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Abstract 

This thesis involves the implementation of spectral methods, for numerical solution of linear 

Ordinary Differential Equations (ODEs) and linear Differential-Algebraic Equations (DAEs). 

First we consider ODEs with some ordinary problems, and then, focus on those problems in which 

the solution function or some coefficient functions have singularities. Then, by expressing weak 

and strong aspects of spectral methods to solve these kinds of problems, a modified pseudo- 

spectral method which is more efficient than other spectral methods is suggested and tested on 

some examples. 

We extend the pseudo-spectral method to solve a system of linear ODEs and linear DAEs and 

compare this method with other methods such as Backward Difference Formulae (BDF), and 

implicit Runge-Kutta (RK) methods using some numerical examples. Furthermore, by using 

appropriate choice of Gauss-Chebyshev-Radau points, we will show that this method can be used 

to solve a linear DAE whenever some of coefficient functions have singularities by providing 

some examples. We also used some problems that have already been considered by some authors 

by finite difference methods, and compare their results with ours. 

Finally, we present a short survey of properties and numerical methods for solving DAE problems 

and then we extend the pseudo-spectral method to solve DAE problems with variable coefficient 

functions. Our numerical experience shows that spectral and pseudo-spectral methods and their 

modified versions are very promising for linear ODE and linear DAE problems with solution or 

coefficient functions having singularities. 

In section 3.2, a modified method for solving an ODE is introduced which is new work. 

Furthermore, an extension of this method for solving a DAE or system of ODEs which has been 

explained in section 4.6 of chapter four is also a new idea and has not been done by anyone 

previously. 

In all chapters, wherever we talk about ODE or DAE we mean linear. 
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Chapter 1 

Spectral Approximation 

i. i Introduction 

As we know, most differential equations concerning physical phenomenon can not be solved in 

terms of known functions, and, even when they can, sometimes their closed form solution is so 

complicated that using it to obtain an image or to examine the structure of the system is 

impossible. Consequently, is hardly surprising that polynomial approximation often has an 

important role when one wants to approximate a given function u(x). One of the fundamental 

theorems related to this is the Weierstrass approximation theorem, [1] which states that: 

If the function u on [a, b] is continuous, then, for any c>0, there exists a polynomial p� (x) of 

degree n, such that on this interval for sufficiently large n, 

Ip�(x)-u(x) I <s forall xE[a, b]. 

In this chapter we shall consider from a general point of view, the problem of approximating a 

function in terms of an orthogonal system of polynomials which guarantees spectral accuracy. 

Spectral accuracy happens when the n`' coefficient of the expansion decays faster than any 

inverse power of n. Spectral accuracy is attainable for the Fourier series expansion of periodic 

functions E C°° (if fE' [a, b] for m >_ 2 then we call fa smooth function, and by fE C' [a, b] we 

mean f is infinitely smooth). The property of spectral accuracy is also attainable for smooth but 

non-periodic functions provided that the expansion functions are chosen properly. 

It is shown that, the eigenfunctions of a singular Sturm-Liouville operator allow spectral accuracy 

in the expansion of any smooth function. 
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The expansion in terms of an orthogonal system introduces a linear transformation between the 

approximated function u and the finite sequence of its expansion coefficients { ü� } 
. This is usually 

called the finite transform of u between physical space and transform space. If the orthogonal 

system is complete in a suitable Hilbert space, this transform can be inverted. Hence, functions 

can be described both through their values in physical space and through their coefficients in 

transform space. The expansion coefficients depend on all values of u in physical space; hence, 

they can rarely be computed exactly. A finite number of approximate expansion coefficients can 

be easily computed using the values of u at a finite number of selected points, usually the nodes 

of high precision quadrature formulae. This procedure defines a discrete transform between the 

set of values of u at the quadrature points and the set of approximations, or discrete coefficients. 

With a proper choice of the quadrature formulae, the finite series defined by the discrete transform 

is actually the interpolant of u at the quadrature nodes. If the properties of accuracy (in particular 

the spectral accuracy) are retained in replacing the finite transform with the discrete transform, 

then the interpolant series can be used instead of the truncated series in approximating functions. 

For some of the most common orthogonal systems (Fourier and Chebyshev polynomials) the 

discrete transform can be computed in a "fast" way, i. e., with an operation count (5/2) N log 2N, 

where N is the number of polynomials, rather than with 2N2 operations required by a matrix- 

vector multiplication. 

Fast discrete transforms for other orthogonal systems have been suggested (Orszag(1986))[12], 

but their utility in practical computations is, at present, unproven. 

In this chapter we shall describe in detail those orthogonal systems which guarantee spectral 

accuracy. 

1.2 Orthogonal Systems of Polynomials 

orthogonal polynomials play the most important role in spectral methods, so it is useful to 

understand some general properties of them. Given an interval (a, b) and a weight function w(x) 
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which is nonnegative on (a, b) and we L' (a, b), we define the weighted Sobolev space Lw (a, b) 

by 

Lw(a, b)= 
ff 

: 
£(1.1) 

It is obvious that (.,. )W defined by 

(ýýg) 
w= 

rf(x)g(x)w(x)dx (1.2) 

is an inner product on LH, (a, b). Hence, ýý f ýý _ (f, f) wiz 
. Two functions f and g are said 

to be orthogonal in Lx, (a, b) if (f', g) w =0. 

A sequence of polynomials {p� }no with p� of degree n is said to be orthogonal in Lx, (a, b) if 

(p; 
9p j) ,, =0, when iýj. 

Let {p,, ) ,o be a sequence of polynomials, mutually orthogonal over the interval (a, b) with 

respect to a weight function w, that is; 

, 
x) =0, m# n. (1.3) 

If m=n, then we have 1Ip� 11 =[fp. 2 (x) w(x) dx] 
, which is called the norm of the orthogonal 

}n 
o. sequence of polynomials {p. 

The infinite sequence {p� (x)}ö is called complete in the underlying space S if each function in S 

co 
has a unique expansion of the form a, p, (x) with a, e 9l or C, i=0,1,2,.... 

0 

The classical Weierstrass theorem implies that such a sequence of polynomials is complete in the 

space Lw (a, b)" 

Since {p) n. is complete, it follows that for any uEV. (a, b) 
, we can write 
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Co 
u=zü�Pný (1.4) 

n-0 

where the expansion coefficients ü� are defined as 

un = IP- 
^ 

u(x)Pn (x)w(x)dx 
. (1.5) 

For an integer N>0, the truncated series of u of order N is the polynomial 

N 

PNU=ZünPn. (1.6) 
ns0 

Due to (1.3), p,, u is the orthogonal projection of u upon PN, the space of all polynomials of 

degree S N, in the inner product (1.3), i. e., (pN u, v),, _ (u, v) j or all vE PN . 

The completeness of sequence of polynomials {p,, } ,0 means that for all 

uE Lw (a, b), ll u- pN UII W --+ 0 as N --+ co. 

The zeros of the orthogonal polynomials play an important role in the implementation of spectral 

methods. The main result concerning the zeros of orthogonal polynomials is that; 

"the zeros of p� separate the zeros of p�+, , and that the polynomial p� has n distinct zeros on 

(a, b) ". It is also well known that these polynomials satisfy a recurrence relation of the form 

xP� =a�Pn+l +ß�P�+'y p _1 ' 
(1.7) 

where a� > 0, /3�, yy are constants. [2]. 

1.3 Sturm-Liouville Problems 

The importance of Sturm-Liouville problems for the spectral methods lies in the fact that in the 

spectral approximation the solution of a differential problem is usually regarded as a finite 

expansion of eigenfunctions of a suitable Sturm-Liouville problem. We recall that a Sturm- 

Liouville problem is an eigenvalue problem of the form 
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(pu')'+(q+2w)u=0 

a, u(a)+ a2u'(a) =0 
b, u(b) + b2U'(b) =0 

(1.8) 

The parameter % is independent of x while p, q and w are real-valued functions of x. To ensure 

the existence of solutions we let q and w be continuous and p be continuously differentiable, 

strictly positive in (a, b) and continuous at x=a, b; and q is continuous, non-negative and bounded 

in (a, b); the weight function w is continuous, non-negative and integrable over (a, b). 

The values of A for which the Sturm-Liouville problem has a non-trivial solution are called the 

eigenvalues, and the corresponding solutions are called eigenfunctions. For example, the 

functions sin x2), sin( ),... are eigenfunctions of the Sturm-Liouville problem 

u"+Au=0, xe[0,7r] 
u(0) =0 
u, (r)=0, 

corresponding to the eigenvaluesV4,9/4,.... 

The Sturm- Liouville problems of interest in spectral methods are such that the expansion of 

infinitely smooth functions in terms of their eigenfunctions guarantees spectral accuracy. 

A smooth function can be approximated by cosine series on (a, b) with spectral accuracy if and 

only if all its odd derivatives vanish at boundary. This is due to the fact that the coefficient p(x) in 

the operator does not vanish at the boundary in this case, i. e., Sturm-Liouville problem is regular 

(The Sturm-Liouville problem is called regular in the interval [a, b] if the functions p and /or w 

are positive in[a, b]). If p vanishes at the boundary the problem is called singular. The spectral 

accuracy is ensured if the problem is singular. A mathematical proof of these facts is given in Sec. 

9.2[5]. Expansions based on eighenfunctions of a Sturm-Liouville problem that is singular at x=a 

do not normally exhibit the Gibbs phenomenon at x=a. In applications, we encounter piecewise 

smooth functions frequently. In this case, the approximation is not uniform. An overshoot and 
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undershoot always appears across discontinuities. Such a phenomenon is called the Gibbs 

phenomenon. 

The important conclusion is that eigenfunction expansions based on Sturm-Liouville problems 

that are singular at x=a and at x=b converge at a rate governed by the smoothness of the function 

being expanded not by any special boundary conditions satisfied by the function [4]. 

Among the singular Sturm-Liouville problems, particular importance rests with those problems 

whose eigenfunctions are algebraic polynomials because of the efficiency with which they can be 

evaluated and differentiated numerically. It is also proven in Sec. 9.2 [5] that the Jacobi 

polynomials are precisely the only polynomials arising as eigenfunctions of a singular Sturm- 

Liouville problem. 

Let 10. (x)), ' i be an orthogonal sequence of complete square-integrable functions with a positive 

weight function w on[a, b], then the solution of a Sturm-Liouville problem (1.8) can be expanded 

in a uniformly convergent series of the form 

co 
u= iiO (z), (1.9) 

n=1 

where ü., the coefficients of expansion, are given by 

ün -(, w(x)On (x)dx)_' £ 
w(x)(x»� (x)dx" (1.10) 

A nice discussion about eigenfunction expansions and proof of a more general theorem can be 

found in E. C. Titchmarsh [3]. 

Later, in relation to Sturm-Liouville problems, we will discuss orthogonal polynomials such as' 

Legendre, Chebyshev and Jacobi polynomials. They have special importance because, for 

sufficiently smooth functions, spectral accuracy is guaranteed. In other words, the n`" coefficient 

of the expansion decays faster than any finite inverse power of n [4]. This property does not hold, 

in general, for all Sturm-Liouville problems. In the next section we discuss the close relationship 
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between orthogonal polynomials and Gauss-type quadrature rules because of their spectral 

accuracy in comparison to other numerical integration rules. 

1.4 Gauss-type Quadrature rules 

For solutions of differential equations by spectral methods, it is necessary to evaluate integrals 

numerically. We use integration formulae on [a, b] of the type 

f (xMx)dx =j 
=j. 0 

(1.11) 

Let xo, x,,..., xN, be N+1 distinct points in [a, b]. We may choose coefficients(weights) 

{1 }j 
o such that (1.11) is exact for polynomials of degree 

_< N. More precisely, we set 

w, _f lý (x)w(x)dx (1.12) 

with If (x) _j being the Lagrange polynomial associated with nodes 
{x 

j}jo. Since, 
i*J 

1, (x, ) =1, and 1, (x, ) = 0, i#j, then f (x) =Lf (xi )11(x) , 
t=1 

degree :5N, and in general 

f(x)w(x)dx. ý f (x; ) f 1; (x)w(x)dx=>w; f(x; ). 
1=1 i=ý 

Hence, we have 

N 

f P(x»(x)dx= Z p(xi 
)wj' 

if f (x) is a polynomial of 

where pE PN 
, where PN is the space of all polynomials of degree <_ N. However, if we are free 

to choose nodes xo 9 X1 x2,..., xN , we can expect the quadrature formulae of the above form to be 

exact for polynomials of degree 
_< 2N + I. 

11 



We assume that {p» }n 
0 is a sequence of orthogonal polynomials with respect to a weight function 

on (a, b). 

Theorem 1. (Gauss quadrature) : 

(i) Let xo, x, ,..., xv be the zeros of pN+, and define 

N) by (1.12). Then w, >0 for j=0,1,..., N and 

p(x)w(x)dx =N p(x, )w,, for all pE PZN+1. 
J-1 

(1.13) 

(ii) It is not possible to find x,, wf, j=0,..., N such that (1.13) holds for all polynomials 

pE P2N+2 . However, it is difficult to enforce any boundary condition since end points a and b 

are not among the Gauss nodes. Therefore, we need generalized Gauss quadratures with some 

enforced boundary conditions. To enforce the boundary condition at one end point, we should use 

the Gauss-Radau quadrature. Other generalized Gauss quadrature derivative boundary conditions 

can also be constructed similarly, (see[6], [2]). 

Suppose we would like to include the left end point a in the quadrature. We choose 

P^'+L (aý 
and set aN ___ Prv (a) an 

q(x)=P, v+, 
(x)+aNPN(X)" (1.14) 

Hence q(a) =0 and we can write 

4(x) =(x-a)gN(x) " 

It is obvious that q,, e Pr, , and for any r,,, _1 E PN_ý we have 

fa 
4N (xý,, 

-1 
(x)w(xXx - a)dx = 

5 ýPrv+i (x)+ aNp. (x))rN-, (x)w(x)dx =0. (1.15) 
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Hence {q,, } is a sequence of orthogonal polynomials with respect to the weight function 

(x 
- a)w(x) . 

Theorem 2. (Gauss-Radau quadrature) : Let xo, x1,..., x,, be the zeros of (x-a)q, and 

wj 0=0,1,..., N) defined by (1.12). Then w, >0 for j=0,1,..., N and 

r 
p(x)w(x)dz = p(xf)w(x, 

), for all pe P2N (1.16) 
J. o 

A second Gauss-Radau quadrature can be constructed if we want to include the end point b 

instead of the left end point a. We now consider the Gauss-Lobatto quadrature whose nodes 

include the two end points. We choose aN and ý6, such that 

PN+I 
(x) + aN PN 

(x)+ ßN PN-1 
(x) 

=0 , 
for x=a, b 

, 

and set 

SNa \x! = 
PN+l 

(x)+ 
aNPN 

(x)+ /3NPN-1(x) 

(x-aXb-x) 

Hence, s,,, _, E PN_I and for any rN_2 E PN_2 , we have 

r 
SN-1(x)rN-I (x) w(xXx - aXb - x)dx = 

f (PN+I (x)+ a vPN 
(X)+ ßNPN-I (x))rN-2 (x)w(x)dx =0 (1.17) 

Hence, {sN } is a sequence of orthogonal polynomials with respect to weight function 

(x - aXb - x) w(x) . 

Theorem 3. (Gauss-Lobatto quadrature) : Let {x; }, 
0 

be the N+1 zeros of 

(x - aXb - x) sN_, (x) and w, (j = 0,1,..., N) defined by (1.12). Then ww >0 for j=0,1,..., N, and 

xxNx wf for all EP P()k=Ip(ý) p ZN-ý 
P. O 

(1.18) 
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The nodes of Gauss-type formulae play an important role in collocation approximations. They are 

precisely the collocation points at which the differential equations are required to be satisfied 

identically (see [5]). We assume here that a weight function w is given, together with the 

corresponding sequence of orthogonal polynomialspn . For a given Nz0, we denote by 

xo , x, ,..., xN the nodes of the N+1 -point integration formulae of Gauss, Gauss-Radau or Gauss- 

Lobatto type, and by wo, wl,..., wN the corresponding weights. 

In a collocation method the fundamental representation of a smooth function u on (a, b) is in 

terms of its values at the discrete Gauss-type points. Derivatives of the function are approximated 

by analytic derivatives of the interpolating polynomial. The interpolating polynomial is denoted by 

I, u . It is an element of PN and satisfies 

INu (x )=u (xj ), 
. 
1= 0,1,..., N. (1.19) 

Let w(x) >0 be a weight function, and {x, 
, wj }N 

o 
be the set of quadrature points (e. g. Gauss, 

Gauss-Radau or Gauss- Lobatto points) and associated weights. For u and vE FN continuous on 

[a, b], we define 

N 

ý=oV 
xj)v('xl 

)wj (1.20) 

Then (.,. )N is a discrete inner product in PN and II"II defined by IIUIIN = (u, u)N2, is a norm in PN . 

