals. Power signal 

contacts (VDD, GND) are made at the top, middle, and bottom of the logic nanowires. 

GND contacts are made at the top and bottom, and VDD contacts are made in the middle; 

this configuration allows heat flow from the top of the nanowire towards the bottom bulk 

 

Fig. ‎6.5. View of Skybridge fabric. The figure shows abstract layout of Skybridge 

fabric incorporating all fabric components. Logic and signal nanowires are separated, 

and are interleaved with each other. Logic nanowires contain transistor stacks, and 

have power rail contacts at top, middle and bottom. Signal nanowires carry signals 

themselves and also facilitate routing through Coaxial routing structures and Bridges. 

Coaxial routing structures have dedicated GND signal layer for noise shielding. Heat 

Extraction features ensure thermal management. As illustrated, Heat Extraction 

Junctions are placed on selective places on logic nanowires; extracted heat is dissipated 

through Heat Extraction Bridges and Heat Dissipating Power Pillars. 
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(details on thermal management on Chapter 8). Clock signals are routed in parallel to 

power signals.  

 Heat Extraction Junctions are placed at the output of every logic stages or one per 

logic nanowire, depending on the requirements. One input out of a fan-in of 9 is reserved 

in every logic stage for the Heat Junction. Extracted heat is dissipated through Bridges 

and Heat Dissipating Power Pillars. The large area Heat Pillars are placed on the 

periphery of logic blocks, and are separated by an average distance of 10 nanowire 

pitches from each other. Circuit mapping in the fabric takes into consideration the 

placement of these pillars.  

6.3 Section Summary 

 In this section, an overview of the methodologies used for interconnect estimation, 

thermal analysis, 3-D circuit functionality verification and benchmarking were presented. 

Numerical design rules 3-D circuits derived from TCAD simulations and manufacturing 

assumptions were elaborated. Guidelines for circuit mapping into physical fabric were 

shown that take into account manufacturability, connectivity, noise mitigation and 

thermal management.  
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7. CHAPTER 7 

BENCHMARKING RESULTS 

   

 We have extensively evaluated core aspects of Skybridge fabric, and benchmarked 

against projected scaled CMOS. Benefits of 3-D circuit implementation were evaluated 

through a 4-bit array multiplier, 4-, 8- and 16-bit CLAs, 1-bit volatile memory cell, and a 

4-bit microprocessor design. The benchmarking was done by accounting for detailed 

effects of material structures, nanoscale device physics, circuit style, 3-D circuit layout, 

interconnect parasitics and noise coupling, and followed the methodology, design rules 

and guidelines described in Chapter 6. CMOS equivalent implementations were 

completed using state-of-the-art CAD tools and scaling to 16nm was done using standard 

design rules ‎[13]‎[14] as discussed in Chapter 6.1.1.  In addition, we have also evaluated 

connectivity‎implications‎for‎Skybridge’s‎ultra-dense implementations and compared that 

with equivalent CMOS following the methodology described in Chapter 6.1.2. 

Effectiveness of Skybridge’s‎heat‎extraction‎features‎are‎shown‎in‎Chapter‎8.‎‎ 

 The benchmarking results show tremendous benefits can be obtained for Skybridge 

designs; for example, the 16-bit CLA design achieves 60x density, 10x power and 54% 

performance benefits over equivalent‎ CMOS‎ designs,‎ and‎ Skybridge’s‎ estimated‎ total‎

interconnection length is 10x less compared to CMOS.  

7.1 Benchmarking of Arithmetic Circuits  

 The benchmarking results for arithmetic circuits are shown in Table ‎7.1; these circuit 

designs were detailed in Chapter 4. As evident from the results, Skybridge designs 
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achieve significant benefits across 

all metrics. Table ‎7.1 shows that 

the 4-bit array multiplier 

Skybridge design has 39.3x 

density and 4x power advantage at 

comparable performance vs. the 

CMOS multiplier. The 4-bit 

Skybridge CLA is 24.6x denser 

and has 12X reduced power; whereas 8 and 16-bit CLA designs that use 8 fan-in are 48x 

and 60.5x denser, respectively, and consume 12x and 10x less power, respectively, in 

comparison to equivalent 16-nm CMOS designs. The active power results show almost 

linear dependence to throughput. The 16-bit Skybridge design is 54% higher performance 

vs. the CMOS version. Due to the Skybridge fabric and circuit style, the load capacitance 

that each gate output sees is reduced, and as a result high fan-in designs are possible and 

beneficial in Skybridge circuits. Our 16-bit results show better overall results with higher 

bit-widths vs. CMOS. These results indicate high bit-width scalability potentials of 

Skybridge designs. 

7.2 Benchmarking of Volatile Memory  

 Cell-level evaluation of Skybridge volatile RAM vs. scaled 16nm high performance 

6T-SRAM is shown in Table 7.2. The Skybridge RAM has 4.6x density, 4.24x active 

power and 50x leakage power benefits, and operates at similar frequency as the high 

performance SRAM (Table 7.2). These benefits of Skybridge RAM are achieved due to 

3-D integration and innovative circuit style. The density benefits are obvious from the 

Table ‎7.1. Scalability potential of Skybridge 

designs 

CLA  

Throughput  

(s-1) 

Power  

(μW) 

Area  

(μm2) 

CMOS SB CMOS SB CMOS SB 

4-Bit 

Multiplier 
5.0e9 5.1e9 42.3 172 50 1.27 

4-Bit CLA 9.9e9 10.4e9 235 19.4 18.7 0.76 

8-Bit CLA 4.5e9 5.7e9 287 23.5 64.7 1.34 

16-Bit 

CLA  
2.4e9 3.7e9 297 27.8 130.2 2.15 
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Skybridge RAM 3-D layout (Fig. 

3.6C), since only one logic-

nanowire is used for memory 

implementation, which is 

equivalent to one transistor area. 

The dense implementation also implies intra-cell routing is less, which is advantageous to 

reduce active power. The active power in this RAM is further reduced compared to 

SRAM, due to its fundamental operating style. The write operation in Skybridge RAM is 

synchronized with clock, and only true or complementary value is written at a certain 

time as opposed to SRAM where both values transition at the same time leading to higher 

switching activity, and as a result more active power compared to Skybridge RAM. The 

leakage power in Skybridge RAM is significantly less, since the RAM design uses 

dynamic circuit style with multiple transistors stacked in series forming high resistance 

path‎ from‎ storage‎ node‎ to‎ GND.‎Moreover,‎ the‎ Skybridge‎ RAM’s‎ restoration‎ scheme‎

ensures that during periods of inactivity all control signals can be switched off, which 

reduces leakage power further (Details on Skybridge RAM operation can be found in 

Section 3.3). Despite reduced intra-cell routings of Skybridge RAM, the performance 

results. 

7.3 Benchmarking of Processor Design in Skybridge 

 Benchmarking results for WISP-4 microprocessor is shown in Table ‎7.3. The WISP-4 

architecture and its core design components were presented in Chapter 5. As shown in 

Table ‎7.3, the Skybridge WISP-4 design significantly outperforms the equivalent CMOS 

version. At-least 30x density, 2.94x power and 18.6% performance benefits are obtained. 

Table ‎7.2.  Memory comparison: Skybridge 

8T-NWRAM vs. CMOS 6T-SRAM 

 
Delay 

(ps) 

Active 

Power 

(μW) 

Leakage 

Power 

(nW) 

Area 

(μm2) 

CMOS 6T-

SRAM 
20 1.4 8.2 0.065 

Skybridge 

8T-NWRAM 
20.2 0.33 0.164 0.014 
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Higher benefits are expected for 

higher bit-width implementations. 

The scalability of Skybridge 

circuits was shown through 

arithmetic circuits in Section 6. 

7.4 Connectivity Implications of Skybridge Designs 

 Skybridge’s‎ unique‎ routing‎ features‎ such‎ as‎Bridges‎ and‎Coaxial‎ routing‎ structures‎

allow Input/Output/Global signals to be routed from any arbitrary position in the 3-D 

layout to another, and thus ensure high degree of connectivity with limited footprint. 

Additional routing is achieved through traditional metal layers. We have quantified 

connectivity implications of Skybridge designs using predictive models based on Rent’s‎

rule ‎[16]‎[17].‎ Rent’s‎ parameters‎ for‎ Skybridge‎ were‎ extracted‎ from‎ actual‎ designed‎

circuits and CMOS parameters were taken from literature ‎[16]. For a 10M logic-gate 

design, our results indicate that interconnect lengths for Skybridge are significantly 

shorter than CMOS, at each hierarchical level (Fig. ‎7.1A); e.g., the longest Global 

interconnect is ~10X shorter with Semi-global and Local interconnects being dominant. 

This reduces the number of repeaters required in Skybridge considerably (Fig. ‎7.1B), in 

the best case the repeater count was found to be 100x less compared to CMOS designs; 

this has huge implications for overall area, power consumption, and performance of large 

Skybridge-based circuit architectures.  

Table ‎7.3. Skybridge vs. CMOS comparison 

for microprocessor 

WISP-4 

Processor 
Throughput 

(Operations/sec) 

Power 

(μW) 

Area 

(μm
2
) 

CMOS 4.3x10
9
 886 289 

Skybridge 5.1x10
9
 301 9.52 
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7.5 Section Summary 

 In this section, benchmarking results of Skybridge fabric were presented. We 

presented results for arithmetic circuits at different bit-widths and showed how they 

scale. We have also shown benchmarking results for a microprocessor. The benefits of 

Skybridge designs were tremendous across all metrics: area, power and performance, and 

at higher bit-width more benefits are projected. Implications of 3-D connectivity were 

also evaluated; interconnect requirements for Skybridge were found to be order of 

magnitude less.   

