118 research outputs found

    Convergence Analysis of A- Stable Implicit Runge- Kutta Methods of Reformulated Block Hybrid Multistep Methods

    Get PDF
    A number of techniques and solvers have been suggested, developed, and described, but a clear definition of stiffness has not been provided. In this paper, an analysis of the A-stable implicit Runge-Kutta methods is undertaken using stability function and the region of absolute stability, which shows region of each of the methods. Also to compare various stiff solvers based on their region of absolute stability. It helps a stiff ordinary differential equation solver, to identify appropriate numerical methods with unbounded region of absolute, appropriate for stiff problems solving

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Parallel Runge-Kutta-Nyström methods

    Get PDF

    Higher-order in time “quasi-unconditionally stable” ADI solvers for the compressible Navier–Stokes equations in 2D and 3D curvilinear domains

    Get PDF
    This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier–Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas–Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are “quasi-unconditionally stable” in the following sense: each algorithm is stable for all couples (h,Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0,M_h)×(0,M_t). In other words, for each fixed value of Δt below a certain threshold, the Navier–Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier–Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier–Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions

    Geometric Numerical Integration

    Get PDF
    The subject of this workshop was numerical methods that preserve geometric properties of the flow of an ordinary or partial differential equation. This was complemented by the question as to how structure preservation affects the long-time behaviour of numerical methods
    • …
    corecore