In particular, Gauss, Gauss-Radau and Gauss-Lobatto quadrature formulae imply that 

(u, v)N = (u, v)w, for u, v E P2N+a (1.21) 

where S =1,0, -1 respectively for Gauss, Gauss-Radau and Gauss-Lobatto quadrature. 

Let u be a continuous function on [a, b]. The interpolation polynomial associated with 
ýj }j'. 

0 , 
is 

defined as a polynomial of degree at most N to satisfy (1.19). Hence, we may write 
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INU(x) = E"iPi('X)' (1.22) 
wo 

Obviously, we have 

N 

u(XJ)=INU(xj)=Z ipi(xi). (1.23) 
i. 0 

Thus, {ük }are called the discrete coefficients of u determined by 

Uk °1 ýU(Xfll 
k(xJ)WJ ' (1.24) 

Yk i-o 

where 

N 
lýý Yk -EPkJ1ý'I. (1.25) 

l. o 

Equations (1.23) and (1.24) enable one to transform freely between physical space tu(x 
j 
)} and 

transform space (i k 
). We shall call such a transformation a "discrete polynomial transform" 

associated with the weight function w and the nodes xo, xl,..., xN . For any continuous v, (1.23) 

gives 

(I N u, v)N - 
(u, 

v)N (1.26) 

This shows that the interpolant INUis the projection of uupon Pr, with respect to the discrete 

inner product (1.20). 

The discrete polynomial coefficients Wk can be expressed in terms of the continuous coefficients 

ük as follows: 

Uk=uk+ F(Pj$Pk)Ni,. (1.27) 
Yk J>N 

This formulae is an easy consequence of (1.24). Equivalently, one can write 

INU = pNu + RNu, (1.28) 
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where 

2: Iýl RNu= 
-ýIPJ, pk)Wi k 

k. 0 irk J>N 
(1.29) 

can be considered the aliasing error due to interpolation. The aliasing error is orthogonal to the 

truncation error, u- PN u, so that 

Du-INU11w =Du-PNU112 +I! RNU112 (1.30) 

In general, (p;, pk) : OL0 for all j>N. Thus the km mode of the algebraic interpolant of 

u depends on the kt mode of u and all the modes whose wave number is larger than N. The 

aliasing error has a simple expression for the Chebyshev interpolation points. 

In the rest of this chapter we shall restrict our attention to some special class of orthogonal 

polynomials. 

1. Jacobi polynomials 

Jacobi polynomials are the most general case of classical orthogonal polynomials, which are 

denoted by J,, fl (x) and, generated from (1.8) with 

p(x) = (1- x)a+' (1 +xy+', q(x) = 0, w(x) = (1- x)z (1 + x)$ for a,, 8 > -1, 
(a, b) _ (-1,1), they are 

1 n+ß 
J=4- fx-1)k(x+1)"-k ��J(x) 

2" 
k-0 

(n'- 
k 

(1.31) 

normalized by J. "' (1) = r(n +a+ 1)I'(a + 1) / M, where F(x) is the Gamma function. In fact, we 

shall mainly be concerned with two special cases of Jacobi polynomials, namely Legendre 

polynomials which correspond to a =, g =0 and Chebyshev polynomials which correspond to 

a=ß= -12 . Any generic treatments of Jacobi polynomials apply in particular to both Legendre 

and Chebyshev polynomials. A property of fundamental importance is the following: 

Theorem 4. The Jacobi polynomials satisfy the following singular Sturm-Liouville problem: 
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ý1-x), (l+x)-. 8 d {(i 
-x)a+'ýl+x), 

6+i dJ", p(x) +n(n+l+a+, 3)J, ""Q(x)=0. 

An immediate consequence of the above relation is that there exists A such that 

- 
ýl - xýý+i ý1 +x +' fJ(x)} (x)w(x). 

We can simply show that 1% = n(n +1+a+, ß) . 

The orthogonality condition of Jacobi polynomials gives 

f Iý jam-8 (x)la-8 (xX1- x)(1 + x)ß dx =0, for in # n. (1.32) 

One derives immediately from theorem 4 and (1.32) the following result: 

1 a+l +1 d Jaj df «ý 
1.33 

ýýl-xý 
(1+xy dx=0 

, 
for min. () 

The above relation indicates that 
f 

J,, --' forms a sequence of orthogonal polynomials with weight 

function w(x) _ (1- x)a+' (1 + x)'6+1 . Hence, by the uniqueness, we find that 
dx 

J"'ß is proportional 

to. In j1'ß+1 

Theorem S. (Rodrigues'formulae) 

(1-x)°(1+x)°J, "'ß (x)= (�1)nd� [(i 
- x) (1 ý x)"+ßl . 

(1.34) 
2 n! dx 

When a= /3 > -1, the corresponding Jacobi polynomials are called Gegenbauer polynomials or 

ultraspherical polynomials. In this case, one derives from Rodrigues' formulae that J', ' is an odd 

function for n odd and an even function for n even. 
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2. Legendre polynomials 

The Legendre polynomials, denoted by Lk (x), are the eigenfunctions of the singular Sturm- 

Liouville problem with p(x) =1- x2, q(x) = 0, w(x) =1 and (a, b) = (-1,1) and the boundary 

conditions u(±1) be finite. Since p(x) / w(x) =1- x2 and p'(x) / w(x) = -2x are both finite for 

lxl <_ 1, it follows that the Legendre series expansion of infinitely differentiable functions 

converges faster than algebraically. When a discontinuous function is expanded in Legendre 

series, the rate of convergence is no longer faster than algebraic. In the neighbourhood of a 

discontinuity, a Gibbs phenomenon occurs whose local structure is the same as that for Fourier 

series. 

The three-term recurrence relation for Legendre polynomials reads 

(n+1)L�+, (x)= (2n+1)xL�(x)-nL�_1(x), n z 1. (1.35) 

with Lo (x) =1, L, (x) =x. 

We present here a collection of essential formulae for Legendre polynomials. For proofs the 

reader may refer to Szego (1939)[12]. 

As we said the Legendre polynomials are Jacobi polynomials with a=ß=0. Hence, they are the 

eigenfunctions of the singular Sturm-Liouville problem 

((1-x2 )L: (x)j +n(n+1)L�(x)=0, xe( 1,1). (1.36) 

Lk (x) is even if k is even and odd if k is odd. If Lk (x) is normalized then for any k 

Lk (x) 
=k 

ý` 

1/J (k X2k-2J )k-2J 

2 
J=o 

An important property of Legendre polynomials is the following 

(1.37) 
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1 iL(t1t_ 2n +1(L�., 
(x) 

-Lna(x)), n>_1 . (1.38) 

We use the above recursive relation for computing derivatives of the Legendre polynomials: 

1 (x) 
- L, ', 

-, 
(x)), nz1. (1.39) 

2n+1 

We can derive from the above formulae that 

L�ý(x)=2: (2k+1)Lk(x) 
, (1.40) 

k 

n+k odd 

n-2 

Ln(x)=Z(k+2Xn(n+1)-k(k+1))Lk(x) . 
(1.41) 

k-o 

n+k even 

We also derive relevant properties 

ýLkýx)) <_ 1, ýLk(x)I <k 
(k 

(1.42) 
2 

Lk(±1)=(f1)k, Lk(±1)= Z(±1)k-'k(k+1) 

Lk(±1)=(±1)k(k-1)k(k+lXk+2)l8 
, 

(1.44) 

L Lk (x)alx =2 (1.45) 
2k+1 

The expansion of any uE LZ (-1,1) in terms of Lk's is 

u (x) = 2: ük Lk (x) 
, 
ük = (k + iý, ý1 

u ýx)Lk (xýdc 
. 

(1.46) 
k=0 

We consider now discrete Legendre series. Since explicit formulae for the quadrature nodes are 

not known, such points have to be computed numerically as zeros of appropriate polynomials. For 
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the Legendre series, the Gauss quadrature points and weights can be derived from theorems 1,3 

(see also[2], [7]). 

(i) For the Gauss-Legendre quadrature: {xj }m 
are the zeros of LN+l (x) , and 

_2 (1.47) wi (1- x, 2 )(LN+, (x, ))Z 

(ii) For the Legendre-Gauss-Radau quadrature: {xi }' 
0 are zeros of 

LN (x) + LN+, (x), and 

21 1-xj 
w°_(N+1)Z ' WJ__(N+1)2 

Lrv(xJ) ' 1- j-N. (1.48) 

(iii) For the Legendre-Gauss-Lobatto quadrature: {xj }ý 
o are zeros of 

(1-x2)L, '�(x), and wj =22,05 j<N , (1.49) 
N(N + 1)(LN (xj )) 

The normalization factors yk introduced in (1.25) are given by 

Yk = (k + 2ý-' , for k<N. And rN is given by 

(N + y)-' , for Gauss and Gauss-Radau formulae, and (150) 

Y, v , for Gauss-Lobatto formulae 
. 

In implementation of the spectral method, one often needs to evaluate derivatives or form 

derivative matrices. The derivatives can be evaluated either in the frequency space or in the 

physical space. 

There are obvious difficulties if u has discontinuities. In this case, the approximation is not 

uniform. 

a) Differentiation in frequency space. Given uN = 
2: ükLk E pN, we can write 
k-0 
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NN 

u'= 
2: ^ Lk =y 11 

k1 ýLk 
with IINIý =0. 

k=I k=0 

Then from (1.39) we find 

N N-1 

uI uk)Lk 0+k 2(Lk+1 -Lk-1) 
k. 0 k-I 

_ 
uN-1 r 

uk-1 uk 

2N-1L"+ k., 2k-1 2k+3 
Lk 

Comparing the coefficients of Lk , we find that the coefficients {ük'ý } 
of u' are determined by the 

recursive relation: 

üNý = 0, üNý, _ (2N -l )üN , 
kýl = ük + uk+ý' (2k 

-1), k=N -1, N-2,..., 1 
2k+3 

Higher derivatives can be obtained by repeatedly applying the above formulae. 

b) Derivative matrices in physical space. Given ue PN and its values at a set of 

collocation points 
{xý) 

0. 
Let {11(x)}ý 

0 
be the sequence of Lagrange polynomials relative to 

.o . 
Then, {x 

f 
}N 

N 

(M)(X) _ zu(m-i)(xj)1l(x), mz1. 

Setting dkj = lJI (xk), and D= (dk, )kJ_o, I,... "N , 
and 

um= 
(u( )(XO), U (XI),..., U (X,, ) 

'm = 0,1,2ý... 

we can obtain from (1.52) : 

(1.52) 

u(xk) =Id. u(x. ) or u= Du, (1.53) 
J. o 
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which implies that u(m) = D'" u(0) 

Hence, the derivatives of u in the physical space are totally determined by the matrix D. The 

above discussion is valid for any set of collocation points. In the implementation of spectral 

methods, one is interested mostly in using the Gauss-Lobatto points or Gauss-Legendre points. 

Below we provide an explicit expression for the derivative matrix in the case when 
{xj }ý 

o are 

Legendre-Gauss-Lobatto points. 

Let {x, }jm be the zeros of (1- x2 )L;, (x) . Then, 

1j (x) 
N(N + 1)LN (x ) 

(1-x2)z Nr (x) 
j=0,1,..., N, (1.54) 

j 

and 

d 
LN (xk) 

kýjý0, N, (1.55) 
'v LN (xJ)(x -+ xj)' 

dkj =N(N+1)/4 , fork =j=0 and dkj =- N(N+ 1) l4, for k=j=N, 

and O, for 15k= j_<N-1. 

Remark 1: The derivative matrix is a full matrix and so O(N2) flops are needed to compute 

=o 
by using the derivative matrix. from Iu (xJ) 

J" 
{u'(xJ)}J" 

l 

Since u(N+l ) (x) =0 for any uE PN, we have DN+'u (°) =0 for any U (O) 
E 91N+1. Hence, the only 

eigenvalue of D is zero which has a multiplicity of order N+1. 

3. Chebyshev polynomials 

The Chebyshev polynomials of the first kind, denoted by {Tk (x)}k o are the eigenfunctions of the 

singular Sturm-Lionville problem 

1-xZ( 1-x2Tk(x)ý+k2Tk(x)=O, xE(-1,1), (1.56) 
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which is (1.8) with p(x) = (1- x')"', q(x) = 0, w(x) = (1- x2)-"Z, and the boundary conditions 

that Tk (±1) be finite. 

Three-term recurrence for the Chebyshev polynomials is: 

To (x) =1,1(x) = x, 
T�+, (x)=2xT. (x)-T�-, (x), nz1. 

(1.57) 

The Chebyshev polynomials are the Jacobi polynomials with a=ß= -1/2, and satisfy the 

orthogonality relation 

fTk(x)TJ(x)RJi_x2dx= c2 8kß 

where co =2 and ck =1, for kz1. 

The Chebyshev polynomials can be expanded in power series as 

Tk (x«, -- 
k }ý k (k-1-1)! k'zr , ) 
21. o. 

(-1) 
l! (k - 2l)! 

(2x) (1.59) 

where, k2J denotes the integral part of V 
Y2 

From the fact that cos(n cos-' x) is a polynomial of degree n and the trigonometric relation 

cos(n + 1)0 + cos(n -1)0 =2 cos Ocos nO, (1.60) 

we find that cos(n cos-' x) satisfies also the three-term recurrence relation (1.57). Hence, 

T� (x) = cos(n cos-1 x), n=0,1,... (1.61) 

This explicit representation allows us to derive easily many useful properties of the Chebyshev 

polynomials. In fact, letting 0= cos-` x, it follows from (1.61) 
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2T� (x) =1 T' (x) -1T, ' t (x), n? 2" (1.62) 
n+l n-1 

It can be easily shown by using (1.61) that 

f Tn (x)1: 5 1, f Tn (x)l n2, 

2T�, (x)T� (x) = T, 
�+� 

(x) +T, �_� 
(x) ,mznz0. (1.63) 

One can also derive from (1.58) that, 

T�'(±1) = (±1)"-'n2, (1.64a) 

T� (±1) =3 (±1)" n2 (n2 -1) . (1.64b) 

Moreover, we can derive from (1.62) that, 

9 

M-i 1 

T�'(x) = 2nE- Tk (x) (1.65a) 
k. 0 Ck 

n+k odd 

T"(z)1 n(nZ-k2)Tk(x) (1.65b) 
k. 0 Ck 

n+k even 

The Chebyshev expansion of a function uEV. (-1,1) is 

Go 
u(x) _ ukTk (x) ; Uk =2f, u(x) Tk (X) w(x) dx . 

(1.66) 
k=0 7l Ck 

CO If we define the even periodic function ü by ii(O) = u(cos 0), then W (O) _ Wk cos kO. Hence, 
k-0 

the Chebyshev series for u corresponds to a cosine series for ii(O) 
. 

It is easy to verify that if u(x) is infinitely differentiable on [-1,1], then W (O) is infinitely 

differentiable and periodic with all derivatives on [0,27r]. 
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For the Chebyshev series, one can determine from (1.13), (1.16) and (1.18) the quadrature points 

and weights (see also[8]). 

(i) For Chebyshev-Gauss quadrature: 

xi =Cos(2N+)2 
;r 

'W' N+1'0<j<N 
(1.67) 

2 

(ii) For Chebyshev-Gauss-Radau quadrature: 

xj = cos 
2; r j ;r 

, wj ,j _=0, and 
2z 

2,15 
j: 5 N. (1.68) 

2N+1 2N+1 2N+ 2 

(iii) For Chebyshev-Gauss-Lobatto quadrature: 

xcosN, w; =c N'U<_jSN, 
(1.69) 

where co = FN =2 and F. =1 for j=1,2,..., N -1. 

Note that, for simplicity of the notation, these points are arranged in descending order, namely, 

XN < xN_1 < ... <x, <X0. 