 

Fig. ‎7.1. Comparison of interconnect distribution and estimated repeater count 

in Skybridge and CMOS, for an integrated circuit consisting of 10 million 

gates. A)  Interconnect distribution estimating the number of interconnects of a 

given length (in gate-pitches). Skybridge reduces the length of interconnects 

significantly, by almost 10x for the longest interconnect. B) Estimated count of 

repeaters based on the interconnect distribution in (A). Parameters for Skybridge: k 

= 5.39, p =‎ 0.577‎ (Rent’s‎ parameters),‎ average‎ fan-out = 2.018. For CMOS, 

Parameter Set 1: k=4, p=0.6, average fan-out = 3; and Parameter Set 2: k=3.416, 

p=0.473, average fan-out = 1.7.  
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8. CHAPTER 8 

FINE-GRAINED 3-D THERMAL MANAGEMENT 

   

 Thermal management is a crucial issue at nanoscale. As transistors are reaching ultra-

scaled dimensions, heat dissipation paths are reducing, thus giving rise to self-heating in 

transistors. The situation worsens for 3-D designs, where multiple transistors are stacked 

vertically, and thermal resistance from heat source to sink increases. In Skybridge 

nanoscale thermal issues are addressed through architected heat extracting features being 

built-in as core fabric components. This integrated mindset is a significant departure from 

traditional CMOS approaches, where heat extraction from active circuit is addressed only 

as after-thought (i.e., during operation, and at system level).  

 The intrinsic heat extraction features of Skybridge fabric are: (i) selective placement 

of power rails (i.e., VDD and GND) to control heat flow direction, (ii) Heat Extraction 

Junctions (HEJs) to extract heat from a heated region in a circuit, (iii) sparsely placed 

large area Heat Dissipating Power Pillars (HDPPs) for heat dissipation to sink.  

(i) In Skybridge, logic and memory functionality is achieved in vertical nanowires, 

where transistors are stacked and metal contacts are established at selective places in 

nanowires for output and power rails (i.e., VDD and GND). The placement of power 

rail contacts has huge thermal implications, since it determines the current and heat 

flow direction in a vertically implemented fabric. For example, in a vertically 

implemented dynamic NAND gate if the VDD is placed on the top and GND is 

placed at the bottom, electrons will flow from GND towards VDD and generate heat 
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along its path. In turn the generated heat will flow from top (i.e., hot region) to 

bottom (i.e., cool region) towards reference temperature.   In this fabric, the power 

rails are positioned vertically such that heat flow towards substrate is maximized. 

Since, each logic nanowire pillar accommodates two dynamic NAND gates, and one 

power rail can be shared between two gates, the VDD contact is positioned in the 

middle and GND contacts are made at the top and at the bottom. This configuration 

allows heat transfer from VDD to bottom GND and towards heat sink in the bulk 

and allows the bottom of the nanowires to be at the same temperature as the 

substrate.  

(ii) HEJs are specialized junctions that are used to extract heat from a logic nanowire 

without perturbing its operation. HEJs are connected with Bridges to transfer heat to 

the bulk through HDPPs. The Bridges that carry heat are different from other generic 

signal carrying Bridges, since these always carry only one type of electrical signal 

(GND) and serve the purpose of heat extraction only. HEJs in conjunction with 

Bridges allow flexibility to selectively extract heat from a 3-D circuit layout without 

any loss of functionality or performance. 

(iii) HDPPs are intrinsic to Skybridge fabric, and are used for both power supply (i.e., 

VDD and GND signals) and heat dissipation. These pillars are large in area (2nw 

pitch x 2nw pitch) and have specialized configuration with metal silicidation and 

fillings particularly to facilitate heat transfer. The top GND and middle VDD 

contacts in each logic nanowire connect to these large area pillars through Bridges. 

The power pillars are different in-terms of dimension, layout and material 
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configuration from signal pillars, which carry input/output/clock signals from 

different logic/clock stages. 

In the following, we present details on thermal characteristics of Skybridge fabric, and 

show effectiveness of its architectural features. Fine-grained thermal modeling approach 

is presented for 3-D circuits, and is followed by detailed evaluation. 

8.1 Thermal Modeling and Analysis 

 In order to characterize the thermal profile during operating conditions heat modeling 

was done for circuits at transistor-level granularity as outlined in Chapter 6.2. This fine-

grained modeling is especially important due to nanoscale dimensions of active devices; 

at this scale, confined dimensions and scattering affects drastically reduce thermal 

conductivity of silicon channel, which leads to rapid self-heating. From a circuit 

perspective, such fine-grained modeling allows detail understanding about heat 

generation in circuits, and implications of materials and architectural choices for heat 

dissipation.  

8.1.1 V-GAA Junctionless Transistor  

 In this section we show thermal modeling of a single n-type GAA Junctionless 

transistor. Material and geometry considerations of this device are reassessed from 

thermal perspective. Fig. ‎8.1A shows cross-section of n-type GAA Junctionless 

transistor, where heat generation is mainly due to electron-phonon interaction in the 

Drain region. During ON state, free electrons accelerate from the Source region towards 

the Drain. Here they scatter due to interactions with other electrons, phonons, and 

impurity atoms causing the lattice temperature to increase ‎[19]. Depending on the 
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material considerations and geometry of the transistor, this temperature gradient can 

either dissipate quickly without any impact or slowly dissipate and cause transistor ON 

current degradation. 

 In order to estimate temperature gradient within transistor region, an electrical 

analogy of thermal model can be used ‎[18]. An approximation of generated heat, Q 

(Watts) can be:  

𝑄 = 𝐼𝑑𝑠 ∗ 𝑉𝑑𝑠 (8.1) 

 In eq. (8.1), Ids is Drain-source current, and Vds is Drain-source voltage. The 

relationship between heat (Q) and temperature-gradient‎(ΔT)‎is: 

𝛥𝑇 =
𝐿

𝐾 ∗ 𝐴
 ∗ 𝑄 

(8.2) 

 In eq. (8.2), L is the length of heat conduction path, k is thermal conductivity and A is 

cross-section area of heat conduction path. Q and T are analogous to current (I) and 

voltage (V) respectively in electrical domain, and thermal resistance is analogous to 

electrical resistance. This allows us to model the thermal circuit as an equivalent 

electrical circuit for analysis under various operating conditions. 

 Material considerations and nanoscale effects are captured in thermal conductivity 

parameter k, whereas geometry considerations are accounted in (L/A) portion of eq. (8.2). 

Surface scattering, trap states and confinement effects reduce channel conductivity 

significantly at nanoscale. Pop. et. al., reported ‎[19] thermal conductivity of 10nm thin 

silicon layer to be as small as 13 Wm
-1

K
-1

, which is one order of magnitude less than bulk 

silicon (147 Wm
-1

K
-1

). Table ‎8.1 lists different materials used in GAA Junctionless 



66 

 

transistor and circuit thermal modeling. Material specifications (i.e., 2-D dimensions, 

thermal conductivity), in the heat flow path are also mentioned in Table ‎8.1, which is 

visually depicted in Fig. ‎8.1B. 

 Thermal model of GAA Junctionless transistor was developed using an equivalent 

thermal resistance network considering the heat conduction path and device geometry, 

based on the methodology discussed in ‎[18] for multigated transistors. The resistance 

 

Fig. ‎8.1.  Thermal modeling and simulations of V-GAA junctionless transistor. 

A) V-GAA Junctionless transistor cross-section is shown with material dimensions; 

B) heat dissipation paths are shown; heat source being the Drain region; C) heat 

resistance model for a single transistor; Drain side of the channel acts as heat 

source, heat is dissipated through the contacts in Drain, Source and Gate; D) 

thermal simulation results for a single transistor; temperature profile at various 

transistor regions with the increase in Drain voltage. 



67 

 

network built from the 

thermal conduction paths 

in Fig. ‎8.1B and with 

corresponding material 

parameters (Table ‎8.1) is 

shown in Fig. ‎8.1C. As 

illustrated, there are three 

paths to reference 

temperature through 

contacts at Drain, Gate 

and Source regions. 

Following‎ the‎ transistor’s‎

underlying self-heating principle the heat source is placed on the Drain side of the 

channel. From the heat source, heat travels either through the silicide, spacer and contact 

at the Drain, or through the channel towards the gate contact, or through the channel 

towards the Source contact. Heat flow is depended on the least resistance path to 

reference temperature. This resistance network model and device characteristics from 

TCAD simulations (VDD = 0.8V and ON current = 3.2x10
-5

 A; Section 2.1) were used 

for HSPICE simulations. Fig. ‎8.1D shows the simulation result for a single isolated 

transistor. For this simulation, routing resistance from contact to bulk was considered to 

be negligible. The reference temperature was assumed to 350K. As shown in Fig. ‎8.1D, 

the temperature is highest at the drain side and gradually lowers towards the Source; the 

Table ‎8.1. Properties of materials used in transistor 

modeling 

Region Material 

Dimension 

(L x W x T) 

nm 

Thermal 

Conductivity 

Wm
-1

K
-1

 

Drain 

Electrode 
Ti 10 x 16 x 12 21 ‎[38] 

Drain-Si Sillicide 10 x 16 x 16 45.9 ‎[39] 

Spacer Si3N4 5 x 16 x 18.5 1.5 ‎[41] 

Channel Doped Si 16 x 16 x 16 13 ‎[19] 

Gate Oxide HfO2 16 x 18 x 2 0.52 ‎[42] 

Gate 

Electrode 
TiN 10 x 16 x 6 1.9 ‎[45] 

Heat 

Junction 
Al2O3 4x16x18.5 30 ‎[20] 

Interlayer 
C doped 

SiO2 
 0.6 ‎[40] 

Bridge W 43.5x58x 16 167 ‎[43] 

 



68 

 

trend is same for varying Drain voltages. However the slope of change in temperature is 

different in various regions due to effective thermal resistance in each dissipation path.  

