Continuous scaling of CMOS has been the major catalyst in miniaturization of
integrated circuits (ICs) and crucial for global socio-economic progress.
However, scaling to sub-20nm technologies is proving to be challenging as
MOSFETs are reaching their fundamental limits and interconnection bottleneck is
dominating IC operational power and performance. Migrating to 3-D, as a way to
advance scaling, has eluded us due to inherent customization and manufacturing
requirements in CMOS that are incompatible with 3-D organization. Partial
attempts with die-die and layer-layer stacking have their own limitations. We
propose a 3-D IC fabric technology, Skybridge[TM], which offers paradigm shift
in technology scaling as well as design. We co-architect Skybridge's core
aspects, from device to circuit style, connectivity, thermal management, and
manufacturing pathway in a 3-D fabric-centric manner, building on a uniform 3-D
template. Our extensive bottom-up simulations, accounting for detailed material
system structures, manufacturing process, device, and circuit parasitics,
carried through for several designs including a designed microprocessor, reveal
a 30-60x density, 3.5x performance per watt benefits, and 10X reduction in
interconnect lengths vs. scaled 16-nm CMOS. Fabric-level heat extraction
features are shown to successfully manage IC thermal profiles in 3-D. Skybridge
can provide continuous scaling of integrated circuits beyond CMOS in the 21st
century.Comment: 53 Page