As in the Legendre case, we present here some detailed results on the interpolation operator 1,, 

based on the Chebyshev-Gauss-Lobatto points 1x 
i 
}ý 

o. 
For any function u which is continuous on 

[-1,1], we have 

N 

u(xi)-INU(x1)-LukTk(xj). (1.70a) 
k=0 

In this case, (1.24) reads: 

2N ki; r Uk =1 u(xj) cos -- (1.70b) 
ck N j=o cfN 

The most important practical feature of Chebyshev series is that the discrete Chebyshev 

transforms (1.70a) and (1.70b) can be performed in O(N1og2 N) operations. 
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a) Differentiation in frequency space 

N 

Given u= ükTk E F, we derive from (1.62) that 
k=0 

+ u(') (x +N 
-ý 7k-1 

ükTk =ý ük')Tk =I J 

k=I k=o 
(') )k 

(2(k+1) 

2(k -1) 

(1) N-2 

_ 
uN 

TN +ý1 
(Ck-1uk11 

- ijo) 
/' k 2N k=1 2k (1.71) 

where co =2 and ck =1 for k >_ 1. Comparing the coefficients of Tk we find that the Chebyshev 

coefficients 
{ük'0 } of u' are determined by the recursive relation: 

u, 
ý'ý 

= O, I7 = 2NUN 
s (1.72) 

_l >k=N-1>N-2 s... 91. 
. 72) 

(2kük +ü(k+l '))/ck - 

Higher derivatives can be obtained by repeatedly applying the above formulae. 

b) Derivative matrices in physical space 

To compute the derivative matrix in physical space, we can use the same notations as in the 

Legendre case except that now we choose {x, 
= cos :N} to be the Chebyshev-Gauss-Lobatto 

points. 

The Lagrange polynomials associated to the Chebyshev-Gauss-Lobatto points are 

Ij (x) 
(-1)' (x, -1)TN (x) 

0: 9 j: 9 <N (1.73) 
cjN2(x-xj) ' 

The derivative matrix (dkj =1j' (xk )) is given by 

ak (-1)'+i 
#k 

F, (xk - xJ ) 

d, = 
Xk 

,k =1,2,..., N (1.74) 
2(1- xk ) 

doo =-dNN =(2N2+1)/6, 
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whereck=1 for1Sk<-N-1 and co=cN=2 
. 

Remark 2: Remark 1 applies also to the Chebyshev case. However, in the Chebyshev case, a more 

efficient alternative for computing derivatives is to proceed in the frequency space as described 

earlier in this section: 

N 

(i) Compute the discrete Chebyshev coefficients { i7 } of u from u(xJ) = 17k Tk (xi) ; 
k=0 

(ii) Compute the discrete Chebyshev coefficients 
{ük"'} 

of u' using (1.72); 

N 

(iii) Compute u'(xj) from u'(x, ) _Z ük ° Tk (x J) . k=0 

The cost of this approach is only O(N log N). 

The most important feature of Chebyshev series is that their convergence properties are not 

affected by the values of u(x) or its derivatives at the boundaries x= t1 but only by the 

smoothness of u(x) and its derivatives throughout -1 S x: 5 1. While Chebyshev expansions do 

not exhibit the Gibbs phenomenon at the boundaries x= ±1, they do exhibit the phenomenon at 

any interior discontinuity of u(x) . 

In the end of this section we mention although spectral accuracy can be achieved for expansion in 

Jacobi polynomials(see Sec 9.6.1 [5]), they have seen comparatively little use, aside, of course, 

from the special cases of Chebyshev (a =, B = -1/ 2) and Legendre (a = /ß = 0) polynomials. 

We also mention the Legendre series expansion of infinitely differentiable functions converges 

faster than algebraically. But, when a discontinuous function is expanded in Legendre series, the 

rate of convergence is no longer faster than algebraic. 

1.5 Review of Fourier Transforms 

A very large class of important computational problems falls under the general rubric of "Fourier 

transform methods" or "spectral methods". 
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For some of these problems, the Fourier transform is simply an efficient computational tool for 

accomplishing certain common manipulation of data. It is a very good example of a spectral 

method. 

In this section we give a review of the Fourier transform and study the Fourier expansion for 21r - 

periodic functions. 

Suppose u is a 2z -periodic function. Let us expand u as 

u(x) ~ üke'. 
k---m 

By taking the inner product, defined by 

(u, v)= 2x 
Joxu(x)v(x)dx, (1.75) 

we find that 

Uk _ 2x 
jiýu(x)e_kdx (1.76) 

The u^, are called the Fourier coefficients, or Fourier transform of u at wavenumber k. 

The integrals in (1.76) exist if u is Riemann integrable which is ensured, for instance, if u is 

bounded and piecewise continuous in (0,2; r). More generally, the Fourier coefficients are defined 

for any function which is integrable in the sense of Lebesgue (see Appendix A). 

It is possible as well to introduce a Fourier cosine transform and a Fourier sine transform of u 

respectively, through the formulae 

ak =1 
ý2ýu(x)coskxdx 

,k=0, ±1, ± 2.... (1.77) 2ir 

and 

ru(x)sinkxdx, bk = 2x k= ±1, ± 2,... (1.78) 

The three Fourier transforms of u are related by the formulae ük = alkI -ibjkj = O, f 1, t 2,.... for k 
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Note that the Chebyshev series is a Fourier cosine series with a change of variable. If u is smooth, 

then its Fourier coefficients decay very fast. That is, the error between u and its N-th order 

truncated Fourier series decay faster than algebraically in 1/N, when u is infinitely smooth and 

periodic with all its derivatives. Indeed, by taking integration by part n times from (1.76), we will 

get 

Jo x U(n) (x)e- (1.79) 

Thus, if uE C", then ük =0 
(I kl -" ) 

When u is not so smooth, say in V, we still have ü -+ 0, as Ikl -> oo. 

This is a consequence of the Riemann-Lebesgue lemma which states: 

If f is in L' (a, b), then 

f,, = ff(x)sin(Ax)dz -+ 0 as A--> oo . 

Let us denote the partial sum of the Fourier expansion by uN : 

k=N 

UN (X) _ 
1: 

uke" 
. 

(1.80) 

k--N 

We recall the following results about the convergence of Fourier series. 

(i) If u is continuous, periodic, and of bounded variation on[0,27r], then uN is uniformly 

convergent to u, i. e., 

maxlu(x) -uN (x)I -- 0, 
as N -* co. 

x r: [0,21r] 

(ii) If u is of bounded variation on [0,2; r], then uN converges pointwise to (u(x+)+u(x-))/2 for 

anyx E 

(iii) If u is continuous and periodic, its Fourier series does not necessarily converge at every 
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point xE [0,2; r]. 

A full characterization of the functions for which the Fourier series is everywhere pointwise 

convergent is not known. However, a full characterization is available within the framework on 

Lebesgue integration for convergence in the mean. 

The series Su is said to be convergent in the mean (or L2 - convergent) to u if 

Zx 
ýu(x) 

- PN (x)I2 dx 0, as N -- oo. Clearly, the convergence in the mean can be defined for 

0 

square integrable functions. 

If u(x) is smooth and periodic, its Fourier series does not exhibit the Gibbs phenomenon. The 

Fourier series of such a u(x) converges rapidly and uniformly. 

Theorem 6. If u is a 2; r -periodic function and uE CO, then for any n>0 there exists a constant 

C� such that 

IUN(X)-U(X)I: CnN-" (1.81) 

The constant C. is in general not big, as compared with the term N'. Hence, the approximation 

(1.80) is highly efficient for smooth functions. As we mentioned before, the accuracy property 

(1.81) is called spectral accuracy. 

The Fourier transform maps a 2, r -periodic function u into its Fourier coefficients {ük }k We 

may view the Fourier transform as a map from L2 space into 12 space. The function spaces L2 and 

12 are defined below; 

L2 = 
ju: 

u is 2'r -periodic and J Iu(x)l2 th < oo} , 
(1.82) 

with inner product given by (1.75) The space 12 is defined as 

12 la, < °° (1.83) 
k 
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with inner product (a, b) _ ak bk. 
k 

It is easy to check that e''°` are orthogonal in V. From this, we have 

oS(u-uN, u-uN)=IIu1I2 - 
Elukf 2, for any N. 

lkl<N 

Or, equivalently 

E luk 12 
:: 5 Ilu112 

. 
lk<Nl 

This is called the Bessel inequality. It says that the Fourier transform maps 

continuously from L2 to 1Z. 

(1.84) 

Theorem 7. (Isometry property) The Fourier transform is an isometry from L2 to 

l2: (u, v)=EükVk . 
k 

The isometry property says that: the Fourier transformation preserves the inner product. When 

u=v in the above isometry property, we obtain the following Parseval identity. 

. For uELZ, wehave, Ilull2 = 14k12 
k 

Theorem 8. If uE L2, then uN -* u in L2 as N -* oo. 

Theorem 9. If u is a function of bounded variation, then 

N 

uN(x)= 1 uke{x -> 2(u(X+)+u(x ))" 
k-N 

In many practical applications, numerical methods based upon the Fourier transform can not be 

implemented in precisely the way suggested by the standard treatment of Fourier transform. Some 

of the difficulties are: the Fourier coefficients of an arbitrary function are not known in closed 

form and must therefore be approximated in some way; and there needs to be an efficient way to 
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recover in physical space the information that is calculated in transform space. The key to 

overcoming these difficulties is the use of the discrete Fourier transform. 

Given a 2; c -periodic function u. Let us sample u by uj = u(x, ), where x, = "Y.. Define the 

discrete Fourier transform for the sampled data by 

N-l 

2lk =YNEuje 

j=0 

(1.85) 

This is exactly the trapezoidal approximation for numerical integration of the Fourier coefficients 

y, 
r 
jo u(x)e-a"dx. When ueC °° , according to the Euler-MacLaurin summation formulae for 

periodic functions, 

ý2x 
N-1 

Ar u(x)e-''a`dx-"NIufe-r , =O(N-"), 
j=o 

(1.86) 

for any n. Thus, the discrete Fourier coefficients can approximate Fourier coefficients, with 

spectral accuracy, provided the underlying function belongs to C'. From ilk, we define 

=N-I 

INu(x) _ 
±ute'x 

k- N 
2 

(1.87) 

We claim that INu(xj) = u(xj) . In other words, IN u is a trigonometric interpolant of u at 
{xj }j ö. 

To see this, we substitute the formulae for Wk into the formulae for I, u(x) : 

k N-1 
N-1 

u, e 
k ý1 k=0 

2 
N-1 

= yNZDN(x-XJ)uj , j. 0 

where 

(1.88) 
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_k 

N-1 

_ -ixt sin(Nx / 2) 
DN (x) 

ue 
`"ý -e sin(x / 2) k-N 

2 

We find that 

DN (x1) _ 
to, ; =o . 

Hence, I, u(x, ) = u,. 

Let S. be the space of the trigonometric polynomials of degree S V2: 

S,,, =span 
{Ek (x) = e'"' :- N/ 5k< N/}. 

In this space, the inner product defined by (1.75) is equivalent to the discrete inner product, 

N-1 
(u, v) = 7N 

F 
ujvj . J=o 

It is easy to check that {Ek (x)}_N,, 
<V are orthogonal in both inner products. Hence, these two 

inner products are identical for any u, ve SN. Again, from orthogonality of {Ek (x)}, we have the 

N2 

isometry (u, v)N = ukvk , and the Parseval identity : yN Iu 
Jl = ýIW7I2 

-NZSk<N J-0 -N! sk<N/ 

Given a 2; r -periodic function u, the mapping 

PNU(x) _ üke&x 
VIXN2 

is an orthogonal projection from L2 (-ir, ir) to S. . On the other hand, the interpolation operator, 

INU : 

INU(z) = uke'ýt 

is a projection onto SN , and is characterized by INu(xi) = u(xf) ,j=0,1,..., N -1. 
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The difference between P. and IN is called "aliasing error". It can be characterized as follows. 

First, 

N-1 N-1 co no 
u '7N2: u(xj)e-'*" _, 

VN2: 2: ulei(1-k)sj 
= 

2: ük+mN 

J=I f-I I -« mim 

= uk +Z Uk+mN 
00 

-ao 

m#0 

From the orthogonality of Ek in L2, we see that 

RNU=INU-PNU=_ 
Z ýuk+mN 

k" 
N25k<NA -w, mm0 

Since P. is an orthogonal projection we have 

Ilu-INUII2 
°Ilu-PNUll2+IIRNUII2 

It is not difficult to find the approximation error for P. . Indeed, Let Hs denote the Sobolov space 

of order s: Hs = 
{u :u is 2, r - periodic, u,..., u(s) E L2 }, 

S2 

with the norm II uII2 = Iluý"'ý II 
. From the Parseval identity, this norm is 

M-0 

equivalent to J: 
k 
(l 

+ Ikl2 ) lük 12 

We have the following approximation theorem: 

Theorem 10. If uE H`, then Ilu - PNull_<CN 'llu( l. 

For the interpolation operator, we have a similar result. In other words, the aliasing error has the 

same spectral error as that of the truncated Fourier polynomial for smooth functions. 

Theorem 11. If uEH', sý: 1 , then Ilu - INUIT 5 CN-fIlu(s)11. 

This theorem was proved by Kreiss and Oliger (1979)[9]. 
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How much computation is involved in computing the discrete Fourier transform of N points? 

The discrete Fourier transform can, in fact, be computed in O(N log N) operations with an 

algorithm called the: "Fast Fourier Transform" , or FFT. The FFT is a particular way of 

factoring and rearranging the terms in sums of the discrete Fourier transform brought to the 

attention of the scientific community by Cooley and Tukey[10]. Its importance lies in the drastic 

reduction in the number of numerical operations required . For N time values (measurements) a 

direct calculation of a discrete Fourier transform would mean about N2 multiplications, but the 

technique of Cooley and Tukey reduces the operation counts from O(N2) to O(N log N) . 

For example, if N= 1024(= 210) , the FFT achieves a computational reduction by a factor of over 

200 . This is why the FFT is called fast. Variations of FFT are the trigonometric representations 

which create Fast Cosine and Sine Transforms. 

When all U1 E R, then ük = ü_k = üN_k 
, for k =1, N/ . Let 

N% 
, 

for even N 
M= 

(N+I)/2, for odd N 

Uk = C2k_I - ic2k, k =1,..., M -1, and co = i7 and CN_1 = UN1 . Then 

u1 = wo +(-1)juN,, +1(üke'' +üke-'°' 
) 

M 

= CO + (-1)J CV-1 + 2Z c2k_I cos(kxj) + c2k sin(kxj) 
k. l 

and 

N-1 

Co =YNEuj , 
/=o 

N-1 

C2k-I = NýuJcos(kx/), 
k=1ý..., N-1, 

J=o 
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N-1 

C2k =7N uJsin(k, ), k=1,..., N/, 

J=0 

N-1 
ý/ 

j CN-1 =(-1)u 

J=0 

When u1 is an even sequence, i. e. uN_j = uj, j =1,..., N/ , then for k=0,..., N/ -1, we will have 

the Fourier Cosine Transform: 

N-1 N/ 

ük = ,AZu! e-`A'J = yN uo + (-1)k uN + 2uf COS(kxi) (1.89) 

with its inverse transform, 

N -1 
N 

-1 

uj ük ek' = uo + (-1)' W NI 2uk cos(kxf) 
J--"/ 

2 
k-I 

But when uJ is an odd sequence, i. e. uN_ j= -uj 9 j= 0,..., N/ , then for k =1,..., N/ -1, 

N -i N-1 

'7k = YN use-; j= '/N 
±2uß 

sin(kx j) , 
(1.90) 

JN/ J=1 

with its inverse transform, 

N/-1 N -1 

UI WA ed" = 2uk sin(kx f) , for j =1, ..., N/ . k-N k-I 

The most efficient way to evaluate nonlinear and general non-constant terms in spectral 

approximations is to apply transform methods The key idea is to apply FFT and other transforms 

to transform efficiently between spectral representations of a function f (x) and physical-space 

representations off (x) . With Chebyshev polynomial expansions, FFT permits the evaluation of 

arbitrary nonlinear and non-constant coefficients terms in order N log N arithmetic operations. 

In the end of this chapter we emphasize that on a periodic interval, the sines and cosines of a 

Fourier series (which are the natural basis functions for all periodic problems) can be used. For 

non-periodic problems on a finite interval, which can always be rescaled and translated to 
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XE [-1,1], Chebyshev or Legendre polynomials are optional. Apparently for x away from the 

boundaries x= ±1, the Legendre expansion has somewhat smaller errors, while near x= ±1 the 

Chebyshev expansion has smaller errors. 



Chapter 2 

An introduction to Spectral methods 

2.1 Introduction 

Spectral methods arise from the fundamental problem of approximation of a function by 

interpolation on an interval, and are very much successful for the numerical solution of ordinary or 

partial differential equations [13]. Since the time of Fourier (1882), spectral representations in the 

analytic study of differential equations have been used and their applications for numerical 

solution of ordinary differential equations refer, at least, to the time of Lanczos [14]. 