8.1.2 Thermal Model & Analysis of Skybridge Circuits  

 In order to understand 

thermal constraints present 

in realistic scenarios and to 

validate thermal extraction 

capabilities in Skybridge, 

we have performed 

detailed thermal circuit 

modeling using thermal 

resistance networks. 

HSPICE simulations were 

carried out to characterize 

static thermal behavior of 

the circuit during worst 

case operating condition. 

 Fig. ‎8.2 shows example 

sub-circuits with two 

independent 8-input 

dynamic NAND gates 

implemented in single 

 

Fig. ‎8.2.  Heat dissipation paths in circuits.  2 dynamic 

NAND gate (8 fan-in and Pre and Eva transistors) are 

implemented in vertical nanowire; NAND gates share 

VDD contact in the middle; heat dissipation is through 

the nanowire, power rail contacts (VDD and GND), 

through gate electrodes and through interlayer dielectric. 

A signal nanowire is shown. Bridges carry signal from 

the signal nanowire to inputs; heat flows opposite to the 

direction of incoming signal through the gates depending 

on the temperature of gate input Bridges and signal 

nanowires.  
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nanowire. GND contacts are on the top and bottom of the nanowire and VDD is in the 

middle. The placement of these power rail contacts dictates the dissipation paths. 

Additional heat dissipation paths are through the transistor Gate regions, through 

interlayer dielectric, and through doped silicon nanowire (see Fig. ‎8.2). Gate input 

Bridges along with Gate contacts contribute significantly in heat extraction, if the contact 

itself (i.e., source of Gate input) is in reference temperature. If the Gate input is at 

different temperature, heat dissipation through Gate may vary. 

 The 3-D thermal resistance network for the nanowire in Fig. ‎8.2 is shown in Fig. ‎8.3. 

As depicted, metal contacts, silicided nanowire, transistors, Skybridges, signal and power 

pillars are all represented by thermal resistances. The modeling of thermal resistance 

 

Fig. ‎8.3.  Thermal modeling of circuits. 2 sub-circuit representation in single nanowire 

is shown; the thermal resistance network is built based on vertical GAA Junctionless 

transistor model (Fig. 8.1C) and nanowire transistor stack schematic (Fig. 8.2). Each 

Ohmic contact to nanowire is represented by nanowire sillicidation resistance, Ohmic 

contact resistance and routing resistance. Average routing distance from each metal 

electrode (i.e., Gate electrode, Ohmic contact, power rail contact) to heat sink was 

assumed from 8bit Skybridge carry look ahead adder circuit.  
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follows similar methodology described in Section 8.1.1. Design rules for 3-D circuit 

layout and transistor are same as in Chapter 6.4, 6.5 and Chapter 3.1.  

 HSPICE simulations were carried out for worst case thermal profile. For the sub-

circuits in Fig. ‎8.2, the worst case scenario is during the EVA phase of operation when all 

the‎ transistors‎ are‎ ‘On’‎ and‎ each‎ of‎ them‎act‎ as‎ a‎ static‎ heat‎ source.‎Heat‎ source‎ (i.e.,‎

power in electrical analogy) at the Drain side of each transistor in the NAND gate was 

determined by dividing maximum heat (Ion x VDD) with number of ON transistors. This 

is overly pessimistic, since in a dynamic circuit multiple transistors are stacked, and the 

state of each transistor's Drain/Source diffusion capacitances determines the current flow. 

As a result the current in Drain regions are much lower than this worst static case. 

 

Fig. ‎8.4.  Thermal simulation results of Skybridge circuits without heat extraction 

features.  temperature profile of each transistor in the logic-nanowire in Fig. ‎8.2 is 

shown. Thermal profile of shows the importance of heat dissipation paths, for the 

scenario when no heat extraction through Gate is considered, temperature is as much as 

4307K, in the EVA transistor. When heat extraction through Gate contact is considered, 

temperature reduces drastically to 667K and 480K for 50% and 100% Gate extractions 

respectively.  
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  As mentioned earlier, the Gate contact plays an important part in heat dissipation. In 

our HSPICE simulations, we model different scenarios for Gate input temperature: (i) at 

maximum, (ii) half of the maximum, and (iii) reference. Maximum temperature in Gate 

contact represents the scenario when there is no heat conduction  through the gate (i.e., 

thermal resistance in the Gate is inifinite); half of the maximum scenario refers to the 

condition that the heat conduction through the Gate is half of the best case scenario, when 

the Gate is at reference temperature and contributes fully as major heat dissipation path. 

Simulation results are shown in Fig. ‎8.4. The best case results are obtained for scenario 

(iii), when there are multiple heat dissipation paths. For the top-most transistor, the 

temperature in the Drain region is as high as 4307K in scenario (i); however with more 

heat dissipations through the Gate, the temperature reduces drastically to 667K (scenario 

(ii)) and to 480K (scenario (iii)). Fig. ‎8.4 also shows the trend that temperature decreases 

towards the bottom of the transistor stack.      

8.2 Skybridge’s Heat Extraction Features  

8.2.1 Heat Dissipation Power Pillars (HDPPs)  

 Skybridge’s‎ heat‎ extraction‎ features‎ maximize‎ heat‎ dissipation‎ by‎ providing‎

thermally conductive paths. HDPPs, when connected to power rails provide such paths. 

The HDPPs are intermittent power pillars that serve both the purpose of local power 

supply and heat dissipation. These pillars are specially designed to maximize heat 

conduction; they occupy 2x2 nanowire pitch, (132nm x 132nm) area in our current fabric 

design; within this area there are 4 silicided pillars (16nm x 16nm) each. The rest of the 

volume has Tungsten (W) filling to maximize heat conductance (Fig. ‎8.5).  
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 For the example sub-

circuits in Fig. ‎8.5, we 

have connected the power 

rails contacts at the top, 

middle and bottom to 

HDPPs and characterized 

thermal effects. The 

configuration is visually 

depicted in Fig. ‎8.5. The 

average routing distance 

was assumed to be 10 

nanowire pitches, which is 

half the width of an 8-bit 

carry look ahead adder 

(CLA) layout in 

Skybridge; the 8-bit CLA 

is representative of large 

scale circuit design. Simulation results are shown in Fig. ‎8.6. Clearly, for scenario (i), 

large area power pillars have huge impact in heat dissipation, since they provide extra 

heat conduction paths to reference temperature other than the silicon nanowire; the 

temperature reduces to 2433K in scenario (i), which is a 43% reduction from 4307K. For 

scenario (ii) and (iii) the change in temperature is less obvious, since the Gate contacts 

constitute major heat dissipation paths. Noticeably, the trend in change in temperature 

 

Fig. ‎8.5.  Incorporation of Heat Dissipating Power 

Pillar (HDPP): An intrinsic feature in Skybridge fabric 

to mainly facilitate heat extraction. HDPPs are connected 

to logic-nanowire through Bridges at the top (GND) and 

the middle (VDD) of the nanowire. HDPPs are 

configured (132 nm x 132nm area, 4 sillicided nanowire 

pillars, metal filling (W)) to maximize heat dissipation.  

 



73 

 

across various transistors is different in this case. Peak temperature from the top of the 

transistor stack gradually decays at the middle when contacts are made to VDD pillars, 

and then there is slight increase again and ultimately it decays to the reference 

temperature. In the middle of the nanowire, contacts to VDD pillar provide less heat 

resistance path, and as a result the temperature drops sharply; further down the nanowire, 

as we go away from the power rail contacts, temperature increases slightly.  These results 

indicate that HDPPs play a prominent role in heat extraction from circuits. Based on this 

understanding, we have added new architectural features to maximize heat extraction 

from logic-nanowire pillars and to dissipate it through HDPPs. 

 

 

Fig. ‎8.6.  Impact of HDPPs for Heat Extraction: HDPPs provide a low resistance path 

to reference temperature, as a result temperature profile drops sharply. For simulations, 

when no gate extraction is considered, the temperature decrease is 43% from 4307K to 

2433K for topmost Eva transistor; another sharp drop in temperature can be observed in 

the middle of nanowire for Eva transistor in the bottom stack, where the temperature 

drops from 2909K to 828K, nearly 71%. Impact of HDPPs are not so prominent for the 

cases, when heat dissipation through gate contacts exist. 
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8.2.2 Heat Extraction Junctions (HEJs)  

 Heat Extraction Junctions (HEJs) are specialized junctions that are used solely for 

heat extraction in a logic nanowire without perturbing its electrical operation. HEJs 

facilitate heat transfer to 

Bridges and HDPPs. The 

heat extracting Bridge 

connects to an HEJ on 

one side and to HDPP 

(GND) pillar on the other; 

this ensures that the heat 

extraction Bridges are at 

reference temperature 

initially to facilitate heat 

transfer from the hot 

region towards cool 

region. Fig. ‎8.7 illustrates 

this concept. Al2O3 meets 

the material requirements 

for such HEJ since it has 

excellent thermal 

conductance (39.18 Wm
-1

K
-1 
‎[20]), and is a good electrical insulator. The thickness for 

Al2O3 was chosen to be 6nm, which is sufficient to prevent any electrostatic control from 

Bridge contacts to silicided silicon. The HEJs can be placed at any point on the logic-

 

Fig. ‎8.7.  Heat Extraction Junctions (HEJs): HEJs for 

heat extraction and dissipation through Bridges and a 

HDPP is shown. HEJs are placed at selective places in 

the logic-nanowire; they extract heat without perturbing 

the electrical signal. Al2O3 is used as Junction material 

for excellent thermal conduction and electrical insulation.  
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nanowire and can be connected with Bridges for heat extraction; this allows certain 

degree of freedom and enables custom design choices for hotspot mitigation. 

