6,019 research outputs found

    A Queueing Characterization of Information Transmission over Block Fading Rayleigh Channels in the Low SNR

    Full text link
    Unlike the AWGN (additive white gaussian noise) channel, fading channels suffer from random channel gains besides the additive Gaussian noise. As a result, the instantaneous channel capacity varies randomly along time, which makes it insufficient to characterize the transmission capability of a fading channel using data rate only. In this paper, the transmission capability of a buffer-aided block Rayleigh fading channel is examined by a constant rate input data stream, and reflected by several parameters such as the average queue length, stationary queue length distribution, packet delay and overflow probability. Both infinite-buffer model and finite-buffer model are considered. Taking advantage of the memoryless property of the service provided by the channel in each block in the the low SNR (signal-to-noise ratio) regime, the information transmission over the channel is formulated as a \textit{discrete time discrete state} D/G/1D/G/1 queueing problem. The obtained results show that block fading channels are unable to support a data rate close to their ergodic capacity, no matter how long the buffer is, even seen from the application layer. For the finite-buffer model, the overflow probability is derived with explicit expression, and is shown to decrease exponentially when buffer size is increased, even when the buffer size is very small.Comment: 29 pages, 11 figures. More details on the proof of Theorem 1 and proposition 1 can be found in "Queueing analysis for block fading Rayleigh channels in the low SNR regime ", IEEE WCSP 2013.It has been published by IEEE Trans. on Veh. Technol. in Feb. 201

    Approximate IPA: Trading Unbiasedness for Simplicity

    Full text link
    When Perturbation Analysis (PA) yields unbiased sensitivity estimators for expected-value performance functions in discrete event dynamic systems, it can be used for performance optimization of those functions. However, when PA is known to be unbiased, the complexity of its estimators often does not scale with the system's size. The purpose of this paper is to suggest an alternative approach to optimization which balances precision with computing efforts by trading off complicated, unbiased PA estimators for simple, biased approximate estimators. Furthermore, we provide guidelines for developing such estimators, that are largely based on the Stochastic Flow Modeling framework. We suggest that if the relative error (or bias) is not too large, then optimization algorithms such as stochastic approximation converge to a (local) minimum just like in the case where no approximation is used. We apply this approach to an example of balancing loss with buffer-cost in a finite-buffer queue, and prove a crucial upper bound on the relative error. This paper presents the initial study of the proposed approach, and we believe that if the idea gains traction then it may lead to a significant expansion of the scope of PA in optimization of discrete event systems.Comment: 8 pages, 8 figure

    Heavy traffic analysis of open processing networks with complete resource pooling: asymptotic optimality of discrete review policies

    Full text link
    We consider a class of open stochastic processing networks, with feedback routing and overlapping server capabilities, in heavy traffic. The networks we consider satisfy the so-called complete resource pooling condition and therefore have one-dimensional approximating Brownian control problems. We propose a simple discrete review policy for controlling such networks. Assuming 2+\epsilon moments on the interarrival times and processing times, we provide a conceptually simple proof of asymptotic optimality of the proposed policy.Comment: Published at http://dx.doi.org/10.1214/105051604000000495 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stochastic decomposition in discrete-time queues with generalized vacations and applications

    Get PDF
    For several specific queueing models with a vacation policy, the stationary system occupancy at the beginning of a rantdom slot is distributed as the sum of two independent random variables. One of these variables is the stationary number of customers in an equivalent queueing system with no vacations. For models in continuous time with Poissonian arrivals, this result is well-known, and referred to as stochastic decomposition, with proof provided by Fuhrmann and Cooper. For models in discrete time, this result received less attention, with no proof available to date. In this paper, we first establish a proof of the decomposition result in discrete time. When compared to the proof in continuous time, conditions for the proof in discrete time are somewhat more general. Second, we explore four different examples: non-preemptive proirity systems, slot-bound priority systems, polling systems, and fiber delay line (FDL) buffer systems. The first two examples are known results from literature that are given here as an illustration. The third is a new example, and the last one (FDL buffer systems) shows new results. It is shown that in some cases the queueing analysis can be considerably simplified using this property

    Performance of the sleep-mode mechanism of the new IEEE 802.16m proposal for correlated downlink traffic

    Get PDF
    There is a considerable interest nowadays in making wireless telecommunication more energy-efficient. The sleep-mode mechanism in WiMAX (IEEE 802.16e) is one of such energy saving measures. Recently, Samsung proposed some modifications on the sleep-mode mechanism, scheduled to appear in the forthcoming IEEE 802.16m standard, aimed at minimizing the signaling overhead. In this work, we present a performance analysis of this proposal and clarify the differences with the standard mechanism included in IEEE 802.16e. We also propose some special algorithms aimed at reducing the computational complexity of the analysis
    corecore