Spectral methods have become increasingly popular, especially, since the development of Fast 

transform methods, with applications in problems where high accuracy is desired. A survey of 

some applications is given in [4]. 

Spectral methods may be viewed as an extreme development of the class of discretization schemes 

for differential equations known generally as the method of weighted residuals (MWR) (Finlayson 

and Scriven (1966)) [18]. The key elements of the MWR are the trial functions (also called 

expansion approximating functions) which are used as basis functions for a truncated series 

expansion of the solution, and the test functions (also known as weight functions) which are used 

to ensure that the differential equation is satisfied as closely as possible by the truncated series 

expansion. The choice of such functions distinguishes between the three most commonly used 

spectral schemes, namely, Galerkin, collocation(also called pseudo-spectral) and Tau version. The 

Tau approach is a modification of Galerkin method that is applicable to problems with non- 

periodic boundary conditions. In broad terms, Galerkin and Tau methods are implemented in 

terms of the expansion coefficients, where as collocation methods are implemented in terms of 

physical space values of the unknown function. 
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The basis of spectral methods to solve differential equations is to expand the solution function as a 

finite series of very smooth basis functions, as follows 

N 

anon (x) 
, 

n=0 

(2.1) 

in which, as pointed out in chapter 1, one of our choice of 0,,, is the eigenfunctions of a singular 

Sturm-Liouville problem. If the solution is infinitely smooth, the convergence of spectral method 

is more rapid than any finite power of 1/N. That is the produced error of approximation (2.1), 

when N --* co, approaches zero with exponential rate [13]. This phenomenon is usually referred 

to as "spectral accuracy", [4]. The accuracy of derivatives obtained by direct, term by term 

differentiation of a such truncated expansion naturally deteriorates [13]. Although there will be 

problem but for high order derivatives truncation and round off errors may deteriorate, but for low 

order derivatives and sufficiently high-order truncations this deterioration is negligible. So, if the 

solution function and coefficient functions of the differential equation are analytic on [a, b], 

spectral methods will be very efficient and suitable. We call function y is analytic on [a, b] if is 

infinitely differentiable and with all its derivatives on this interval are bounded variation. 

2.2 Spectral methods 

In this section, we are briefly going to introduce spectral methods. For this reason, first we 

consider the following differential equation: 

Ly = I:. fM-I (x)D'y =f (x), x r= [-1,1], (2.2) 
0 

By=C, (2.3) 

where L= fM_, (x)D', and f, ,i=0,1, ..., M, f, are known real functions of x, D' denotes i' 
0 

order of differentiation with respect to x, B is a linear functional of rank M and CE ARM 
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Here (2.3) can be initial, boundary or mixed conditions. The basis of spectral methods to solve this 

class of equations is to expand the solution function, y, in (2.2) and (2.3) as a finite series of very 

smooth basis functions, as given below 

N 

YN (x) =E anTf (x) 

R-0 

(2.4) 

where, {T� 
(x)}o is sequence of Chebyshev polynomials of the first kind, defined in (1.61). By 

replacing yN in (2.2), we define the residual term by rN (x) as follows 

rN(x)=LYN-f. (2.5) 

In spectral methods, the main target is to minimize r,, (x), throughout the domain as much as 

possible with regard to (2.3), and in the sense of pointwise convergence. Implementation of these 

methods leads to a system of linear equations with N+1 equations and N+1 unknowns 

ao , a,,..., a,. 

In the rest of this section, we discuss three spectral methods, namely, Tau, Galerkin and 

collocation (also known as pseudo- spectral) methods, and use them for numerical solution of 

second order linear differential equations. It is to be noted that this discussion can be extended to 

the general form (2.2), (2.3) . 

(i) Tau method 

The Tau method was invented by Lanczos in 1938[52]. The expansion functions 

ýn (n =1,2,3,... ) are assumed to be elements of a complete set of orthonormal functions. The 

N+m 

approximate solution is assumed to be expanded in terms of those functions as UN =I an0,,, 
n=I 

where m is the number of independent boundary constraints Bu,, =0 that must be applied. Here 

we are going to use a Tau method developed by Clenshaw[53] for the solution of linear ODE in 

terms of a Chebyshev series expansion. 
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Consider the following differential equation: 

P(x) y" +Q(x)y'+ R(x) y= S(x), xE (-1,1), 

Y(-1) =a, y(l) =Q 
(2.6) 

First, for an arbitrary natural number N, we suppose that the approximate solution of equations 

(2.6) is given by (2.4). Our target is to find a= (a0 , aj,..., ar, )` . For this reason, put 

P(x) =1ý!. T (x), 
i=o 
N 

Q(x) = 2: Y, T (x), 
i-o 
N 

R(x) = E2, T, (x). 
i-o 

Using (1.66), we can find coefficients ý, , y, and A as follows: 

=2 
r' P(x)T, (x) 

dx 
'rc, J-i 1-x2 

2 
Y, _- 

I, Q(x)Ti (x) 

zcr ' 1-x2 

J, R(x)T, (x) 
, 7lcr 2 1 1-x 

where, co =2 and c, = 1, for iz1. 

(2.7) 

(2.8) 

To compute the right-hand side of (2.8) it is sufficient to use an appropriate numerical integration 

method. Here, we use (N + 1) - point Gauss-Chebyshev-Lobatto quadrature (1.69) with weights 

Wk= 15k_N-1, 
N 

=, k=O, k=N, 
2N 

and nodes xk = cos 
ec kN, 

k=0,1,..., N. That is, we put, [15]: 

N" 

N P(cos(N ))T, (cos(N )) , 
k -O 
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and using T, (x) = cos(i cos-' x), we get 

N" 
NI P(cos( 

N 
)) cos( 

N 
), 

k=O 

where, notation means first and last terms become half Therefore, we will have : 

N" 

1: P(cos( 
ý 

)) cos( ;r 
ik ), 

N k-0 

N. 

Yý =NN 2: Q(cos(' )) cos( 
N 

), 

. ý, .'N* R(cos(k7r))cos(', ). N k. a NN 

Now, substituting (2.4) and (2.9) in equations (2.6), and using the fact that 

y'(x)_Zaml)Tm(x), Q. 
1»=C Epap, 

m=O, 1ý... 
ýN-1ýQNýI =O, 

M-0 m p=m+1 

m+p=odd 

y'(x) 
Zaý2ýTM(x) 

, aw -1 
ýP(P2 

-m2 
)a� 

,m=0,1,..., 
N-2 

, aN2)1 = aN) =0, 
Cm 

p-m+2 

m+p=even 

in this manner, we get 

(2.9) 

ESýia(Z)T(x)Tm (x) +ZE Yr am)T (x)Tm (x) + 1'ti amT (x)Tm (x) = S(x) , (2.10) 
1-0m-0 i=0 m-0 i=0 m=0 

a, T, (-1)=a, 
, -o 
ta, 

T, (1)ß. 
1. o 

W 
Now, we multiply both sides of (2.10) by 2 Tj 

, and integrate from -1 to 1, to obtain 'rcf 1-z2 

(2.11) 
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2NN1 Ti (x)Tm (x)T j (x) c2ý cn iam 
+Yam +#%jam] Cýx 

7r Cf i=0 m=0 -ý 1- X2 

21 S(x)Tj (x) 
dx, j=0,1,..., N-2, 

ncj 1-x2 

where, 

r T, (x)Tm (x)TJ (x) 
d J-' 1-x2 

X , i=m= j=0 , 

(2.12) 

(2.13) 281. 
m , i+m>O, j=O, 

4 lV f, l+m 
+Vf, j ! -ml) f ,%1O 

with, ö, , =1, when i=j, and zero when i#j [16]. 

We can also compute the integrals in the right-hand side of (2.12) by the method of numerical 

integration using N+1 -point Gauss-Chebyshev-Lobatto quadrature (1.69). Therefore, substituing 

(2.13) in (2.12) and using the fact that T, (±1) = (±1)' , equations (2.12) and (2.11) make a system 

of N+1 equations for N+1 unknowns ao , al ,..., aN 9 and we can obtain (a0 9 al ,..., a, )' from this 

system. It should be noted that the implementation of the Tau method for the numerical solution of 

a system of two differential equations, is similar to the method explained for differential equation 

(2.6), in such a way that first for an arbitrary natural number N we put 

N 

y1(x) = la, T (x), 
i-0 
N 

Y2 (x) = 2: ar. N. �T (z)" 
i=o 

Then expand the coefficient functions in terms of Chebyshev polynomials; with these relations in 

the given problem. Then multiply both sides of the resulting equations by 

1' 
Ti x 

,... > , 
2 =dx, 

j O, N-1 
; rc1 i 1-x2 
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to have 2N -linear equations. Adding boundary conditions, then solve this system to have 2N +2 

coefficients ao, a,, """, a2N+l 

In chapter four we will refer to the numerical solution of a system of linear differential equations, 

when we apply the Tau method to the numerical solution of DAEs. 

(ii) Pseudo-spectral method 

For implementation of the pseudo-spectral method for numerical solution of ODE, we use a 

matrix method which is simpler than Tau method. 

We consider again the equation (2.6), and suppose that the approximate solution of this equation is 

given by (2.4), where a= (a0 , a, ,..., aN )' E 91"' are expansion coefficients and IT,, (x)}ä is the 

sequence of Chebyshev polynomials of the first kind. 

Now if we put 

N 

YN (X) =E akTk (X), 

k: 0 
(2.14) 

then corresponding to functions yN , yN and yN, , we can define matrices A(O), AW lW and A(2) as 

follows [17]: 

YN = A`°', A`°' = I(N+I)x(N+I) (2.15) 

N Aý, ý 
, 

1, ý _ 
(C j>i, i+j= odd, 

y= (A)() 
(2.16) 

0, otherwise . 
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0 1 0 3 0 ... 
0 4 0 8 ... 

0 6 0 ... 
Aý'ý = 0 8 ... 

v"N= A(Z) , 
(A(Z) )jj _ 

(j >i, i+j= even, 

0, otherwise . 

0040 32 ... 
00 24 0 ... 

00 48 ... 
A(2) =00.. . 

1where, 
Nzj, iz0, and c, = 1, i>0. 

Now using differential equation (2.6), we define matrix AA(x) as follows; 

AA(x) = P(x)A(2) + Q(x)A(l) + R(x)A(°) , 

that is, 

R(x) Q(x) 4P(x) 3Q(x) 32P(x) ... 
R(x) 4Q(x) 24P(x) 8Q(x) ... 

R(x) 6Q(x) 48P(x) ... 

AA(x) _ 
R(x) 8Q(x) ... 

R(x) .. 

(N+I)x(N+I) 

(2.17) 

(2.18) 
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Hence, differential equation (2.6) converts to 

a; '1(x) . S(x) , (2.19) 
r=o 

in which, 

r 
(AA) k, Tk (x) 9 (2.20) 

k-0 

that is, 

9Po (x) = R(x)TO (x), 

gyp, (x) = Q(x)TO (x) + R(x)T, (x), 

Spe (x) = 4P(x)To (x) + 4Q(x)TI (x) + R(x)TZ (x), 

It must be noted that, if A(k+2) ;kz1 is the corresponding matrix of (k + 2)th order differentiation 

of yN (x) , it follows that [17]: 

A' k+2) _A(k) 
(j-i-k)(j+i+k)(j+i-k) 

, 0ýi, j: 5 N. 
4k(k + 1) 

Now, if we impose boundary condition of (2.6) on yN (x) we will have: 

NN 

YN(-1) =a 
l 

akTk`_1)=Zak`_1)k =a, 

k=0 k=0 

NN 

YN (l) = 6=> Z 
ak Tk (1) 

- 
I: 

ak = 

k=0 k=0 

So 

ao 

a, 

1 -1 1 ... 
(-1)N ._a 

111 . "" [; 

Ni 
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Relation (2.21) forms a system with two equations and N+1 unknowns. To construct the 

remaining N -1 equations we substitute points xJ = cos( 
YN)'j 

=1,2,..., N -1, in (2.19) and 

put 

N 
ýa1S0ý(xf) = S(xj), 

. 
1=1,2,..., N-1, (2.22) 

i=o 

to obtain N -1 equations. 

(iii) Galerkin method 

This method is similar to the Tau method, where N -1 basis functions 0Z, 03,..., ON are obtained 

through Chebyshev polynomials lZ,..., TN , in order to satisfy both of boundary conditions of 

(2.6). Then we multiply both sides of (2.19) by 

ý Tf(x) 
dx, j=2,3,..., N, 

' 1-x2 

to obtain N -1 equations. 

In the next chapter we are will consider some ordinary differential equations with the Tau method 

(as representative of Tau and Galerkin methods) and the pseudo-spectral method and discuss the 

results. 
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Chapter 3 

Numerical solutions of linear Ordinary 

Differential Equations 

3.1 Introduction 

Consider the following linear differential equation: 

M 

Ly = E. fm, (x)D'y = f(x), xE [-1,1] , 
º=O 

By=C, 

(3.1) 

(3.2) 

where f, ,i=0,1,..., M, f, are known real functions of x, D' denotes Ph order of differentiation 

with respect to x, B is a linear functional of rank M and Ce 91M . 

We know that, if the function y belongs to C°° [a, b] , then with use of eigenfunctions of a singular 

Sturm-Liouville problem we can approximate it in a form of finite series of eigenfunctions such 

that, the produced error of approximation, when N tends to infinity, approaches zero with 

exponential rate [13]. As we know, this phenomenon is usually referred to as "spectral accuracy", 

[4]. As we mentioned in chapter two, the accuracy of derivatives obtained by direct, term by term 

differentiation of such truncated expansion naturally deteriorates [13], but for low order 

derivatives and sufficiently high-order truncations this deterioration is negligible. So, if the 

solution function and coefficient functions of the differential equation are analytic on [a, b], 

spectral methods will be very efficient and suitable. We mention once more that the function y is 

analytic on [a, b], if belongs to C°°[a, b] and with all its derivatives are of bounded variations on 

this interval. 
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We may have different cases: One in which all coefficient functions and the solution are not 

analytic and another in which at least one of the coefficient functions or the solution function is 

not analytic, all together being three different cases. 

In this chapter we devote our attentions more on those problems that have non-analytical solution 

on [a, b], or they have non-analytical coefficient functions and in the end we suggest a modified 

spectral method [20,21]. 

3.2 Numerical solutions by spectral methods 

We start this section with an example that has analytic coefficient functions and analytic solution 

function. 

Problem 3.1: Let us consider 

y"(x) + xy'(x) +y=x cos(x) ,xE [-1,1], 

y(-i) = sin(-1) , y(l) = sin(1) , 

with the exact solution y(x) = sin(x). We solved it by Runge-Kutta with orders two and four and 

also Adams method. The maximum errors are 2.5 x 10ý, 2.4 x 10' , 1.1 x 10-1 , respectively. That 

is, these methods give good results for such problems. For these methods we used the same step 

size and step number. We also solved it by the Tau method with N =5,8,16, the maximum errors 

produced from this method are given in Table 1, where ys (x) means the Tau method. 

Table 1 

N IIy(x) - yr (x)ll. 

5 1.6x10-s 

8 1.6 x 10-' 

16 3.3x10'6 
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This table shows the power of spectral methods. We also plot these results on a graph, with N 

against the log of the errors in this interval. Results were shown in Fig 1. 

Fig 1 

lo' 
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10 " 

tCF,: 

1Ö" 

, all 
ýJ. a 4J. a 4J. 4 -uz 0 0.2 0.4 0.6 0.8 1 

Let's consider another problem. 

Problem 3.2: Consider 

Y" + xy' -y= Ax), xE (-1,1), 

y(±l) = ets + sin(1), 

where, f (x) = (24 + 5x)es" + (2 + 2x2) cos(x2) - (4x2 + 1) sin(x2 ), 

so that the exact solution is y(x) = esx + sin(x2 ). 

For comparison, we solved this problem by finite difference method, using the central differences 

for the derivatives. The mesh points are given by x, = -1 + ih, h=N. The maximum errors given 

by this method are 

3.100,7.898x10', 1.984x10,4.968x 10-2,1.242 x 10-2,3.106 x 10-3, 
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for N= 16,32,64,128,256,512 , respectively. 

Here the solution function and all coefficient functions are analytic on [-1,1] , hence if we solve it 

by spectral methods, we obtain a spectral accuracy. 

We solved it by Tau, yf (x) , (as representative of Tau and Galerkin methods) and pseudo-spectral, 

3 (x), methods. Table 2 shows the results of solving this problem by these methods. 