 Fig. ‎8.8 shows simulation results that indicate the effectiveness of the HEJs when 

combined with Bridges and HDPPs. Two conditions are illustrated: (a) one HEJ 

connected to the Drain region in the topmost transistor in the logic nanowire, and (b) two 

HEJs are connected to two most heated regions in the logic-nanowire (two topmost 

 

Fig. ‎8.8.  Impact of HEJs, Bridges and HDPPs for heat extraction. Two cases are 

simulated: with 1 HEJ and with 2 HEJs per logic nanowire connected to Bridges and 

HDDPs for heat management.  In the case of 2 HEJs per nanowire, they are connected 

to two output regions of dynamic NAND gates. For the case with no heat dissipation 

through gate, the temperature decreases from 4307K to 400K when 1 HEJ is used in 

topmost Eva transistor, and from 2909K to 426K in the bottom Eva transistor for 2 

HEJs. Improvements are also observed for the cases when the gate electrode is at half 

of the maximum temperature (1 HEJ: from 667K to 376K) in the topmost Eva 

transistor and (2 HEJ: from 479K to 398K) in the middle Eva transistor; in case of the 

gate electrode at reference temperature, temperature drops from 479K to 367K for 1 

HEJ at  the topmost Eva transistor, and from 422K to 389K for 2HEJs at the middle 

Eva transistor. 
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transistors in each NAND gate). In these simulations, power rail contacts were assumed 

to be connected to HDPPs in the same way as was discussed in the previous sub-section. 

The routing distances for Bridges were assumed to be 10 nanowire pitches. 

 As illustrated in Fig. ‎8.8, radical improvement in temperature profile is achieved 

when all the fabric heat extraction features are active. Up to 90% reduction in 

temperature is achieved when only one HEJ is used in the logic nanowire. For the 

scenario when there is no heat extraction through gate contacts, HEJ, Bridges and HDPPs 

jointly reduce the temperature from 4307K to 400K in the topmost transistor, and the 

average temperature drops from 2977K to 793K, a 73% reduction. The average 

temperature reduces further, 78% when two HEJs are used in conjunction with Bridges 

and HDPPs. Substantial improvements are also observed when gate contacts contribute to 

heat dissipation. For the scenarios when gate contacts are at half of the maximum 

temperature and at reference temperature, the average temperature reduces by 12% and 

4.5%, and 15.4% and 6.5% for heat extractions with one HEJ and two HEJs, respectively. 

These‎ results‎ validate‎ the‎ effectiveness‎ of‎ Skybridge’s‎ heat‎ extraction‎ features.‎ The‎

simulation results indicate that even with 1 HEJ per logic nanowire, the average 

temperature for the worst-case heat generation can be reduced to acceptable temperatures 

below the breakdown voltage of Junctionless transistors. These transistors were shown to 

operate even at temperatures as high as 500K ‎[47]. In addition, depending on design 

requirements, modifications can be done with placement of HDPPs and number of HEJs 

in circuits to reduce the average temperature even further. 
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8.3 Section Summery 

 In this section thermal management details in Skybridge fabric was presented. 

Through transistor level modeling we analyzed thermal profiles in Skybridge circuits, and 

showed‎ the‎ effectiveness‎ of‎ Skybridge’s‎ intrinsic‎ heat‎ extraction‎ features. In the best 

case, Skybridge features were effective to reduce the average temperature in 3-D circuits 

by 78%.  
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9. CHAPTER 9 

ENVISIONED WAFER-SCALE MANUFACTURING PATHWAY 

   

 For more than past two decades, CMOS technology scaling has been determined 

mainly by the ability to shrink transistor channel lengths using UV lithography. However, 

as transistors are scaled to sub-20 nm dimensions lithographic aberrations are becoming a 

big concern, along with fundamental performance limitations of ultra-scaled transistors. 

Moreover, the CMOS fabric requires precise sizing and doping of complementary 

transistors, and needs them to be placed and interconnected in a complex layout to meet 

density, power and performance requirements – all of which add to the already stringent 

requirements of lithography at nanoscale.  

 Contrary to CMOS, Skybridge offers a paradigm shift in technology scaling: here 

scaling is primarily achieved by 3-D integration and is no longer limited by shrinking 

transistor dimensions only.  In this fabric, transistors are integrated vertically; 3-D circuit 

implementation, connectivity and thermal management requirements are carefully 

architected in the fabric to reduce manufacturing complexities. Lithographic precision in 

Skybridge is required only for the uniform nanowire array pattern definition; transistor 

channel length is determined by gate material deposition, which is lower cost, and known 

to be controlled to few Angstrom's precision.  

 In addition, the manufacturing pathway for Skybridge is envisioned such that only a 

single layer of crystalline silicon for vertical transistor channels is used, and same 

alignment markers for all the mask registration steps are employed; these alleviate the 
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challenges associated with the high temperature crystallization of amorphous silicon  ‎[4], 

and inter-layer misalignments‎[3]‎[5], which are critical for stacked CMOS 

approaches ‎[3] ‎[4]‎[5].  

 The manufacturing steps for Skybridge's bottom-up assembly include: wafer 

preparation, active silicon layer doping, arrays of regular vertical nanowire patterning, 

Ohmic contact and formation of Bridges for power rail, planarization using self-

planarizing materials, spacer formation, interlayer dielectric deposition, Gate oxide and 

Gate metal deposition using 3-D Photoresist structures, and formation of input-signal 

carrying Bridges. Although these steps were demonstrated individually in the literature 

and in our group ‎[10], the overall integration is not yet shown and the process itself can 

be likely refined further from what we show; similarly to CMOS that has been perfected 

during several decades, Skybridge requirements could fuel new manufacturing research 

and establish a roadmap with vertical integration.  Material choices may be refined and 

other compatible (with manufacturing) device types that are potentially based on spin 

could be employed.  

 In Table ‎9.1, we show key manufacturing requirements and challenges for Skybridge 

and compare it with both CMOS and stacked CMOS approaches.  
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Table ‎9.1. Manufacturing requirements and challenges: CMOS vs. Stacked 

CMOS vs. Skybridge 

 CMOS Stacked CMOS  ‎[3]‎[4]‎[5] Skybridge 

 Requirements Challenges Requirements Challenges Requirements Challenges 

Lithography 

Determining 

factor for 

scaling; 

defines 

channel length, 

contact, 

interconnect, 

and via 

Light source 

aberrations; 

variation 

prone; 

design rule 

explosion; 

costly 

Same as 

CMOS 

Same as 

CMOS 

Precision only 

for nanowires; 

interconnect 

definition 

relaxed 

Prone to 

variations 

during 

nanowire 

pattern 

definition 

Doping 

High precision 

for 

complementar

y dopings 

Uniform 

doping 

difficulties 

across die 

Same as 

CMOS 

Same as 

CMOS 

Doping 

required only 

once; Single 

type uniform 

across the die 

Maintaining 

uniformity at 

various depths 

Patterning 

Complex 

shapes: zigzag 

patterns and 

different 

dimensions 

Increasing 

variation 

Same as 

CMOS 

Same as 

CMOS 

High aspect 

ratio 

nanowires 

Patterning 

dense, high 

aspect ratio 

nanowires 

Deposition 

Interconnect, 

Via material 

filling 

Processing 

temperature 

in gate-first 

process 

Same as 

CMOS 

Same as 

CMOS 

Transistor, 

contact, and 

interconnect 

definition 

Such multi-

layer 

deposition is 

not shown  yet 

experimentally 

3-D 

Photoresist 

Structures 

--- --- --- --- 

Used for 

selective 

deposition 

Precision 

required for 

small feature 

sizes 

Planari-

zation 

CMP after 

each 

deposition 

layers 

Corrosions 

in metal; 

rigidity 

Same as 

CMOS 

Same as 

CMOS 

Etch-back or 

novel 

material ‎[54]  

Relatively new 

process 

Alignment 

and 

Registration 

Layer by 

Alignment, 

and 

registration 

offset at 

different layers 

Litho- 

precision 

dependent 

Same as 

CMOS 

Same as 

CMOS 

Same 

alignment and 

registration 

across all 

layers 

Lithography 

dependent; 

new Marker 

design 

Thermal 

Annealing 
--- --- 

For 

crystallizing 

each deposited 

Silicon 

layer ‎[4] 

High 

temperature 

affects 

material 

structures 

--- --- 

Through 

Silicon Vias 
--- --- 

Coarse grain 

[3] die-die 

TSVs; fine 

grain layer-

layer TSVs‎[4] 

Misalignment

; uniform 

material 

filling; 

Relatively 

new process 

--- --- 

Thinning 

and Bonding 
--- --- 

Processed 

Wafer/Die 

thinning for 

bonding  

Die-bond  

issues ‎[3]; 

stress in  

Dies, crack 

formation,  

misalignment 

--- --- 
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9.1 Envisioned Wafer-scale Manufacturing Pathway 

 This section details the envisioned manufacturing pathway for Skybridge fabric, and 

presents how established processes can be engineered towards meeting its requirements.  

9.1.1 Starting Wafer  

 The starting wafer is a customized highly doped silicon wafer. As shown in Fig. ‎9.1A, 

at the bottom of the wafer is bulk silicon, which can be connected to the package heat 

sink through backside metallization and bonding substrate; on top of bulk silicon are 

islands of SiO2, which serve the purpose of electrically isolating the silicon nanowire 

pillars from the bulk; a layer of crystalline silicon is deposited on top and doped 

(concentration ~ 10
19

 dopants/cm
3
; see Chapter 3.1 for doping requirements), which 

completes the wafer preparation process. Noticeably, doping is required only once prior 

to any processing steps.  