Table 2 

N Ily(x) -3 (x)ll. Ily(x) 
- 33 (x)II. 

10 1.07 x 10-2 4.10x10-' 

11 2.20x 10-3 9.01x10-4 

12 6.14 x 10-4 8.49 x1 0-5 

As we can see for N= 11,12, we get better results. We also plot these results on a graph, with N 

against the log of the errors in this interval. Results were shown in Fig 2. 

Fig 2 

W-10 P4=11 w i2 
TAU MaxErr 0.0107 0.0022 0.2528. -3 PSEUDO MaxErr 0.041 0.0901 t3 0.081930.4 
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Now we consider a problem which is a little bit different from 3.1 and 3.2. 

Problem 3.3: Consider 

12 
y"(x)+ 

z 
y'(x) =g 

z2 1xE (0,1) , 
y(l)=0, y'(0)=0, 

J 

with the exact solution 2 in 1__'_2 y(x) - 
-x 

This problem was chosen from [19]. It was solved by the extrapolation method with maximum 

error of 10"8. Here we solved it by the Tau method for different values ofN, and the results are 

given in Table 3. 

Table 3 

N Maximum error 

5 5x10'5 

15 2x10' 

20 8x10'' 

30 5x107 

95 8x10-' 

As we see, when N increases the rate of improvement of accuracy is very low. This is because of 

the lack of smoothness of the coefficient function. But, when we solved it by the pseudo-spectral 

method, since coefficient functions do not need expansion in the form of (2.9), the error produced 

from using (2.22), will be better than (2.12). In the above example by the Tau method with 

N= 95, maximum error was about 8x 10-8 , but by the pseudo-spectral method with N =18 we 

come to a maximum error about 4x 10-11. Therefore, in this case, this method is more successful 

than the Tau method. In this problem we do not know whether the solution function is analytic or 

not, although non-analyticity of solution function is recognized from the low rate of decrease in 

the coefficients of expansion of y, but we did not try to multiply both sides by x because we want 
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to see results of these two methods for such problems. In general, it will be better to multiply both 

sides by x, even we do not know the solution function. 

As we mentioned, we may have three different cases. The rest of this chapter devoted to consider 

these three different cases with some examples. 

Case 1: ODEs with analytic coefficient functions and analytic solution function. 

We already considered two examples for such case. We finish with this case by considering one 

more example. 

Problem 3.4. Consider 

y"(x)+3xy'(x)+x`y(x)=6x+9x3 +x', xE[-1,1], 
y(-1) = -1, y(l) =1, 

with exact solution y(x) = x3 . 

We solved it by Runge-Kutta with orders two and four and also Adams method. For these methods 

we used, again, the same step size and step number. The maximum errors were 

1.5 x 10-', 1.8 x 10-', 1.2 x 10'S , respectively. We, also, solved it by shooting method with the 

same step size for steps N=14,17. We had maximum errors 2.9 x 10-s, 1.3 x 10-5, respectively. As 

we see the rate of improvement of accuracy is very low. But we used the Tau method with 

Legendre basis for N =14 and with Chebyshev basis for N =17 The maximum errors were 

about 2.2 x 10-13 , and 3.4 x 10-14, respectively, and we used the pseudo-spectral method with 

N =14,17 , and maximum errors were 8.9 x 10-", and 4.4 x 10-16, respectively. As we can see, 

spectral methods for solving such problems have high rate of convergency. Existence ofx', 

indicates when N get the value 7, the error becomes zero. If we observe above errors they are 

rounding errors. 

If y(x) be a non-analytic function on [-1,1], and 

N 

Y(x) =Z aT, (x), 
i-0 

(3.3) 
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then the order of infinite norm of the error of approximation (3.3) is given in Table 4 [17] 

Table 4 

Function Order of infinite norm of the error 

Close to singular points Far from singular points 

y, discontinuous 1 1 
N 

y', discontinuous 
1 1 
N N2 

y", discontinuous 
12 
N 

1 
N 

y, anaylytic 8-CN C>Q 

In the regular case (p(x) :# 0), the decreased rate of expansion coefficients in (3.3) is similar to the 

order of infinite norm of error at the points which are far away from singular points. Here, the 

cases in which, at least, one of the coefficient functions or solution function is not analytic will be 

studied, and produced difficulties in solving differential equation (3.1) and (3.2) will be 

considered. Let us consider a problem of this kind. 

Case 2: Solution function is analytic but, at least, one of the coefficient functions is not 

analytic. 

Problem 3.5: Consider 

y"(x) + Ixl y'(x) - y(x) = IxI exp(x) ,xe [-1,1] 
, 

y(-1) = exp(-1) , y(l) = exp(1) . 

The exact solution is y(x) = exp(x) . 
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In thiscase, if we solve (2.6) by the Tau method, the error produced from expansion of, at least, 

one of the coefficient functions in (2.9), in using system (2.12) (comparing with approximate error 

of solution function) the error is considerable and causes undesirable effect on the final solution. 

Now, if this problem is solved by the pseudo-spectral method, since the solution function, y, is 

analytic and coefficient functions do not need expansion in the form of (2.9), the error produced 

from using system (2.22), is much less than (2.12). Therefore, in this case, the pseudo-spectral 

method is more successful than the Tau method. 

We solve this problem by shooting method and pseudo-spectral method, where in shooting 

method we used N as number of steps. 

For N=5,8,16 the results are given in Table 5. 

Table 5 

N IIy(x) -YPs cx)ll IIy(x) -Y. h (x)II. 
5 1.1X10-4 1.4X10-4 

8 2.8x10'8 2.0x10-5 

16 4.4x10-16 1.3x10-6 

In this table, we used y5,, (x) for results of shooting method. 

Let us consider another problem of this kind. 

Problem 3.6: Consider 

y+lxly+3 (x2-4)Zy=es(1+Ixl+3 (x2-4)2), XE[-1,1], 

y(-1) = ea, y(1) = e, 

with exact solution y(x) = e". 
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In this problem, the solution function is analytic on [-1,1] but Q(x) and R(x) are not analytic 

functions. Table 6 shows the results of solving this problem by the Tau, 5., and pseudo-spectral, 

yps 
, methods. 

Table 6 

N IIY(x) - :. (x)II. IIY(x) -3 (x)II. 
8 3.13x10-" 3.24x10-8 

11 6.40x10-' 2.52 x 10-12 

16 3.92x10-$ 3.50x10-'$ 

As we can see again in this case, when N increases the rate of improvement of accuracy by the 

Tau method is low. But, by the pseudo-spectral method, the error produced decreases rapidly. 

Now we are going to consider third case, where the solution function and, at least, one of the 

coefficient functions are not analytic. 

Case 3: The solution function and, at least, one of the coefficient functions are not analytic. 

Let us start with a problem that was chosen from [22]. 

Problem 3.7: Consider 

y"(x) + Ixiy'(x) + y(x) =16xl + Ix31 + 3x3 ,x6 [-1,1], 

Y(-1) = Y(1) =1, 

with exact solution y(x) = Ix3I 
. 

We solved it first by Runge-Kutta and Adams methods with different order with the same step 

size. The maximum errors were, nearly, 4.0 for both of these methods. We also used shooting 

method to solve it. Unfortunately, the method does not work for odd number of n, and for even 

value of n, although, it works but rate of improvement of accuracy is low, where n=(b-a)/h. 

Let us consider this example, more carefully, by spectral methods. 
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In this case, since the order of infinite norm of the error produced from approximation of solution 

function and, at least, one of the coefficient functions follow from Table 4, system (2.12) or (2.22) 

does not produce accurate results. The above case results from the fact that the representing 

matrices A° ), A('), A(2) , and AA, because of existing a non-analytic solution function, 

accompany the error which is indispensable. However, if other errors are involved in the process 

of solving the problem, the error resulting from using the systems in the Tau method increases, 

and we will be far from the real solution. A modified spectral method is suggested in [22], in such 

a way that considerably decreases the error in setting up the system of equations. Before we go 

further, let's consider another problem to see what happens. 

Problem 3.8: Consider 

11 

y"(x)+e-y'(x)+ y(x) = 6x+x3 +3x2es, x e [-1,1], 

y(-1) = -1, y(1) =1, 

with exact solution, y(x) = x3. Here, we have an essential singularity. Because of this singularity 

the shooting method does not work. If we choose N as an even number the Tau and pseudo- 

spectral methods do not work either, even with the modified method introduced in [22]. 

Here we are going to introduce another modified method which produces better results, and works 

very well even whenever the methods considered above do not work. The idea comes from this 

observation. When we checked the coefficient matrix of the resulting system of equations we 

found that difficulty arises from the middle row (N/2-row). This is because of the initial condition 

which produces (2.21) and elements in this row, are infinity. This happens whenever j=2 in 

(1.69). Now if we take the infinity, as a factor, out of the determinant of this matrix we get a 

matrix with two rows the same. Hence the determinant becomes zero. To avoid this difficulty we 

choose one of these elements close to 1. For example, 0.99999 and continue the process. We 

examined this choice and solved this problem with this idea and the results are given in Table 7. 
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Table 7 

N Ily(x) -y (x)II mps 

5 2.2204x10''5 

8 1.6653 x 10-15 

12 1.3843x10-15 

Although the above idea does not work for problems with essential singularity, when we change 

the boundary condition, for example, from y(1)=1 to y(1) =1+s; but for any example without such 

a point it works. To see the results let's go back to problem 3.8. Here, we used the above idea for 

this problem and the results are given in Table 8. 

Table 8 

N II Y(x) - : v, (x)Il o 
lly(x) - YP$ (x)II 00 

II Y(x) - ymsi (x)II ao 
II y(x) - Yms2 (x)jl co 

8 8.98x10-2 1.21x10-' 3.82x10-3 2.41x10-3 

15 1.54x10-2 1.76x10-2 5.61x10-4 1.85x10-4 

20 1.68x10-2 1.92x10-2 1.81x10-4 1.28x10-4 

Here, this method gives a little bit better results than those given in [22], which are notified by 

ms I. The notations msl and ms2 indicate the modified methods in [22] and here, respectively. 

The main question is, why will we get better results? This improvement happens because the 

condition number has been reduced substantially. When we considered the condition number of 

the coefficient matrix before and aller using this change, we found drastic changes in the condition 

number. For example, in problem 3.8 after using this method the condition number of infinity 

comes down to 4.6058 x 109. We also checked other problems, and in all cases the condition 

numbers reduced, at least, by a factor of 107. Let's consider some other problems of this kind. It is 
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necessary to mention that the Runge-Kutta, Adams and shooting methods do not work for the 

following problems. 

Problem 3.9: Consider 

y"(x) -1 v'(x) +I Y(x) = Ixl 
,xE [-l, l], 

xx 
Y(-1) _ -1, y(l) =1. 

The exact solution is y(x) = xjxI. We used again this idea, and tested this problem with different 

values of N, and the results are given in Table 9. 

Table 9 

N II Y(x) -3 (x)il . 
IIY(x) - yps (x)jI . 

IIY(x) - Yms2 (x)1I 

5 8.31x10-2 7.64x10-2 1.92x10-2 

8 8.75 x 10'' 8.86x10-1 3.23x 10-2 

9 1.54 x 10-2 3.97 x 10-2 1.00 x 10-3 

17 1.12x10-2 2.05x10-2 5.47x10-4 

As we can see the results with this modified method are better than the other two methods. In this 

problem again we get a lower condition number. 

Introduction of this method will be ended by representing another example with non- analytical 

solution and non-analytical coefficient functions. 

Problem 3.10: Consider 

Ix + 2ýy"(x) +Ix ýy'(x) +Y(x) =Ixe _11[(X2 
I[(x2 

-J-)+(6X3 ä- 3 x)Ix - 2I+ (30x2 _. Z )Ix + 211.9 xE [-1,1], 

Y(-1) = y(l) = (Y' 

with exact solution y(x) = ý(x2 -4 )' 
I 
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We solved it with pseudo-spectral method and our modified method for N =5,8 and the maximum 

errors for pseudo-spectral method are 1.5x10'', 2.4x10-Z, respectively. But for modified method 

are 1.0 x 10-3,5.9 x 10-4. The results were illustrated in Fig 3. 

Fig 3 
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We observe that the results may be not very good, but still the method we described above is an 

improvement. 

The next chapter is devoted to pseudo-spectral method to solve DAEs. 
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Chapter 4 

Numerical solutions of Differential-Algebraic Equations 

4.1 Introduction 

Systems of Differential-Algebraic Equations (DAEs) are systems of differential equations 

(sometimes also referred to as descriptor, singular or semi-state systems), where the unknown 

functions satisfy both differential and additional algebraic equations. In other words, they consist 

of a set of differential equations with additional algebraic constraints. These systems which are 

given in the most general form F(x, x; t) = 0, arise naturally in many areas of science and 

engineering, such as robotics (via Lagrange's equation with interdependent coordinates), 

biomechanics, control theory, electrical engineering (via Kirchoff's law), and fluid dynamics (via 

Navier-Stokes equations for incompressible flow). 

Many physical phenomenon are most naturally modelled as a combination of ordinary differential 

and algebraic equations. Models of chemical processes, for example, typically describe the 

dynamic balance of mass and energy while additional algebraic equations account for 

thermodynamic equilibrium relations or steady-state assumptions [23]. There has been an 

increased interest in several areas in exploiting the advantages of working directly with these 

implicit models. Multi-body systems is one area, in which methods for solving DAE are of special 

interest (A multi-body system is a mechanical system, that consists of one or more rigid or elastic 

bodies). 

In the 1960's engineers working on electrical circuits or multi-body systems realized that solving a 

differential equation with constraints is more involved than solving one without constraints; that 

is, the constrained case can not in general be reduced to the unconstrained case by some standard 

tricks. The first paper which introduced a way to attack these problems was written by C. W. Gear 

in 1971 [24]. There also the name "differential-algebraic equation" was introduced. 
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Comparing DAE with Ordinary Differential Equations (ODE), there are both numerical and 

analytical difficulties which do not occur with ODE. The first practical numerical methods for 

certain classes of DAE are the Backward Differentiation Formulae (BDF) and implicit Runge- 

Kutta methods [25]. But these methods can not be applied to approximate the solution to all DAE 

[26,27]. Sometimes a DAE can be converted into a system of ODEs. However, numerical stability 

of the system is often undermined in the process so that, even if all DAE can be converted into 

ODE, it is usually not always desirable to do so. In the early 70s C. W. Gear started to write about 

using BDF-methods in connection with such problems. Now BDF-methods are widely used in 

computer codes that solve ODEs and DAE, such as the DAS SL(Differential-Algebraic System 

Solver Library) which is designed for solving initial value problems of the ' implicit form 

F(t, y, y') =0 with index zero or one, and the LSODI(Liver more Solver for ODEs, Implicit) code 

which is similar to DASSL in that it is based on BDF methods [28]. 

A considerable amount of research has been done on numerical methods for DAE. Ascher, 

Petzold, Campbell and Gear have carried out extensive work on numerical solution of this class of 

equations. Differentiation plays an important role in both the analysis and numerical solution of 

DAE. The index, which will be defined shortly, is one measure of how singular a DAE system is . 

Increasing index implies more complex behaviour. Usually DAEs are difficult to solve if they 

have a high index, that is, an index greater than one. Several techniques exist for index reduction 

and consistent initialization of higher index DAE [29]. In this chapter, the general definition of a 

system of DAE is presented and then narrow our focus to those DAEs in Hessenberg form of size 

2 and 3. The concept of index as characterization of DAEs is briefly mentioned. 

4.2 Differential-algebraic equations 

In this section we give a definition of DAE, and introduce the concept of index, and of DAE in 

Hessenberg form. 

Definition 1: The general or fully implicit DAE is a vector equation of the form 

F(t, x(t), x'(t)) =0 (4.1) 
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where teR, XE R", F: Rx R" x R" --> R", = Fx (Fx is the Jacobian of F with respect to x, 

which may be singular or not) and ,=F,. 
is singular for all x(t), x'(t), t. 

The other forms of DAEs may be 

x' = At, x), (4.2) 

called explicit form, and 

x' = At, x), (4.3a) 
0= g(x), (4.3b) 

called semi-explicit form or an ODE with constraints. 

The idea of using ODE methods for direct solution of DAE systems, was first stated by Gear [43]. 

This can be done with a simple algorithm based on Euler's method. In this method x'(r�+, ) will be 

approximated by a BDF ofx(t) and (4.1) becomes 

F(r. 
+1, xn+l�(x.., -x�) 

/(tn 
1- 

tj) = 0. 

One of the aspects of ODE methods for direct solution of DAE is that these methods preserve 

sparsity of the resulting system. For example, a class of DAE systems which are simple to solve, 

are those systems which, indeed, are implicit ODE systems that have been changed. That is, if in 

(4.1), is non singular, then the system can be written in an explicit form as (4.2). But if O, is a 

sparse matrix, its inverse may not be sparse so it is preferred to solve the initial system directly. 

Difficulties often occur when 
O, is singular. A simple class of such systems is linear DAE with 

constant coefficients, which has the form Ax' + Bx =f. 

A function x(t) is a solution of (4.1) in the interval I, if x is continuously differentiable on I and 

satisfies (4.1) for tEI. In this chapter, we are concerned with the case where the solutions exist 

and are uniquely defined on the interval of interest: how ever, not all initial values for x admit a 

smooth solution. This concept of solvability is made more precise in the next definition. But first 

of all, we say a problem is called solvable if it has at least one solution. This definition seems 
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natural but it should be noted that the term solvability is used only for systems which have a 

unique solution when consistent initial conditions are provided. If the solution of initial value 

problem is not unique, then further conditions have to be specified to single out specific desired 

solutions. 

Definition2: Consider the general non-linear DAE given in (4.1). Let I be an open subinterval of 

91,0 a connected open subset of 322in+1, and Fa differentiable function from 92 to W. Then the 

DAE (4.1) is solvable on I in Q if there is an r -dimensional family of solutions O(t, c) defined 

on a connected open setl xb, 6c 9', such that: 

i) V(t) is defined on all of I for each cE S2 
. 

ii) (t, qi(t, c), q$'(t, c)) e Cl for (t, c) eIx S2 
. 

iii) if p(t) is any other solution with (t, p (t), (p'(t)) e Q, then (o(t) = q(t, c) for some ce6. 

iv) the graph of O as a function of (t, c) is an (r + 1) -dimensional manifold. 

As we know a property known as the index plays a key role in the classification of the behaviour 

of DAE. 

Definition 3: The index of DAE is the minimum number of times that all or part of (4.1) must be 

differentiated with respect to t in order to determine x' as a continuous function of x and t . The 

class of index zero DAE is the set of all ODE. DAE with index zero or one are generally much 

simpler than DAE with index two or higher. A naive method for solving DAE can be constructed 

based on reducing the index of the problem through repeated differentiation of the constraint 

equations. Once an index zero DAE is obtained then the problem has been converted from a DAE 

to a system of ODE, and can be solved numerically with an established solver such as MATLAB's 

ode45. This process is called index reduction, and may be applied to a system for lowering the 

index from an initially high value down to e. g. index one. Let us illustrate it by an example. We 

look at a semi-explicit DAEs in the form 
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that is a semi-explicit DAE, or an ODE with constraints. The index is 1, if aýZ is non-singular. 

In the general case, each component of y may contain differential and algebraic components, 

which makes the numerical solution of such high-index problems harder and more risky. The 

semi-explicit form is decoupled in this sense. On the other hand, any DAE of the form (4.1) can be 

written in the semi-explicit form (4.5) but with the index increased by 1, upon defining y' = z, 

which gives 

'=Z 

0= F(t, y, z) . 

Needless to say, this rewriting alone does not make the problem easier to solve. The converse 

transformation is also possible: given a semi-explicit index-2 DAE system (4.5), let w' = z. It is 

easily shown that the system 

x' = f(t, x, w'), 

o= g(t, x, w ) 

is an index-1 DAE and yields exactly the same solution for x as (4.5). 

There is a relationship between the index of semi-explicit systems and general systems that is 

worth stating as a `rule of thumb' : The semi-explicit case is much like the general case of one 

lower index. 

The general DAE system (4.1) can include problems which are not well defined in a mathematical 

sense, as well as problems which will result in failure for any direct discretization method. 

Fortunately, most of the higher-index problems encountered in practice can be expressed as a 

combination of more restrictive structures of ODEs coupled with constraints. In such systems the 

algebraic and differential variables are explicitly identified for higher-index DAEs as well, and the 

algebraic variables may all be eliminated (in principle) using the same number of differentiations. 

These are called Hessenberg forms of the DAE and are given below. 
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Hessenberg Index-1 

x'= f(t, x, y), (4.6a) 

0= g(t, x, y) . (4.6b) 

Here the Jacobian matrix function g, is assumed to be non-singular for all t. This is also often 

referred to as a semi-explicit index-1 system. Semi-explicit index-1 DAE are very closely related 

to implicit ODE. 

Hessenberg Index-2 

X, = At, x, y) 9 (4.7a) 

0= g(t, x) . (4.7b) 

Here the product of Jacobians gX f,, is assumed to be non-singular for all t. Note the absence of 

the algebraic variable y from the constraints (4.7b). This is a pure index-2 DAE, and all algebraic 

variables play the role of index-2 variables. 

Hessenberg Index-3 

x'= f(t, x, y, z), (4.8a) 

Yý = g(t, x, Y)1) (4.8b) 

0= h(t, Y). (4.8c). 

Here the product of three matrix functions h,, gx f= is non-singular. 

Semi-explicit index-1 systems arise in a wide variety of applications including most circuit 

analysis and power systems problems. Some examples of Hessenberg index-2 systems arise in the 

modelling of incompressible fluids, and some index-2 formulations of mechanical systems [32]. 

Hessenberg index-3 DAEs arise in the simulation of mechanical systems and in optimal control. 

For a variety of reasons, systems of index-3 and higher have proven to be very difficult to solve 
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numerically [29], and much recent work has focused instead on reformulating these systems as 

index-2 or lower. 

For numerical solution of linear or non-linear DAE system with index less than or equal one, 

usually, numerical methods such as (4.4) can be used. But, when the index is more than one 

algorithms based on this method can encounter difficulties. With a little bit of connivance, we can 

say that the techniques based on higher order methods, such as the extrapolation method, can be 

used in such cases. But this can not be extended to nonlinear DAE or linear with variable 

coefficients. In fact, numerical methods that work for system (4.3), fail to produce a numerical 

solution of DAE with coefficient matrices which are time varying and systems with index higher 

than one [2], [33]. 

In this chapter we present a method that reduces a DAE with high index to a DAE with lower 

index. But first we study, briefly, the problems with index not more than one and linear systems 

with constant coefficients, with any arbitrary index. 

4.3 Linear DAEs with constant coefficients 

One class of DAE systems is linear DAE with constant coefficients which 

has a form of 

Ax'+Bx= f 

where A, B are nxn matrices and f is sufficiently smooth. 

(4.9) 

Definition 4: Assume k is a complex parameter and call XA +Ba matrix pencil. The matrix pair 

(A, B) is called regular (or regular pencil) of index ? if det(A A+ B) is not identically zero. 

Theorem 1. (4.9) is solvable if) A+B is regular. 

If (A + AB) is singular, then system (4.9) either has no solution or has infinitely many solutions. 

Let x= Q y, and premultiply (4.9) by P, where P and Q are n xn non-singular matrices, we get 
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PAQy'+PBQy=Pf (4.10) 

We note that rescaling of the equation and the unknown by non-singular matrices, does not change 

the solution behaviour. 

Recall that a matrix N is said to have nilpotency k if Nk =0 and Nk-' # 0. A corresponding 

normal form which is the so-called Kronecker Canonical Form (KCF), exhibits all properties of a 

linear DAE with constant coefficients. Converting linear systems (4.9) to a KCF, then a significant 

property of it will be specified [45]. In fact, the main idea of it is that, there exist non-singular 

matrices P andQ such that (A, B) reduces to a KFC. The key structure theorem for (4.9) which 

follows from the KCF, is: 

Theorem 2. Let XA +B be regular, then there exist non singular matrices P 

and Q such that 

PAQ= 
I : ]PBQ=[ 

0I 
(4.11) 

where Nis a matrix of nilpotency k. If N= 0 then define k=1. In the special case that A is non- 

singular, we take PAQ = I, and PBQ =C and define k=0. If det(XA + B) is identically 

constant, then (4.12) simplifies to PAQ = N, PBQ =1. Now, assume Y= (vi, y2)`, Pf = 

(fl, f2)' and apply the coordinate changes to the DAEs (4.9) to obtain (4.10) which by (4.11) 

becomes 

Yi + CY1 = J; 
(4.12) 

Nyz +Y2 =. f2 

Solution to the second equation of (4.12) is given by 

k-t 1 rNr (1) 
Yz = Yr=o -ý . 

f2 

If the k-step constant step-size BDF method (k<7) is applied to constant coefficient linear DAE 

system of index m it converges after (m - 1) k+1 steps with order of accuracy O(hk) [29]. 
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Unfortunately if step size is not constant, this method breaks down in some cases [30]. 

Convergence and stability properties of numerical methods are dependent on the structure of the 

system. 

4.4 Linear DAEs with variable coefficients 

There are of the form 

A(t)x'(t) + B(t)x(t) = f(t) (4.13) 

defined on the interval I. This kind of DAE which also is called a linear time-varying DAE, 

exhibits most of the behaviour found in the non-linear case that is not already presented in the 

constant coefficient case. 

Using BDF method (of order one) starting at time to with constant step size h, with t, = to + nh 

gives 

(An + hB� )x� = An xn-i -i" hfn (4.14) 

In order for (4.14) to uniquely determine x,,, given x,,.,, we need A(t�) + hB(t�) to be non singular 

for small h. Thus we need regularity of XA(t) + B(t) for each tEI. 

The system (4.13) is semi-explicit if it is in the form 

xl + B� (t) x, + B12 (t) x2 =f 

B2, (t)x, +B22(t)x2 = f2. 

This semi-explicit DAE has index one if and only if B22 is non-singular for all t. 

Many of higher index semi-explicit DAE's arising in applications have a natural structure which 

we call Hessenberg form [47]. 

Definition 7: The DAE (4.13) DAE in Hessenberg form is of size r if it can be written as 
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I0.. 0 Xi B11 '. 
B1, 

r-1 
Blr 

x1 f1 

0I... x2 B21 B2. 
r-1 

0 x2 f2 

.. I.. ......... 
0.0X, 0''0 Br. 

r-1 
0 xr fr 

where B, 
", _1B, _I", _2 """ 

B12 is non-singular. 

A DAE in Hessenberg form of size r is solvable and has index and local index r [29]. 

(4.15) 

For linear constant coefficient systems, there are several equivalent definitions of the index. These 

definitions are not all equivalent for linear time varying DAE. If matrix pair (A(t), B(t)) is non- 

singular, we define local index for (4.13). 

Definition 8: Let (4.13) be regular, then the local index at t denoted by ve(t), is the index of the 

pencil M(t) + B(t). 

We also define global index, if it exists, as follows: 

with x= Q(t) y and premultiplying (4.13) by P(t), where P(t), Q(t) are nx n 

non-singular matrices, then (4.13) becomes 

p(t)A(t)Q(t)y' + [P(t)B(t)Q(t) + P(t)A(t)Q'(t)]y = P(t)f(t) . 

Now if P(t) and Q(t) exist, such that 

P(t)A(t)Q(t) =0E 

P(t)B(t)Q(t) + P(t)A(t)Q'(t) = 
P(t) 0 

01 

(4.16) 

where E is strictly lower (or upper) triangular, with index m, then we say (4.13) has global index 

m. 

If the global index of (4.13) is one, then an extrapolation method for solving this system will 

converge [34]. 

Here we introduce an algorithm for reducing the index of (4.13) as follows: 
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(i) if A is non-singular, then stop. 

(ii) premultiply by a non-singular P(t) in (4.13) to obtain a maximum number of rows of zeros of 

A and put these rows at the bottom of matrix A. 

All 
x' + 

B11 
x= P(t)f(t)" 

0 B12 

(iii) Differentiate the second half of the system and write 

All 
xI + 

(Br2) 
ýu 

(iv) Go back to (i) and repeat. 

At each iteration, the index of the system reduces by one. This will continue until the index of the 

system becomes zero, that is, we get a non-singular coefficient matrix. In fact, the structure of this 

algorithm is based on the following theorem. 

Theorem 3. Consider the DAE system of (4.13) 

(a) if A is non singular, then index of (A, B) is zero. 

(b) ifA is singular, then we choose a non singular matrix P, such that 

pA =r 
ö'1 and At is a full-rank matrix and PB =fB j], 

A 
Now if 

B2' 
is non singular, then (4.13) has index one. 

Proof : See [35]. 

Before we end this section we introduce a simple formulation for index reduction for the 

following problem. Consider 

x'= Ax + By + q, (4.17a) 

0= Cx + r, (4.17b) 
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where, A= (a. ) 
nxn, 

B= (bi),,.,, C= (c, )lxn 
,q= 

(g1)nx,, n >_ 2, are smooth functions of t and CB is 

non-singular for all tE [0, tk ], for some fixed tk . 

This problem is called the Hessenberg index-2 system. 

By (4.17a), we have y= (CB)-' C[x' - Ax - q], and substituting into (4.17a) implies, 

x'= Ax + B(CB)-1 C [x'- Ax - q] + q. 

So problem (4.17) transforms to the system: 

(1-B(CB)-'C)[x'-Ax-q] 
=0 

O=Cx+r, 

(4.18a) 

(4.18b) 

Here, the over determined system (4.18) will transform to a full rank DAE system with n 

equations and n unknowns which has index one. 

Theorem 4. The index-2 DAE system (4.18), with n=2, is equivalent to an index-i DAE system 

given by, 

Eox'+ Elx = q, (4.19) 

such that [42], 

b2 -bi b1QZ1 -b2a1i bi a22 -b2a1z Eo = Lo O, 
Et = 

Cl C2 

A 
[b2i_bi2] qqq= 

-r 

This index reduction formulae can be used for a linear model problem 

m 

x(m) = EA, x(f-1) + By + q, 
i=1 (4.20) 

O=Cx+r. 

This DAE has index m+1 and will be transformed into an implicit DAE form by putting 

m 

y_(CB)-'C[x(m) -EA x(f-') -q] (4.21) 
J"1 

and substituting it in (4.20). We obtain a DAE which has index m, as follows, 

m 

EP) (4.22) 
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where EE (t) E 91"'", j=0,1, ..., m, and except E0 (t), other matrices are singular. 

We emphasize that if (4.13) has high index (usually more than one), reducing the index causes 

numerical instability [46]. To remove this difficulty, regularization methods will be used to solve 

the reduced problem [36], [regularization seeks to convert DAE into ODE without using repeated 

differentiation of the constraint]. As we know that a numerical method may be applied to either 

the original DAE or to the enlarged system, but because of the change in the index, resulting 

convergence and stability properties of schemes may be quite different. In chapter three of [29], 

convergence, order and stability properties of linear multi-step methods applied to DAE have been 

studied. 

Here we give a brief description about convergence which has been considered nicely in [29]. 

4.5 The conclusions about stability and convergence 

When applying multi-step methods (and therefore in particular BDF methods) to semi-explicit 

index one DAE, they are stable and convergent to the same order of accuracy for the DAE as for 

the underlying ODE. These problems can therefore be solved with any linear multi-step method, 

which is appropriate for the underlying ODE, assuming that the constraint(s) are satisfied in each 

step. For the fully implicit index one system it can be shown that a constant step size BDF-method 

of order k<7 with the initial values given correct to the order of O(hk) converges with an 

accuracy of order O(hk) if each Newton iteration is solved to an accuracy of order O(h"`+1) . If a 

variable step-size BDF-method is used (with step-size restriction as for the standard ODE case), 

then it will also be convergent for the fully implicit index one system [29]. 

If a semi-explicit index two system is solved with a constant step-size BDF-method of order k: 5 7 

with the initial values given correct to the order of 0(h), it converges with an accuracy of order 

0(h'') after (k + 1) steps if each Newton iteration is solved to an accuracy of order 0(h" ). If a 

variable step size BDF-method is used the same as in the index one case will happen. It will be 

convergent if the method is implemented in a way that it is stable for standard ODE [29]. 
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For an index three system of Hessenberg form if a constant step-size BDF-method with k<7 is 

used with starting values at an accuracy of order O(hk+'), and the algebraic equations are solved to 

an accuracy of order O(hk+l) if k >_ 2 or to order O(hk+3) if k=1 after k+1 steps it converges to an 

order of O(hk). If a variable step size BDF-method is used the system might fail to converge. 

Notice that when using variable step size there is no guarantee of convergence for'DAE of index 

higher than two. The nature and stability of a class of nonlinear DAE systems have been 

considered in [37]. It was shown via an appropriate coordinate transformation that the solution of 

this representation is unstable about its solution manifold when the system's differential index is 

higher than one. We can also find papers on stabilization of DAE and invariant manifolds [38] or 

stabilization of constrained mechanical systems with DAE and invariant manifolds [39]. 