9.1.2 Nanowire Patterning  

 Patterning of arrays of high aspect ratio vertical nanowires is the next step in the 

manufacturing flow. All the nanowires have similar aspect ratio, and they maintain 

uniform distances between each other. The nanowire patterning is done such that 

alternative nanowires are patterned on top of horizontal SiO2 islands, and a group of 

nanowires are patterned on top of vertical SiO2 lands at sparse intervals (Fig. ‎9.1B). This 

is done to isolate input/output signal carrying pillars (through horizontal SiO2 islands) 

and large area VDD signal carrying pillars (through sparse vertical SiO2 islands) from 

shorting the bulk silicon and creating undesired latch-up conditions.  
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 High aspect ratio uniform vertical nanowires with smooth surfaces can be achieved 

through different processes such as patterning with oxidation and etch back 

technique ‎[50], Inductively Coupled Plasma (ICP) etching ‎[49], etc. Yang et al. in ‎[50] 

have demonstrated 20nm wide, 1µm tall (1:50) nanowires using oxidation and etch back 

techniques, while in ‎[49], Mirza. et al., demonstrated nanowires of various widths 

ranging from 30nm to 5nm with very high aspect ratios, the highest aspect ratio being 

1:50. In addition, these nanowires were shown to withstand processing conditions for G  

ate–All-Around (GAA) vertical transistor formation ‎[50]. 

 For the circuits described in this paper, the nanowire aspect ratio was 1:54 (16nm 

width, 868nm height) – accommodating two 8 fan-in logic gates in each nanowire. 

Although for benchmarking purposes this configuration was assumed, this is not a 

requirement and other aspect ratios can be supported. For example, either reducing the 

number of gates per vertical nanowire or by reducing the fan-in per gate can reduce 

aspect ratio requirements. An aspect ratio of 1:28 allows a single high fan-in gate being 

 

Fig. ‎9.1. Starting wafer and nanowire patterning. A) Bulk silicon wafer with SiO2 

islands and doped silicon layer on top; B) high aspect ratio nanowire patterning with 

lithography; signal-nanowire pillars are isolated from bulk silicon by SiO2 islands, 

whereas logic-nanowires connect directly with the bottom bulk. 
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vertically integrated. This would keep performance and power benefits to remain similar 

to what was presented (since the underlying design is identical and increased local 

interconnections have a minimal impact, Chapter 7). Density benefits are expected to 

scale close to linearly with nanowire aspect ratios: a 1:28 ratioed fabric would have a 2X 

lower density vs. our 1:54 benchmarked design. Nevertheless it would still have 

considerable die area benefits vs. CMOS.   

9.1.3 Contact Formation 

 Nanowire patterning is followed by a contact formation step for connecting the 

nanowire with power rail at the bottom. Ohmic contacts at different heights are also 

 

Fig. ‎9.2. Contact formation: Ohmic contact for power rail (i.e., GND) is made using A) 

photoresist spinning and UV exposure; B) Photoresist development in developer 

solution; C) Ti deposition for Ohmic contact, followed by sacrificial polymer deposition; 

D) metal lift-Off. 
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formed for input/output and power rail (VDD, GND) connections. In order to make an 

Ohmic contact, first a region surrounding the nanowire is exposed using UV lithography 

(Fig. ‎9.2A-B); the region of exposure is determined by the minimum material dimension 

requirements for the Ohmic contact. Ti, a widely used material for Ohmic contacts to 

heavily-doped  n-silicon, is chosen for this purpose. The required Ti thickness and length 

are derived from 3-D TCAD simulations (see Chapter 3.1). The UV Exposure step is 

followed by anisotropic Ti deposition (i.e., no step coverage on the side of nanowire, see 

Fig. ‎9.2C). Next, a layer of sacrificial polymer ‎[57] is deposited or spun on top of the Ti 

layer followed by a Lift-Off process (Fig. ‎9.2D). During Lift-Off, the Photoresist is 

removed along with the material deposited on top.  

9.1.4  VDD/GND/Output Signal Carrying Bridges 

 In Skybridge, signals are carried from one nanowire to another through Bridges. 

Bridges may be of different lengths and may be placed at different heights as per the 

circuit requirements. The manufacturing flow for these Bridges differs depending on their 

placement (e.g., input signal carrying Bridges connect to transistor gates while 

output/power signal Bridges connect to logic gate output/power rail contacts).  

 Fig. ‎9.3 shows the manufacturing steps required to form Bridges that connect to 

Ohmic contacts. After Photoresist spinning, the lithographic pattern for interconnection is 

created by UV exposure (Fig. ‎9.3A) and resists development (Fig. ‎9.3B). Noticeably, the 

exposure is such that it overlaps previously created Ohmic contacts (Fig. ‎9.3D) by a small 

portion; this is done to ensure proper metal-metal contact. After exposure and photo resist 

development, Tungsten (W) is deposited anisotropically (Fig. ‎9.3C) using CVD ‎[52]. 
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Tungsten has excellent electrical and thermal properties, and is widely used in industry 

today as Metal1 and Via filling material. This step is followed by a Lift-Off process 

(Fig. ‎9.3D) and polymer removal step (Fig. ‎9.3E), removing excess material.  

9.1.5 Planarization, Interlayer Dielectric Deposition 

 Planarization after depositions is an important step since non-planar surfaces cause 

lithographic focus imbalance, and alignment errors, which can easily result in causing 

distortion in printed features. Planarization with chemical mechanical polishing is 

avoided in this Skybridge manufacturing flow to prevent structural damage to standing 

single crystal vertical nanowires. Alternative planarization techniques such as etch back 

planarization ‎[55], self-planarization materials ‎[54] can be used to potentially achieve the 

same purpose. In this manufacturing flow we describe the usage of self-planarization 

 

Fig. ‎9.3.  Formation of VDD/GND/Output signal carrying Bridges: A) Photoresist 

spinning and UV exposure to define regions for Bridges; B) Photoresist development; 

C) anisotropic deposition of Tungsten (W) using CVD; D) W Lift-Off; E) sacrificial 

polymer removal to get rid of excess metal. 
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materials. These are special materials that planarize themselves regardless of the 

underlying topology. For example, Fig. ‎9.4A shows the resultant planarized surface after 

a self-planarization material is applied; the top surface is plane and smooth even though 

there is variation in height in the underlying features. This step is followed by spacer 

(Fig. ‎9.4B) and interlayer dielectric (C-SiO2, dielectric constant 2.2 ‎[56]) deposition 

(Fig. ‎9.4C). After these steps, the surface is expected to be planarized as shown in 

Fig. ‎9.4D.  

9.1.6 Gate Stack Deposition 

 Gate stack deposition involves steps for Gate oxide and Gate electrode deposition. 

Both deposition steps use the same lithographically defined pattern. Two types of 

 

Fig. ‎9.4. Planarization and interlayer dielectric deposition: A) Self-planarization 

material deposition to planarize surface; B) Spacer deposition using UV exposure (like 

Fig. S2); C) ILD (i.e., C-SiO2) deposition (like Fig. S3); D) Self-planarization material 

deposition. 
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Photoresists are used in this step: standard resist (e.g., PMMA) that dissolves easily in 

developer solution, and a lower resolution resist (e.g., Lift-Off Resist (LOR) ‎[58]) that 

dissolves slowly in the same developer solution. The idea is to create 3-D shapes using 

these Photoresists to selectively deposit Gate stack materials. In the beginning, 16 nm 

thick (requirement per 16-nm J-GAA transistor channel length) standard Photoresist is 

spun and is followed by UV exposure (Fig. ‎9.5A-B) to create the desired pattern for 

 

Fig. ‎9.5.  Gate stack deposition: A) Photoresist spinning and UV exposure; B) resist 

development; C) low resolution Lift-Off Resist deposition; D) second UV exposure; E) 

controlled resist development to remove first Photoresist; F) HfO2 deposition using 

ALD; G) TiN deposition using CVD; H) metal Lift-Off. 
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selective deposition. Next, a thicker layer of low resolution Photoresist is spun on top 

(Fig. ‎9.5C) and UV exposure is done (Fig. ‎9.5D). During this Photoresist development 

step (Fig. ‎9.5E) one standard resist develops faster than the other, and by controlling 

resist development time 3-D Photoresist shapes can be formed. After creating 3-D 

structures with Photoresist, the Gate stack is deposited. HfO2 is deposited (Fig. ‎9.5F) 

using Atomic Layer Deposition (ALD); in this step, HfO2 deposits only on uncovered Si 

surface. TiN is deposited next, (Fig. ‎9.5G) anisotropically using CVD ‎[51]. The gate 

stack material choices are specific to J-GAA devices, and are derived from 3-D TCAD 

simulations (see Chapter 3.1). The last step in this process is Lift-Off (Fig. ‎9.5H) to 
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remove the excess material on top of the Photoresist.  

9.1.7  Input Signal Carrying Bridges 

 Manufacturing steps for input signal carrying Bridges begin with Photoresist spinning 

and lithographic exposure (Fig. ‎9.6A-B). Next, TiN from the exposed region is etched 

away using dry etch (Fig. ‎9.6C) and Photoresist as etch-mask. Afterwards, Tungsten (W) 

is deposited anisotropically on the exposed region (Fig. ‎9.6D). This step is followed by a 

W  Lift-Off proc  ess (Fig. ‎9.6E). 

 Other Bridge structures such as Heat Extraction Bridges, routing Bridges follow 

 

Fig. ‎9.6.  Formation of input signal carrying bridges: A) Photoresist spinning and 

UV exposure for Bridges; B) Photoresist development; C) TiN dry etch using 

photoresist as etch-mask; D) anisotropic deposition of W using CVD; E) metal Lift-

Off. 
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similar methodology for fabrication.  

9.1.8 Alignment  

 Maintaining alignment precision in multiple layers of processing is a critical 

requirement, and is different from the CMOS alignment methodology. In CMOS, new 

alignment markers are created after each layer of processing; these new markers are 

larger in dimensions compared to previous ones to accommodate Mask Registration 

offset. In contrast, the same alignment markers can be used in all layers of processing for 

Skybridge; they are created at the very first step, during nanowire patterning. Different 

Mask Registration with respect to same alignment markers allow features to be built with 

same alignment precision across multiple layers. The approach is illustrated in Fig. ‎9.7, 

where alignment markers on the periphery of a die are shown to the have same height as 

the nanowires. This 

alignment methodology is 

unique to Skybridge, and is 

enabled due to 

aforementioned 

manufacturing flow, which 

does not require mechanical 

planarization processes.  