As mentioned earlier there exist codes using BDF- methods for solving DAE. Most of these codes 

are designed for solving index zero or index one DAE. In [29] some of these codes are described 

and tested. They have focused on the DASSL code. DASSL uses a BDF-method with variable step 

size with order up to five. It is reported that the DASSL code has successfully solved a wide 

variety of scientific problems, and that there are probabilities of testing out where it went wrong. 

They report that the finite difference calculation of the Jacobian matrix is the weakest part of the 

code. It also has problems with handling inconsistent initial conditions and discontinuities. A 

detailed description of DASSL and a little bit of the code LSODI can be found in chapter five of 

[29]. In the end of this paper, once again I mention several nice research works which have been 

carried out by: U. M. Ascher, L. R. Petzold, C. Gear, S. L. Campbell and P. Kunkel. 

4.6 DAE with variable coefficients and the Pseudo-spectral method 

According to (4.13), consider the following DAE 

a11(r) vl (t) + a12 (t)v2 (t) + a13 (t)vl + a14 (t)v2 (t) = fl (t) 

(4.23a) 
a23 (f)v1 + a24 (t)Y2 (t) = fz (t)' 

so that; 
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A(t) = 
all (t) a, 2(t) B(t) = 

a13 (t) 

00 a23 (t) 

with initial condition, 

Y1(-D= a, (4.23b) 

where a, f, f, andf2 are sufficiently smooth functions of t and a is constant. Now, for an 

arbitrary natural number N, we suppose that the given DAE has an approximate solution 

N 

Yi (t) _Ea, T (t) 
1=o 
N 

Y2 (r) = ; aN+I+ITI(t) 

where {T, I, '.. is the sequence of Chebyshev polynomials of the first kind and 

)t 2N+2 
Q=(ao, RIý... ýU2N+1 

E9 

The main target is to find a. As in chapter 2, put 

YN (x) =, Z akTk (x) 9 k=0 

(4.24) 

then, again, corresponding to functions yr, and yN, we can define A(°) and AO as before and let, 

AA = a, 1(t)A(') + a13 (t)A(°) 
BB = a12 (t)A(') + a14 (t)A(°) 

(4.25) 
CC = a23 (t)A(°) 

DD = a24 WA (0) 

(AA) k, 
Tk (t) ,OSiSN, 

O, (t) = k1 (4.26) 
(BB)k(j-1-N) Tk (t) 

, N+1: 5 i: 5 2N+1, 
k-0 

f 

I(CC)k, Tk(t), 0<_iSN, 

w, (t) = k; ° (4.27) E (DD)k(, 
_, _N)Tk 

(t) , N+1 <_ iS 2N + 1, 
k-° 

aia (, and f(t) _A 
(t) 

z4() 
A(0) 
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then (4.23a) converts to 

2N+1 

I: a, o, (t) = . 
f, (t) 

1-0 

2N+1 
(4.28) 

a, V/, (t) -f2 
(t) 

I-0 

with initial conditions, 

NN 

1: a, 7 (-1) =, L a, (-1)f =a, (4.29) 
1-0 1-0 

Relation (4.29) forms a system with one equation and 2N +2 unknowns. A second equation 

a23 (-1) y, (-1) + a24) -')Y2(-')"": f2 (-1) is obtained from (4.23a). To construct the remaining 2N 

equations we substitute points 

tj = cos(zxý (4.30) zN-ý), 1= 0,..., N-1, 

into (4.25), (4.28) and put, 

2X+1 
Za, 01(tj)=J (t ) 

1-0 
2N+1 

j=0,..., iv -1 
EaiV1i (ti) =12 (ti) , i-o 

to obtain 2N equations. 

As we mentioned in chapter three, about how the Tau method can be used to solve a system of 

linear ODE, it should be noted that the pseudo-spectral method can also be used to solve a system 

of ODE such as 

all (r)yl (r) + a12 (r)y2 (t) + a13 (r)yl + a, 4 
(r)v2 (t) = fl (r), 

rE -1,1ý 
a2, (t)y; (r) + a22(t)y2 (r) + a23 (r)yl + a24 (r)y2 (r) = f2 (r), 

provided that 
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AA = a� (t)A(') +a, 3(t)A(O) 
BB = a12 (t)A(1) + a14 (t)A('3 

CC = a21(t)A(') + a, j (t)A(°) 

DD = a22 (t)A(') + a24 (t)A(°) 

Even we can extend this method to systems of differential equations of any order [48]. For 

example; 

all (t)vi (t) + a12 (t)v2 (t) + a13v1(t) + ai. v2 (t) + a, Sv, 
(t) + a16vZ (t) = J; (t) 

t 

a21(t)vl (t) + a22 (t)v2 (t) + a23 v1(t) + a24 v2 (t) + a25 vl (t) + a26 v2 (t) =J2 (r) 

which is of order two, provided that 

AA = a� (t)A(Z) + a, s (t)A(') +a,, (t)A(°), 

BB = a12 (t)A(2 + a14 (t)A(') + a16 (t)A(°), 
CC = a2, (t)A(2) + a23 (t)A(1) + a25 (t)A(°), 

DD = a22 (t)A(2) + a24 (t)A(`) + a26 (t)A(°), 

with y, (a) = a,, Y2 (a) = Q,, yj (b) = a2, y2 (b) = QZ as initial conditions. 

In the next section we consider some numerical examples. 

4.7 Some numerical examples 

Before consideration of the numerical solution of DAE, first we consider a numerical example for 

a system of differential equations and then the rest of this section is devoted to DAEs. In all 

examples e, and e2 denote the maximum error of y, (t) and y2 (t), respectively. 

Example 4.1: Consider 

ty (t)+YZ(t)-2y, (t)+etY2(t)=1-e-', 

et yi(t)+2tyi(t) = 0, tE [-1,11, 

with initial conditions y1 (-1) =1, y2 (-1) = e. 

The exact solutions are y, (t) = t2, and y2 (t) = e-' . We solved it by the pseudo-spectral method for 

N=4,7,10, and the results are given in Table 1. 
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Table 1 

N e, e2 

4 3.479 x 10-3 2.750x 10-3 
7 4.002 x 10-6 7.656x 10-7 
10 8.182x10-10 2.059 x 10-10 

As can be seen from the results, this method produces very good results. In this manner we can 

solve a system of linear ODE of order two, and extend it to any order. But in this chapter our main 

target is to consider examples of linear DAE. Therefore, the rest of this section is devoted to such 

systems. 

Example 4.2: Consider 

yj (r) -Y2 (r) -tY1= 0, 
t(Sint)y1(t) + (cos t)Y2 (t) = t, tE C-i, ll, 

with initial condition y, (-1) = sin(-1). 

The exact solutions are, y, (t) = sin t, and y2 (t) =t cost . 

We solved it by the pseudo-spectral method and the error produced for different values of N for 

y, (t) and y2 (t) are given in Table 2. 

Table 2 
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N el e2 

4 1.341x10-2 6.784x10-3 

6 7.782 x 10-5 4.840 x 10-5 

10 9.182x100 4.063x10-'° 

Let's consider another example. This example was chosen from [40]. 

Example 4.3: Consider the following problem with initial values; 

r' 
tE [0,1] , 00y, 

(t) +1 l+ r 
y(t) = 

sin 

0 

with initial condition y1 (0) =1. 

The exact solutions are, y, (t) =t sin t+ (1 +u t) e-` , and y2 (0= p e-` + sin t. 

We solved it by the pseudo-spectral method. Although, this problem has index 1, Ascher showed 

in 1989, that for p >>O symmetric methods of numerical solution encounter difficulty [41], and 

solve it with p =10 . In 1994 Amodio solved it by techniques of boundary values [44]. Although 

he did not mention for what value of p difficulty happens, we solved it by the pseudo-spectral 

method for p= 200 and the results are given in Table 3. But when we increase the value of u, 

the error increases. In this table e3 and eA mean maximum error for y, (t) and y2 (r) using the 

pseudo-spectral and Adams methods, respectively. 

Table 3 

N ep, eA h 

6 1.73x10 -4 1.22 x 10-5 2x10-2 

10 1.29 x 10-10 1.92x10-7 5x103 

14 6.21x10-14 2.41x10'8 2.5x10-3 
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As table 3 shows, results obtained by the pseudo-spectral method are much better than those for 

the Adams method. 

Example4.4: Let's consider another problem with initial condition, 

, tE[-21 ýI], 
00 

JY'(t)+( 0 1+p Y(t) 
t2 

The exact solutions are, y, (t) = e' +pt (e` _t2), and y2 (t) = t2 - e', with initial condition 

Yi(-i)=*-i(_+)" 

This problem has global index 2 and was considered in several papers such as [40], [26], [27], [25]. 

Gear and Petzold in 1984 shown that [40], when u «_1/2, then the backward Euler method is 

unable to solve it numerically, and in [25], numerical methods based on finite differences 

encounter difficulty. In 1994 Amodio [44], solved it by techniques of boundary values, but the rate 

of convergence for p <-1/2 is very low. It has been shown that there is no solution of the 

equations defining y� using backward Euler discretization [28]. We solved it for p= -1, and 

examined it with different values of N. The results are given in Table 4 

Table 4 

N eps h eA 

6 2.61x10-' 10-' 7.06 x 10-6 

10 2.07x10-12 1.25x10-2 1.30x10-7 

14 9.12x10-" 6.25x10-3 1.66x10-8 

Here, again, we have better results. 
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Example 4.5: Consider 

zi =ýa- 
1 

+23 -t 
2-t 

x2 =1-a t-2 
x, -x2 +(a-1)a+2ex, 

0=(t+2)x, +(t2 -4)x2 -(t2 +t-2)e', 

where a is a parameter and tE [0,1]. This DAE is in pure index-2 form (4.17), and was chosen 

from [28]. For the initial conditions XI (0) = x2 (0) =1 we have the exact solutions 

x 
xl (t) = x2 (t)= ex, z(t) 

2-t 

This problem was chosen from [28]. Although two initial conditions were used, but with our 

method we need only one initial condition. The value of a has been selected as 10 and has been 

integrate this DAE from t=0 to t=1 using the first three BDF methods. The maximum errors for 

different values of h ranging from 1/20 to 1/2560 is, nearly, 10-4 . By theorem 4, this problem can 

be converted to the system, 

00x t+2 t2 -4 x 
(a -1) a(t - 2) xz a -1 a(t - 2) x2 

= 
2-t 

t2 +t-2 
(a-1)(3-t)-2a(2-t)Z 

]et. 

2-t 

We record the results of using the pseudo-spectral method with a= 10, and with one initial 

condition. The comparison between these results mentioned in Table 5, and the results in [28], 

show the power of the proposed method for this example. 

Table 5 
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N ei e2 

7 1.4867x108 1.2458x108 

10 2.4736x1013 1.8296 x 10-13 

13 5.2301 x 10-" 3.8627 x 10-" 

Let us consider another example. This example was chosen from [39]. 

Example4.6: Consider 

xi =x, +(sinat)y+(2+ 
s2 at 

e,, 

xz =x2+(cos at)y+(2+cosat)e, tE[0,1], 

0= (sin at)xl +(cosat)x2 -(sinat+cosat)e', 

with x, (0) = x2 (0) =1, where x, (t) = x2 (t) = er and y(t) =t 
er 

2. 

By theorem 4, we converted this problem to the system, 

(cos a t) x, - (sin a t) x2 + (cos a t) x, - (sin a t) x2 = 2e' (cos at- sin a t), 
0=(sin at)x, +(cosat)x2 -(sinat+cosat)e`, 

where te [0,1]. Here we choose a= 1000, as in [39] with one initial condition, and solved it by 

using pseudo-spectral method with one initial condition. The results are given in Table 6. 

Table 6 

N eý e2 

7 6.9462 x 10-9 1.0646 x 10-' 

10 1.3367x10-l' 1.1102 x 10'13 

13 5.2301x10-l' 3.8627 x 10-" 

83 



Ascher and Petzold [39], have considered this example using Baumgarte's technique with 

backward Euler and applying backward Euler directly to the original index-2 DAE, with 

a= 1000, h=0.01. The comparison between the general results mentioned in Table 6, and 

published results in [39], shows the power of pseudo-spectral method, for this example. 

4.8 DAEs with non-analytical coefficient functions 

When coefficient functions or solution functions are non-analytic, we can solve a DAE problem 

by use of domain decomposition [35], [37], but as chapter three, without loss of generality, 

fortunately, when the differential equations or the constraint have, at least, one non-analytical 

coefficient function, with appropriate position and choice of Gauss-Chebyshev-Radau points, we 

do not need to do that. In such cases we will get good results [49,51]. To observe this we continue 

to consider some examples which have, at least, one non-analytic coefficient. 

Example 4.7: Consider 

cos(t)y, (t) - sin(t)y2 (t) =1t 
I tly, (t) + Y2 (t) _ Itl sin(t) + cos(t), 

with initial condition y, (-1) = sin(-1). 

The exact solutions are, yl (t) = sin(t), and Y2 (t) = cos(t) . 

Here, some coefficient functions are not analytic at zero. We used the pseudo-spectral method and 

the results are given in Table 7. 

Table 7 

N el ez 

4 5.426x10-2 2.656x10-2 

6 2.488x10-5 1.806x10-5 

10 2.077 x 10-9 1.598x109 
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Let us consider another example in which the coefficient functions are not analytic in more than 

one point. 

Example 4.8: Consider 

Y, (t)-1y (t)+Y, (1)=1e', 
tE[ 1,1], 

it -. IY, (t)+It+JY: (t)=e'(It-2 +It+2) 

with initial condition y, (-1) = e. 

The exact solutions are, y, (1) = Y2 (t) = e-'. 

Here, we have two points, in which the coefficient functions are not analytic. Again, we solved 

this example by this method and the results are given in Table 8. 

Table 8 

N e, e2 

4 5.297x10-3 7.165x10-3 

6 2.942x10'5 5.249x10-5 

10 7.717x10-9 2.261x10-8 

Now we consider an index-2 form (4.17) with non-analytic coefficients functions in its constraint. 

Example 4.9: Consider 

I x, = sin(2t -1) x, + cos(2t -1) x2 -y+e (2r-1) [cos(2t -1) + sin(2t -1)], 
2 x2 =z+ X2 + e(2r->) y_ eczý->> 

0= xi + It! x2 - e(2`-l" [cos(2t -1) sin(2t -1) + 12t - ll cos(2t -1)], t c= [0,1], 

with initial condition x, (0) = e-' sin(-1), where the exact solution is 

x, (t) = e2' sin(2t - 1), x2 (t) = e(2t ) cos(21-1), y= e(2t . 
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By applying formulation of index reduction in section 4.6, and change of variable t= (b-a) 2+(b+a) 

and changing T to ton given DAE, we obtain, 

) e(2`-')xý +y x2 =[e (2t-l) sin(2t - 1) - 1] x, + [e(2`-') cos(2t -1) + 1] x2 

+ [e(2`-') [cos(2t -1) + sin(2t -1)], 
0=x, + 12t -1I x2 - e(21-') [sin(2t -1) + 12t 

- ll cos(2t -1)]. 

We record results of running the pseudo-spectral method for this example, and the results are 

presented in Table 9. 

Table 9 

N el e2 

4 2.7764 x 10-2 3.8124 x 10-2 

7 2.7560x10-5 4.0283x10-' 
10 5.7678 x 10-9 8.0090x109 

We see this method will be, also, useful for a DAE, even, when differential equations have non- 

analytic coefficient functions. 

Example 4.10: Consider 

Itl x, +x2 +xl =Itlcost, 

(sin t) x1 + (COS t)x2 =1, 

where te [-1,1], with initial condition x, (-1) = sin(- 1) . 

The exact solutions are x, (t) = sin t, x2 (t) = cost . 

We solved it for N=4,7,11, and the results are given in Table 10. 

Table 10 

86 



N el e2 

4 7.1356x103 4.9252 x 10-' 

7 2.8846x 10-6 9.0824 x 10-7 

113.2327 x 10-" 8.3095 x 10-12 

As we see this method works well be for DAEs which have non-analytic coefficient, functions. 

In example 4.1, we solved a system of differential equations by this method. We mention here that 

this method can be used for a system of differential equations, even if, there are non-analytic 

coefficient functions. 

We end this chapter by solving a system of differential equations with non-analytic coefficient 

functions. 

Example 4.11: Let us consider 

(cost)x; -(sint)x2 =1, 
Itl x; +X, + X, =ltlcost, t E[-1,1], 

with initial conditions x, (-1) = sin(-1), x2 (-1) = cos(-I). The exact solutions are 

x, (t) = sin t, x2 =cos t. In this system we have non-analytical coefficient functions. We used the 

pseudo-spectral method for this system and the results are shown in Table 11. 

Table 11 

N e, e2 

4 4.819x10-' 5.701 x 10'3 
6 2.297 x 10-5 3.827 x 10-5 

10 2.384x10-10 3.926x10-10 
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Unfortunately, for systems of differential equations of order one or more and a DAE with solution 

which is not analytic, the rate of convergence will be very low by this method, but it seems it may 

be possible to do some more work on such systems by spectral methods to have better results. 

4.9 Some conclusions about use of Pseudo-spectral method 

Numerical results of all examples in chapters three and four show the efficiency of spectral 

methods. In all DAE examples considered having one algebraic constraint and differentiation of 

order one, we obtained a spectral accuracy. Numerical results for most examples confirm good 

accuracy of pseudo-spectral method comparing with other methods. Rate of convergence of 

Adams method which is known as a good method [11], comparing with pseudo-spectral method is 

very low. Another advantage of this method is its flexibility compared to finite difference 

methods. 

Unfortunately, in presence of non-analytical solution and/or coefficient functions, our 

modification to speed up convergence of, linear ODE problems [21] does not improve rate of 

convergence very much when applied to DAE problems. Research in this matter is one of our 

future goals. 

Another research which may be possible to do is, we extend our works to unbounded intervals and 

Inegral-Algebraic Equations(IAEs), and more general case when we have a mixed equations of 

integral and differential algebraic equations. 

I hope to have a suggestion to solve these kind problems in a near future. 
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Appendix A 

Some Basic Mathematical Concepts 

A. 1. Hilbert, Banach and Sobolov spaces 

Let X be a real vector space. An inner product on Xis a function XxX -+ 91 denoted by (u, v), 

which satisfies following properties: 

(i) (u, v) = (v, u) for all u, vEX; 

(ii) (au + ßv, w) = a(u, w) +, 6(b, w) for all a,, ß E 91 and all u, v, weX; 

(iii) (u, u)z0 for all ueX; 

(iv) (u, u) =0 implies u=0. 

Two elements u, vEX are said to be orthogonal in X if (u, v) = 0. The inner product (u, v) 

defines a norm on X by the relation 

IIuII = (u, u) 
Y for all ucX. 

The distance between two elements u, ve Xis the positive number Ilu - vH. 

A sequence 
{u� }1 in X is called a Cauchy sequence if, for every positive number c, there exists 

a positive integer N= N(s) such that (Ix� - x, � 
Ilx <s whenever both m and n exceed N. 

A sequence in X is said to converge to an element uEX if the distance Ijun - ull tends to 0 as k 

tends to co. 

A normed linear space X is said to be complete if every Cauchy sequence in X converges to an 

element in X. 
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A Hilbert space is a vector space equipped with an inner product for which all the Cauchy 

sequence are convergent. 

For example, 91" endowed with Euclidean product 

(u, v) =; u1v, 

is a finite dimensional Hilbert space. 

If [a, b] c 91 is an interval, the space L2 (a, b) is an infinite dimensional Hilbert space for the 

inner product 

(u, v) = 
tu(x)v(x). 

Banach space: The concept of Banach space extends that Hilbert space. Given a vector space X, a 

norm on X is a function X --* 91 denoted by l ull which satisfies the following properties: 

Ilu + V11: 5 Dull + Ilvll for all u, veX; 

I1Zull=l2lllull for all u X, Ae91; 

(lull >0 for all u c: X; 

(lull =0 if and only if u=0. 

A Banach space is a linear vector space equipped with a norm for which the space is complete. 

For example; W' endowed with the norm 

n 

IIuII= IIu, I° y 
i=t 

(with 1: 5 p< oo) is a finite dimensional Banach space. 

If [a, b] c 91 is an interval and 1: 5 p< oo , the space L" (a, b) is an infinite dimensional Banach 

space for norm 
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Iiuil = (rIuxI' dx y. 

A Sobolov space of order m is a space of square integrable functions that possesses m derivatives 

that are representable as square integrable functions: 

Hm (a, b) =uE L2 (a, b) 
kk 

e L2 (a, b), 15 k: 5 m. 

H' (a, b) is endowed with inner product: 

mý ÖkV 
(U, 

a ku 

V)Hm(a, 
b) =Q &k ' 

k-O 

and norm: (u, v)H"(a 
b) 

Following property can be derived: 

Hm+l (a, b) c Ht (a, b) c... c H°(a, b) _- LZ(a, b). 

A. 2. The Lebesgue Integral and LP - spaces 

(a) The Lebesgue (Outer) Measure 

Each set A contained in (ab) can be covered by a countable union of open intervals I,,, i. e. 

Ac U�_oI . Taking into account this property, the Lebesgue outer measure u(A) = inf IIn1, 

n 

where II� I denotes the length of the interval I� and the infimum is taken over all the coverings A 

by open intervals. Note that the measure of an interval is its length. 

(b) Measurable Sets 

A set Ac (a, b) is said to be measurable if 

p(A) + p(A) = p(a, b) =b-a, 

where A denotes the complementary set of A. 
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In Lebesgue's measure theory only measurable sets are of interest. 

(c) Simple Measurable Functions 

A function s: (a, b) -+ [O, oo) is a Simple Measurable Function if it assumes only a finite number 

of values {so,..., s,, } and if each set A, = {x e (a, b) : s(x) = s, } is measueable. 

(d) Measurable Functions 

A positive function u: (a, b) [O, oo) is Measurable if it is the pointwise limit of simple 

measurable functions s(") such that 

(i) 0: 5 SO) -<< s(2) <... <_ u 
(ii) s(n)(x) --i u(x) as n -> oo, Vx E (a, b). 

(e) Lebesgue Integral 

If s is a simple measurable function on (a, b), we set 

fsd1u 
= Sfý(A, )" 

r=o 

If u is a positive measurable function on (a, b), we set 

fud1u 
= sup 

fsd1u, 

the supremum being taken over all the simple measurable function such that 

0 <_ s5u. The value of the right-hand side is aa non-negative number or + oo. We call it the 

Lebesgue Integral of u on (a, b). 

A positive measurable function u is said to be Lebesgue Integralable on (a, b) if 

fudp<-Fo. 

(f) The Spaces LP (a, b), 15 pS o0 
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Let (ab) be a bounded interval of 9? and let I5p 500. We denote by L" (a, b) the space of the 

measurable function u: (a, b) --+ 91 such that 

flu(xy'Idx 
<+oo. 

Endowed with the norm 

(lull 
LP(a, b) =( 

Ja bl 
u(x)l 

p dx 
/ 

it is a Banach space. 

For p= oo, r (a, b) is the space of the measurable function u: (a, b) --+ 91 such that lu (x)I is 

bounded outside a set of measure zero. 

The index p=2 is of special interest, because L"(a, b) is not only a Banach space, but also 

Hilbert space. The inner product is 

(u, v) = 
fu(x)v(x)dx, 

which induces the norm 

Ilullý=ýo, b, =ý. ", 
Iu(x)IZdx)y 

(g) The weighted Spaces LP (-1,1), 15 p 500 

Let w(x) be a weight function on the interval (-1,1), i. e., a continuous, strictly positive and 

integrable function on (-1,1). For p< -Fw , we denote by LP. (-1,1) the Banach space of the 

measurable functions u: (a, b) -4 91 such that 
,,, 
l u(x)"I w(x) dx < +oo. It is endowed with the norm 

ll' IL; 
c-I, n = 

(fIu(x)I ' w(x) dx)y 
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For p= oo we set Lw (-1,1) = L°° (-1,1). 

The space Lw (-1,1) is a Hilbert space for the inner product 

fu(x)v(x)w(x)cfr, 

which induces the weighted norm 

(, 
IQ 

Iu(x)I2 w(x) dx)2 " 
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Appendix B 

Runge-Kutta Methods 

B. 1. Forward Euler 

Runge-Kutta Methods are in some sense a generalization of Euler's Classic Method for solving 

ODEs. Euler's method, commonly referred to by numerical analysts as Forward Euler, is used to 

solve initial-value problems (NPs) of the form 

x, = f(x, t), x(to) = xo, 

where xE91", te[to, tk]c9L 

Suppose we are interested in approximating the value x(tk) . We begin by discretizing the domain 

oft into small intervals [t� , ti+1 ] which we refer to as steps. The width, h. = t�+, - t., of each step 

is referred to as the (local) step-size. We then approximate the value of x at each of t� nZ1, by 

evaluating 

xn. 1 =xn+f(xn, to)hn, 

which can be thought of as projection along a tangent line to the (unknown) function governing x. 

We then simply repeat this process for each x� until we obtain an approximation to x(tk ). 

B. 2. Runge-Kutta Methods 

1. Explicit Runge-Kutta Methods 

The general Runge-Kutta method can be written as 

V 

Yn+ý =Y� +w, K� n =0(1)N-1, 
i-ý 

oc 



where 

! -1 
Ký = hf(xn +c, h, yn +YaimKm), c, = 0. 

M-1 

For v= 1, w=1, we get the Euler method. This is the lowest order Runge-Kutta method. 

We list a few Runge-Kutta methods with higher orders. 

(i) Second order methods 

(a) method: Improved Tangent 

y�+, = yn +K2, n= 0(1)N-1, 

K, = hf(x,,,. yn), 

K 
K2= hf(x�+2, y�+ 2'). 

(b) Modified Euler method: 

Y�+i =Y,, +1-Z(KI +K2), n=0(1)N-1, 
KI = hf (xn 

, yn), 

K2 = hf (xn i h, yn + K1)" 

(ii) Third order methods 

(a) Nystrom method: 

yn+, = yn + 
1(2K1 

+ 3K2 + 3K3 ), n= 0(1) N -1, 
Kl = hf 

(xn ,y), 

K2 =hf(x�+3h, y�+3K1), 

K3 =hf(x,, +3 h, yh+3 K2). 
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(b) Heun method: 

y�+1= Y,, +4 (K1 + 3K3 ), n= 0(1) N -1, 
K1 = hf (x� , Y� ), 

K2 =hf(x� +3h, y� +3K1), 

K3 =hf(x�+3h, y�+3K2)" 

(c) Classical method: 

Y�+ý =Y,, +6 (K, +4K2+K3), n=0(1)N-1, 

K1 = hf (xn, vn ), 

K2 = hf (xn +2h, yn +2 K1), 

K3 =hf(xn +h, yn -K1 +2K2). 

(iii) Fourth order methods 

(a) Kutta method: 

Yý+ý = Y. +g (K1 + 3K2 +3 K3 + K4 ), n= O(1) N -1, 

K, =hf(x,,, Y,, ), 

K2 =hf(x� +3h, y� +3K, ), 

K3 = hf(x� +23h, y,, -13K, +K2)2 

K4 = hf(x� +h, Y� +K2 -K3). 

(b) Classical method: 

y�+, = Y" +6 1+ 2K2+2K3 +K4), n= O(1)N-1, 

K1=hf(x, º, Y ), 

K2 = hf (x� +Ih, yn +2 K1), 

K3 = hf (xn +2h, yn +I K2 ), 

K4 = hf (xº, +h, yn + K3). 
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2. Implicit Runge-Kutta Methods 

The general Runge-Kutta given in Explicit form can be modified to 

V 

v�+l =y, +Ew, K,, n= O(1)N-1, 

where 

v 
K, = hf (xn + c, h, yn + 

Fj 
aim K, ). 

M-1 

With v function evaluation, implicit Runge-Kutta methods of order 2v can be obtained. A few 

methods are listed. 

(i) Second order methods 

Y�+i =Y� +K1, n= 0(1)N-1, 

K, =hf(x�+2, Y�+ 
2')" 

(ii) Fourth order methods 

Yý+ý =Yn +I (K1 +K2), n =O(I)N-1, 

1- 
)KZ)9 K1 =hf(x,, +(2- 6 

)h, Yn+4K, +(46 

K2=hf(xn+(2+ 
6 

)h, Y,, +(4+ )Kt+1Kz)" 
64 

B. 3. Multistep Methods 

The general Multistep method can be written as 

Yn+l = am-lym +am-2Yn-1 +"""a0Yn+1-m 

+ h[bm f (xn+1' Yn+1) + b. 
-1 

f (zn' Yn) +... + b0 f (x,, 
+i-m' Yn+l-m )' 

with n=m -1(1)N -1, where the starting values 



Yo = a, y, = a,, """, 
Ym-1 = am-1 

are specified and h=(b-a)/N. 

When b, 
� = 0, the method is called Explicit. But, if b, 

� # 0, the method is called Implicit. 

We list here just two of multistep methods. 

(i) Fourth order Adams-Bashforth method 

YO = a, y1 = C41 , Y2 = a2 , Y3 = a3, 

yn+ý - yn +2 [55f (xn' yn) - 59f 
(Xn-1' y,, 

-, 

+ 37f (xn-2' yn-2)- 9f(xn-3'Yn-3 )1, 

for each i=3(1)N-1. 

(ii) Fourth order Adams-Moulton method 

Yo =a, y, =ai0Yz =%9 

Yn+1 = Y^ +h 24 
[9f (Xn+l , Yn+l) + 19 f/ lXn , Yn ) 

- 51 (Xn_I' 
Yn-1) +f (Xn-2' Yn-2 )] 

for each i=2(1)N-1. 

To have more information about numerical methods for numerical solution of BVPs for ODEs one 

can refer to [50]. 

B. 4. Shooting Methods 

Consider the linear boundary-value problem, 

y"=p(x)y'+q(x)y+r(x), asxsb, y(a)=a, y(b)=ß. (*) 

To approximate the unique solution, let us first consider the initial-value problems, 

yw=p(x)y'+q(x)y+r(x), a5xSb, y(a)=a, y'(a)=0, (**) 

y"=P(x)y'+4(x)y, aSxSb, y(a)=0, y'(a)=1. (***) 
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If y, (x) denotes the solution to Eq. (**) and y2 (x) denotes the solution to Eq. (* * *), it is not 

difficult to verify that 

y(x) = y, (x) +ß yy2 
()) + y2 (x) (****ý 

Is the unique solution to our boundary-value problem, provided, of course, that y2 (b) # 0. 

The Shooting method for linear equations is based on this replacement of the boundary-value 

problem (**) and (* * *). Numerous methods are available for approximating the solutions 

y, (x) and y2 (x) , and once these approximations are available, the solution to boundary-value 

problem is approximated using Eq. (* ** *). 

We used the fourth-order Runge-Kutta technique to find the approximations to y, (x) and y2 (x) . 

B. S. Difference Methods 

There are difference equations obtained from a given differential equation. The system of 

equations is then solved by direct or indirect methods. Let us consider a linear second order BVP 

of the form 

- y" +f (x) y= r(x), xe [a, b], 

y(a) = a,, y(b) = a2. 

We assume f(x) z0 for xe [a, b] to ensure the existence and uniqueness of the solution. In order 

to compute a numerical approximation to the solution y(x), we first divide the interval [a, b] into 

N+1 subintervals of length h= °-°/N+1) 
, and at each point x� =a+ nh, n =1,2,..., N, approximate 

y"(x�) by the second central difference quotient 

lVh2 [Y(x�+i) - 2Y(x,, ) +Y(x"_1)] + 0(h2 ), n =1(1)N. 

When this approximation is used in a given problem, we find the solution satisfies 

inn 



Yh2[y(x..,, ) - 2Y(x) + Y(x, -i 
)} + 

.f 
(xn) Y(x,, ) + 0(h2) = r(x,, ) 

at the grid points x,, x2,..., XN. 

Dropping the error term in this equation and defining approximations y, , yZ 9 ..., yx to the values 

of the solution at the grid points x1, we get the system of N equations 

-y(x. -, )+Zy(x. )-y(xn+, )+h2 
, Y" =h'r.. 

The boundary conditions become ya = a, 9 yN+, = a2 . 

If 

J=I 

2-1 

-1 2 -1 

-1 2 -1 
2 -1 

f 

, F= 

�N 

Yi 

Y2 

Y= ', c= 

YN 

al + hr, 

h2r2 

a2+ h2 rN 

then, after incorporating the boundary conditions, the system of difference equations can be 

written as 

(J+h2F) yC. 

If det(J+ h2 F) ;; e 0, then the solution of the above system becomes 

y= (J+h2F)-' C. 
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