9.2 Section Summary 

 In this section the envisioned manufacturing pathway for the Skybridge fabric was 

detailed. We presented material requirements for the devices, contacts, interconnects and 

 

Fig. ‎9.7. Alignment. Skybridge alignment step using 

same alignment markers for Mask Registration 

across all layer of processing. 
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interlayer dielectric, and discussed their usage in established process technologies. We 

showed a step-by-step manufacturing pathway including wafer preparation, nanowire 

patterning, contact formation, planarization, spacer formation, interlayer dielectric 

deposition, and gate stack deposition. Contrast with CMOS manufacturing was also 

elaborated. 
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10. CHAPTER 10 

EXPERIMENTAL PROTOTYPING  

  

 In order to validate the core device concept and to demonstrate key manufacturing 

steps, we have carried out experimental prototyping in clean room. This work involved 

co-exploration of process/device simulations, and experimental metrology to optimize 

process steps. Initial process parameters were derived by emulating the actual process 

flow in simulations; SRIM, Synopsis Sentaurus Process and Device simulators were used 

for this purpose. Direct pattering with Electron-beam lithography (EBL) was used for 

experimental prototyping.  

  Significant progress was made in the experimental prototyping direction. We have 

successfully fabricated nanostructures below 30nm dimensions, demonstrated key 

process steps for Skybridge assembly such as substrate doping and nanowire patterning, 

photoresist planarization, anisotropic deposition, interlayer dielectric planarization, multi-

layer alignment and depositions, and have validated the Junctionless device concept.  

Fabricated horizontal tri-gated p-type Junctionless device was shown to have good Id-Vg 

characteristics, the ON current was found to be 1.5µA/µm, the ION/IOFF was ~ 10
3
, and the 

Vth was -0.3V.  

10.1  Experimental Validation of Horizontal Junctionless Nanowire Transistor 

10.1.1 Process and Device Simulations 

 A combination of three simulation tools (SRIM, Synopsys Sentaurus Process and 

Synopsys Sentaurus Device) was used to simulate process and device characteristics. 
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SRIM (Stopping Range of Ions in Matter) ‎[59] was used to extract ion implantation 

parameters, Sentaurus process ‎[11] was used to create device structures emulating the 

actual process flow and Sentaurus device ‎[12] was used to simulate carrier transport in 

these device structures. These simulations provided realistic insight on implications of 

materials, and process and device parameter choices for fabric prototyping. 

 Since, Junctionless device behavior is modulated by the workfunction difference 

between the channel and the gate, the nanoscale dimension of the channel is fundamental 

for its operations. In V-GAA Junctionless transistor maximum gate to channel 

electrostatics control is achieved through surround gate structure, and 16nm diameter 

vertical nanowire channel. To achieve similar device operation in 2-D, we have used an 

SOI wafer, and the top device silicon layer was thinned to 15nm. The buried Oxide layer 

in SOI wafer ensured that there are no leakage paths, and maximum gate control is 

achieved over the horizontal nanowire channel.      

 

Fig. ‎10.1. Ion Implantation simulations. A) SRIM simulation plot showing ion 

distribution in SOI wafer for 28KeVimplant, B) Sentaurus process simulation plot 

showing ion distribution in SOI wafer before and after thermal annealing at 1000° C. 
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 The same SOI wafer configuration was used in Process and Device simulations. The 

SOI wafer had a 100nm thick top device layer (Si), 378nm middle buried oxide (SiO2) 

layer and 500um bottom handle layer (Si). Fig. ‎10.1A shows Ion (B+) distribution plot 

obtained from SRIM on this SOI wafer. The acceleration voltage (28 KeV) used in SRIM 

simulations, obtained from stropping range table for Boron dopants and silicon substrate, 

was chosen such that the bottom 20nm of the top Si layer had maximum doping 

concentration. In order to identify the annealing temperature for substrate 

recrystallization and to create device structure for simulations with realistic process 

assumptions, ion implantation parameters (acceleration voltage 28KeV, implant dosage 

1e14 atom/cm
2
) obtained from SRIM was used in Sentaurus Process simulation to 

emulate the implantation step. Several process conditions were simulated to identify 

parameters for implant annealing. Substrate annealing at 1000° C, for 60 minutes in N2 

ambient was found to be adequate for substrate recrystallization, diffusion and activation 

of dopants. Fig. ‎10.1B shows uniform dopant distribution in the top silicon layer after 

annealing. Ion implantation process was modeled using Monte Carlo (TRIM) simulation 

model. Diffusion and activation processes were modeled using Charged Cluster 

model ‎[11].   

 The doped substrate was then used to create horizontal tri-gated junctionless 

nanowire FET device structures in Sentaurus Process. The device creation process 

involved following steps, which are very similar to experimental process flow- i) 

substrate thinning from 100nm to 15nm, ii) nanowire patterning, iii) masking to define 

gate region, iv) HfO2 gate oxide deposition, v) gate material (Ti) deposition vi) Al source, 
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drain contact formation. Fig. ‎10.2A shows device structure obtained from Sentaurus 

Process emulating these process steps.  

 The device structure was then used to simulate electrical properties of junctionless 

nanowire transistor using Sentaurus Device simulator. Carrier transport was modeled 

using Hydrodynamic charge transport model with densitiy gradient quantum 

corrections ‎[12] to take into account quantum affects at nanoscale. Secondary scattering 

effects were also taken into account. Simulations were done for various device 

configurations; Gate Oxide, channel width and channel length were varied; doping 

concentration, channel thickness were kept the same at 1e19 dopants/cm
3
 and 15nm 

 

Fig. ‎10.2. Process and Device simulation results. A) Horizontaltri-gated junctionless 

nanowire FET device structure from Sentaurus process, B) Id-Vgs curve showing 

variations due to gate oxide choice, C) Id-Vgs curve showing impact of nanowire 

channel width, D) Id-Vgs showing the effect of gate length on drain current. 
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respectively. Fig. ‎10.2B shows Id-Vgs characteristics for different gate oxides; 1nm HfO2 

shows superior characteristics with Ion/Ioff ~ 10
7 

compared to 3nm SiO2, 1nm SiO2 and 

3nm HfO2, which is primarily due to stronger electric field resulting from thinner HfO2 

high-k dielectric. Fig. ‎10.2C and Fig. ‎10.2D shows simulated Id-Vgs characteristics for 

different channel width and channel lengths. Clearly, nanowire FETs with narrower 

channels and longer gate lengths show better characteristics (ION ~ 30uA, IOFF ~ 5pA) due 

to higher electrostatics of the metal gate over channel.  These simulation results provide a 

premise for expected junctionless nanowire FET behavior, and as well initial process 

parameters for device fabrication. 

10.1.2  Experimental Process Flow 

 An end-to-end process flow for device fabrication was developed and individual steps 

were optimized. This experimental pathway was based on direct patterning of silicon 

nanowires from Silicon-on-Insulator (SOI) substrates using Electron-Beam Lithography 

(EBL). The prototyping approach used is shown schematically in Fig. ‎10.3. The starting 

material is an SOI wafer (Fig. ‎10.3A) where the top device layer is doped with p+ 

dopants. The ion implantation and annealing steps for uniform doping of Si device layer 

was carried out using simulated process parameters (Acceleration voltage:28KeV, 

Surface dosage: 1e14 dopants/cm
2
, Implant tilt: 7 degree, Annealing Temperature: 1000° 

C, Annealing Duration: 60min, Annealing Ambient: N2). The implantation was such that 

initially the bottom 20nm of the top Si layer had maximum doping concentration in the 

order of 1e19 dopants/cm
3 

(Fig. ‎10.3B). The substrate was thinned down to 15nm with 

anisotropic RIE using SF6+CHF3 etch recipe (Fig. ‎10.3C). Using EBL and PMMA resist, 

contact pads and alignment markers were patterned, and were followed by Ti (5nm) and 
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Au (25nm) deposition using E-beam Evaporator (Fig. ‎10.3D). Using these alignment 

markers, sub-30nm nanowire features were patterned in between contact pad extensions, 

and was followed by Ni evaporation and liftoff steps to define Ni features on top of the 

substrate (Fig. ‎10.3E). The Ni features acted as an etch mask for defining nanowires on 

the SOI. Anisotropic RIE using SF6 + CHF3 mixture was then used to etch the 

surrounding Si, followed by Piranha (3:1 H2SO4:H2O2) treatment to remove Ni etch 

 

Fig. ‎10.3. Experimental process flow. A) SOI wafer as starting wafer; 100nm Si 

device layer (top), 378nm buried Oxide layer (middle), and 500um Si handle layer 

(bottom). B) Ion implantation and annealing. C) Substrate thinning to 15nm using RIE. 

D) Contact pad and alignment marker formation. E) Patterning of Nickel feature. F) 

Nanowire pattern transfer. G) ALD HfO2 deposition. H) Gate formation and gate 

material depositions. 
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mask. This resulted in Silicon nanowires directly patterned on the SOI substrate 

(Fig. ‎10.3F). Nanowires at widths as small as 30nm, 20nm and 15nm were demonstrated 

using this approach. Atomic layer deposition technique was used for Halfnium oxide 

(HfO2) deposition (Fig. ‎10.3G), followed by alignment, patterning, evaporation and 

liftoff to define metal gate (Fig. ‎10.3H). Material selection and thickness parameters for 

gate oxide and gate metal were as derived from process and device simulations.  

10.1.3  Device Characterization Results 

 Extensive metrology was done after each process step to verify expected results. Four 

point probe measurements were carried out to determine doping concentration in Silicon 

substrate after ion implantation and were found to be ~8 x 10
18 

dopants/cm
3
,
 
which was 

almost equal to expected concentration (10
19 

dopants/cm
3
). Atomic Force Microscopy 

(AFM) measurements were done to determine surface roughness and Silicon thickness 

after substrate thinning and pattern transfer steps. Substrate thinning and nanowire 

patterning results are shown in Fig. ‎10.4A and Fig. ‎10.4B. As shown in Fig. ‎10.4A, 

thinned Si substrate had less than 1nm of surface roughness variation after anisotropic 

etching of top SOI layer from 100nm to 15nm. Fig. ‎10.4B shows AFM image of a 15nm 

thick patterned Silicon nanowire on top of SiO2 substrate.  

 I-V measurements were carried out on individual junctionless nanowire FETs to 

characterize electrical properties. In order to determine, ON current and contact resistivity 

in junctionless FETs, two point probe I-V measurements were done on nanowire 

channels, which were patterned in between source and drain contacts. Excellent Ohmic 

behavior was achieved from Source/Drain contacts (contact metal stack: 5nm Ti + 30nm 
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Au) since the underlying substrate was heavily doped. Fig. ‎10.4C shows I-V 

characteristics of heavily doped nanowires with Source/Drain contacts, the gate voltage 

was varied from -10V to +10V and linear increase in current was observed. Ellipsiometry 

measurements were done to determine HfO2 thickness after atomic layer deposition at 

150° C. We were able to deposit and measure HfO2 films down to 1nm, and the thickness 

was found to be uniform across the die.    

 Three point probe measurements were done on junctionless nanowire FETs. 

Dimensions for fabricated devices were 30nm wide and 15nm thick nanowire channel, 

 

Fig. ‎10.4. Experimental results. A) AFM results: less than 1nm surface roughness after 

RIE thinning, B) 15nm thick Si nanowire on top of SiO2 substrate. C) I-V measurements 

of nanowire channel showing linear increase in current for wide range of voltages. D) Id-

Vgs characteristics of fabricated p-type junctionless xnwFET, the device is normally OFF 

at 0Vgs, turns ON fully at -1Vgs.  
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2nm thick HfO2 gate dielectric, 200nm long gate and 50nm thick gate metal stack. A 

stack of 30nm Titanium layer and 20nm thick Gold layer served as gate metal stack. 

Fig. ‎10.4D shows Id-Vgs characteristics of p-type junctionless nanowire FETs when a 

metal gate stack was put on top of silicon nanowire channel. The Ids-Vgs characteristics in 

Fig. ‎10.4D accurately depicts junctionless device characteristics, where the workfunction 

difference between Titanium/Au gate and P+ doped Silicon nanowire channel depletes 

the channel and the device is normally OFF at 0V Vgs. With the application of negative 

gate voltages (Vgs < Vth), the carriers accumulated and the channel conduction was 

maximum. These devices had an Ion/Ioff ~ 1000 and threshold voltage ~ -0.3 V. 

Characterization was done using the Keithley 4200 parametric analyzer and Wentworth 

probe station. 

10.2 Experimental Demonstration of Skybridge’s Key Manufacturing Steps 

We‎ have‎ experimentally‎ demonstrated‎ key‎ steps‎ necessary‎ for‎ Skybridge’s‎

assembly. These demonstrations along with Junctionless device validation further prove 

feasibility of realizing Skybridge fabric. 

10.2.1 Formation of Vertical Nanowires 

We have demonstrated high aspect ratio vertical nanowires. Both isolated nanowires 

and nanowire arrays of different height and width were fabricated. Similar to the process 

steps described in Section 10.1.2, a metal etch mask was used and deep RIE etching was 

done to form these nanowires. An optimized etch recipe was used that had intermediate 

surface passivation stages. Combination of three gases (SF6, CHF3, and Ar) was used to 

for etching and surface smoothening, while O2 was used in interleaved stages for surface 
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passivation. Fig. ‎10.5 shows vertical nanowire fabrication results. A range of nanowires 

with different height and width were fabricated. Fig. ‎10.5A shows 360nm tall nanowires 

of different width; smallest width being 26nm on top. Fig. ‎10.5B nanowire array with 

each nanowire having 11nm height and 197nm mostly uniform width. The nanowire 

width can be further reduced to achieve higher aspect ratios by oxidation and removal 

techniques similar to the ones presented in ‎[50].    

10.2.2 Photoresist Planarization, Alignment and Deposition 

 Photoresist planarization is a key step in Skybridge assembly. Spinning a thin layer of 

photoresist on a substrate with existing high aspect ratio features, usually results in non-

uniformities due to surface tension of liquid. The non-uniformities in photoresist layer 

(Fig. ‎10.6A) are detrimental to exposure/writing steps. To overcome this challenge and to 

planarize photoresist layer, we have developed a technique using photoresist over-fill and 

etch-back. During the over-fill process, several layers of photoresist were coated to 

completely cover the nanowire features. Subsequently, photoresist was etch-back using 

 

Fig. ‎10.5. Vertical Nanowire Patterning. A) 360nm tall vertical nanowires with 

varying widths (26nm-250nm). Inset shows 360nm tall nanowire with 26nm top width 

and 55nm bottom width. B) Nanowire Array: 1100nm height, 197nm mostly uniform 

width, 2µm spacing. 
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an optimized recipe with O2 plasma to obtain a thin planarized photoresist layer at the 

bottom of nanowires (Fig. ‎10.6B).  

 After photoresist planarization, E-beam exposure was done selectively on nanowire 

surrounding regions to deposit materials for source/drain contact formation. E-beam 

alignment and exposure was done following the same alignment methodology described 

in Section 10.1.2. After E-beam exposure and photoresist development, contact material 

(Ti) was deposited using E-beam evaporator. Fig. ‎10.7A shows an example of selective 

anisotropic material deposition following aforementioned steps.  

10.2.3 Interlayer Dielectric Deposition and Planarization 

 Interlayer dielectric provides isolation between electrical components, and is very 

essential in nanofabrication processes. Both self-planarization materials with low-k, and 

low-k oxides can be used for this purpose. For our experiments, we used SU-8 as self-

planarizing interlayer dielectric material. Similar to the photoresist planarization process 

discussed earlier, SU-8 was overfilled and etched-back to obtain planarized interlayer. 

 

Fig. ‎10.6. Photoresist Planarization. A) Non-uniformity after photoresist spinning, 

B)After over-fill and etch-back; planarized photoresist layer at the bottom of the 

nanowires. 
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SU-8 has self-planarizing capabilities; once the vertical nanowires are covered with SU-

8, the top layer planarizes itself. SU-8 is also suitable for our experiments for its 

structural rigidity; once hardened, SU-8 is very difficult to remove with wet etchants, and 

remains unperturbed throughout subsequent processing steps. SU-8 can be hardened both 

by over-baking and plasma exposure. Fig. ‎10.7B demonstrates application of SU-8 as 

interlayer dielectric. 

 

Fig. ‎10.7. Demonstration of Material Depositions. A) Anisotropic material deposition 

only at the bottom of nanowires for contact formation; these depositions are selective 

and done after E-beam alignment and exposure steps. B) After interlayer dielectric 

deposition; SU-8 is as used self planarizing interlayer dielectric material. It was 

overfilled and etched-back to achieve desired thickness. C) Demonstration of multi-layer 

selective material deposition; two contact regions are formed with SU-8 in-between. 
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10.2.4 Multi-layer Material Deposition  

 Following aforementioned steps, and using same set of alignment makers E-beam 

exposure and deposition can be done to develop multi-layer material stack as shown in 

Fig. ‎10.7C. Similar process steps with controlled etching can be also used for gate-oxide 

deposition.  

10.3  Section Summary 

 In this section the experimental prototyping progress was shown. A Process/Device 

simulation framework was developed to determine process parameters and to understand 

implications of material choices on device characteristics. Successful validation of the 

Junctionless device concept, and key manufacturing steps were shown experimentally 

that are essential for Skybridge assembly.  

  



105 

 

BIBLIOGRAPHY 

 

 

[1] Fischetti, M. V., et al. Scaling MOSFETs to 10 nm: Coulomb Effects, Source 

Starvation, and Virtual Source. International Workshop on Computational 

Electronics. 1. 2009 

[2] Puri, R. & Kung, D.S. The dawn of 22nm era: Design and CAD challenges. 

Proceedings of 23rd International Conference on VLSI Design. 429-433. (2010) 

[3] Black, B., et al. Die Stacking (3D) Microarchitecture. 39th Annual IEEE/ACM 

International Symposium on Microarchitecture. 469-479 (2006) 

[4] Batude, P., et al. Advances in 3D CMOS sequential integration. IEEE 

International Electron Devices Meeting. 1.7-9 (2009) 

[5] Farrens, S. Wafer-Bonding Technologies and Strategies for 3D ICs. Wafer Level 

3-D ICs Process Technology. 49–85. (Springer, New York, 2008) 

[6] Rahman, M., Khasanvis, S., Shi, J. J., Li, M. Y & Andras, C. A. Skybridge: 3-D 

Integrated Circuit Technology Alternative to CMOS. Nature. Under Review. 

(2014) 

[7] Abu-Rahman, M. H. & Anis, M.  Variability in Nanometer Technologies and 

Impact on SRAM. Nanometer Variation-Tolerant SRAM. (Springer, New York, 

2013) 

[8] Greenway, R. T., et. al. Interference assisted lithography for patterning of 1D 

gridded design.  Proceedings of SPIE. 7271. (2009) 

[9] Plummer, J. D. Silicon MOSFETs (conventional and non-traditional) at the 

scaling  limit. Device Research Conference. 3-6 (2000) 

[10] Rahman, M., Narayanan, P, Khasanvis, S., Nicholson, J. & Moritz, C. A. 

Experimental Prototyping of Beyond-CMOS Nanowire Computing Fabrics. 

Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures. 

In press. (2013) 

[11] Synopsys. Synopsys Sentaurus Process. Software. Version C-2009.06. 

<http://www.synopsys.com/tools/tcad/processsimulation/pages/sentaurusprocess.a

spx> (2009) 

[12] Synopsys. Synopsys Sentaurus Device. Software. Version C-2009.06. 

<http://www.synopsys.com/tools/tcad/processsimulation/pages/sentaurusprocess.a

spx> (2009) 



106 

 

[13] Kim, D. H., Kim, S. & Lim, S. K. Impact of Nano-scale Through-Silicon Vias on 

the Quality of Today and Future 3D IC Designs. ACM/IEEE International 

Workshop on System Level Interconnect Prediction. 1-8 (2011) 

[14]  Yang, K., Kim, D. H. & Lim, S-K. Design quality tradeoff studies for 3D ICs 

built with nano-scale TSVs and devices. 13th International Symposium on Quality 

Electronic Design.740-746 (2012) 

[15] Suresh, V., et al. Design of 8T-Nanowire RAM Array.  Proceedings of 

IEEE/ACM International Symposium on Nanoscale Architectures. In press (2013) 

[16] Rahman, A. & Reif, R. System-level performance evaluation of three-dimensional 

integrated circuits. IEEE Transactions on Very Large Scale Integration Systems. 

8. 671-678 (2000) 

[17] Davis, J. A., De, V. K. & Meindl, J. A stochastic wire-length distribution for 

gigascale integration (GSI)—Part I: Derivation and validation. IEEE Trans. 

Electron Devices. 45. 580–589 (1998) 

[18] Swahn, B. & Hassoun, S. Electro-Thermal Analysis of Multi-Fin Devices. IEEE 

Transactions on Very Large Scale Integration Systems. 16. 816-829 (2008) 

[19] Pop, E. Energy dissipation and transport in nanoscale devices. Nano Research. 3. 

147-169 (2010) 

[20] Dinash. K, Mutharasu, D. & Lee, Y. T. Paper study on thermal conductivity of 

Al2O3 thin film of different thicknesses on copper substrate under different 

contact pressures. IEEE Symposium on Industrial Electronics and Applications. 

620. 25-28 (2011) 

[21] Rios, R., et al. Comparison of Junctionless and Conventional Trigate Transistors 

With Lg Down to 26 nm. IEEE Electron Device Letters. 32. 1170-1172 (2011) 

[22] Moritz, C. A., Narayanan, P. & Chui, C. O. Nanoscale Application Specific 

Integrated Circuits. Nanoelectronic Circuit Design (Springer, New York, 2011) 

[23] Narayanan, P., Leuchtenburg, M., Wang, T., & Moritz, C. A. CMOS Control 

Enabled Single-Type FET NASIC.  IEEE Computer Society International 

Symposium on VLSI. 191-196 (2008) 

[24] Synopsys. HSPICE user guide: simulation and analysis. Version C-2009.09 

(2009)  

[25] Oakdale Engineering. DataFit Software. Version 9.0. 

<http://www.oakdaleengr.com/download.htm> (2013) 



107 

 

[26] Narayanan, P., Kina, J., Panchapakeshan, P., Chui, C. O. & Moritz, C. A. 

Integrated Device-Fabric Explorations and Noise Mitigation in Nanoscale 

Fabrics. IEEE Transactions on Nanotechnology. 11. 687 -700 (2012) 

[27] Milovanovic, A. & Koprivica, B. Analysis of square coaxial lines by using 

Equivalent Electrodes Method. Nonlinear Dynamics and Synchronization (INDS) 

& 16th Int'l Symposium on Theoretical Electrical Engineering. 1-6 (2011) 

[28] Arizona State University. PTM-MG device models for 16nm node. 

<http://ptm.asu.edu/> (2011)  

[29] Donath, W. Placement and average interconnection lengths of computer logic. 

IEEE Transactions on Circuits and Systems. 26. 272-277 (1979) 

[30] Christie, P. & Stroobandt, D. The interpretation and application of Rent's rule. 

IEEE Transactions on Very Large Scale Integration Systems. 8. 639-648 (2000) 

[31] Bakoglu, H. B. Circuits, Interconnects and Packaging for VLSI. (Addison-

Wesley, Boston, 1990). 

[32] Otten, R. H. J. M. & Brayton, R. K. Planning for performance. Proceedings of 

35th Annual Design Automation Conference. 122–127. (1998) 

[33] Davis, J. A., De, V. K.  & Meindl, J. D. A stochastic wire-length distribution for 

gigascale integration (GSI)—Part II: Applications to clock frequency, power 

dissipation, and chip size estimation. IEEE Transactions on Electron Devices. 45. 

(1998) 

[34] Sinha, S., Yeric, G., Chandra, V., Cline, B. & Cao, Y. Exploring sub-20nm 

FinFET design with Predictive Technology Models. Proceedings of 49th 

ACM/EDAC/IEEE Design Automation Conference. 283-288 (2012) 

[35] Arizona State University. PTM R-C Interconnect models. <http://ptm.asu.edu/> 

(2012)  

[36] ITRS. ITRS 2012 Interconnect Tables. <http://itrs.net/> (2012)  

[37] Sai-Halasz, G. A. Performance trends in high-end processors. Proceedings of  

IEEE. 83. 20–36 (1995) 

[38] Wang, H. & Porter, W. D. Thermal Conductivity 27: Thermal Expansion 15. 500. 

(DEStech Publication Inc, Knoxville, 2003) 

[39] Neshpor, V.S. The thermal conductivity of the silicides of transition metals. 

Journal of Engineering Physics. 15. 750-752 (1968) 

[40] Tritt, T. M. Thermal Conductivity: Theory, Properties, and Applications. 172. 

(Kluwer Academic, New York, 2004) 

http://ptm.asu.edu/
http://ptm.asu.edu/
http://itrs.net/


108 

 

[41] Griffin, A. J., Brotzen, F. R. & Loos, P. J. The effective transverse thermal 

conductivity of amorphous Si3N4 thin films. Journal of Applied Physics. 76. 

4007-4011 (1994)  

[42] Panzer, M. et al. Thermal Properties of Ultrathin Hafnium Oxide Gate Dielectric 

Films. IEEE Electron Device Letters. 30. 1269-1271 (2009) 

[43] Thermal Conductivity: Tungsten.  

<http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=W> 

(2010) 

[44] Thermal Conductivity: Titanium. 

<http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Ti> 

(2010) 

[45] Pierson, H. O. Handbook of Refractory Carbides and Nitrides: Properties, 

Characteristics, Processing, and Applications. 223-247. (Noyes Publications, Park 

Ridge, 1996) 

[46] Lu, X. Thermal conductivity modeling of copper and tungsten damascene 

structures. Journal of Applied Physics. 105. 1-12 (2009) 

[47] Das, S. et al. Performance of 22 nm Tri-Gate Junctionless Nanowire Transistors at 

Elevated Temperatures. ECS Solid State Letters. 2. (2013) 

[48] ITRS. ITRS 2012 Lithography Tables. <http://itrs.net/> (2012)  

[49] Mirza, M. M., et al. Nanofabrication of high aspect ratio (50:1) sub-10 nm‎silicon‎

nanowires using inductively coupled plasma etching. Journal of Vacuum Science 

& Technology. 30. (2012) 

[50] Yang, B., et al. Vertical Silicon-Nanowire Formation and Gate-All-Around 

MOSFET. IEEE Electron Device Letters. 29. 791-794 (2008) 

[51] Na, J., Yanqing, Y.,  Xian, L., & Zhenhai, X. Development of CVD Ti-containing 

films. Progress in Materials Science. 58. 1490-1533 (2013) 

[52] Rosler, R. S., Mendonca, J. & Rice, M. J. Tungsten chemical vapor deposition 

characteristics using SiH4 in a single wafer system. Journal of Vacuum Science & 

Technology B: Microelectronics and Nanometer Structures. 6. 1721-1727 (1988) 

[53] Conley, J. F., Ono, Y., Zhuang, W., Stecker, L. & Stecker, G. Electrical properties 

and reliability of HfO2 deposited via ALD using Hf(NO3)4 precursor. IEEE 

International Integrated Reliability Workshop. 108. 21-24 (2002) 

[54] Bai, D., Fowler, M., Planje, C. & Shao, X. Planarization of Deep structures Using 

Self-Leveling Materials. International Microelectronics Assembly and Packaging 

Society. (2012)  

http://itrs.net/


109 

 

[55] Ting, C.H., Pai, P.L. & Sobczack, Z. An improved etchback planarization process 

using a super planarizing spin-on sacrificial layer. IEEE International VLSI 

Multilevel Interconnection Conference. 491 (1989) 

[56] Gupta, T. K. Dielectric Materials. Copper Interconnect Technology. 67-100 

(Springer, New York, 2009) 

[57] Linder, V.,  Gates, B. D., Ryan, D., Parviz, B. A.& Whitesides, G. M. Water-

Soluble Sacrificial Layers for Surface Micromachining. SMALL.  1. 730-736 

(2005) 

[58] Yun, K-S. & Yoon, E. Microfabrication of 3-dimensional photoresist structures 

using selective patterning and development on two types of specific resists and its 

application to microfluidic components. IEEE International Conference on Micro 

Electro Mechanical Systems. 757-760 (2004) 

[59] Ziegler, J. Stopping Range of Ions in Matter. Software. (2012) 

<http://www.srim.org/>. 

 

 


	Skybridge: A New Nanoscale 3-D Computing Framework for Future Integrated Circuits
	Recommended Citation

	tmp.1444077727.pdf.KAGiD

