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Abstract

Batch servers are capable of processing batches of packets instead of indi-
vidual packets. Although batch-service queueing models have been studied
extensively during the past decades, the focus was mainly put on calculating
performance measures related to the buffer content, whereas less attention
has been paid to the packet delay. In this paper, we focus on the tail probabil-
ities of the delay that a random packet experiences in a general batch-service
queueing model. More specifically, we establish approximations for these
probabilities, which are highly accurate and easy to calculate. These results,
for instance, allow to accurately assess the probability that real-time packets
experience an excessive delay in practical telecommunication systems.
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1. Introduction

Whereas servers in traditional queueing systems serve one packet at a
time, batch servers process batches of packets. The maximum number of
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packets in a served batch is usually finite and is called the server capacity,
which we denote by c. An inherent feature of batch service is that newly
arriving packets cannot join the ongoing service, even if the served batch
is not completely filled. In order to reduce the wasted capacity, one often
imposes a threshold, l (1 ≤ l ≤ c), for the minimum amount of packets in
a served batch. This implies that the available server solely initiates service
when at least l packets have accumulated in the system.
Batch-service queueing models have a wide area of applications, including
transportation, production and manufacturing systems (see e.g. [7], [17])
and telecommunications (see e.g. [2]). Batch-service queueing models are for
instance employed to assess the performance of burst-frame-based MAC pro-
tocols for ultra-wideband (UWB) Wireless Personal Area Networks (WPANs)
([25]). A node in such a network typically has for each combination of des-
tination and Quality of Service (QoS) an output and a transmission buffer.
Upper-layer packets with the same destination and QoS are stored in the
same output buffer. When the transmission buffer is empty and at least l
packets have accumulated in the output buffer, maximum c of these pack-
ets are grouped into a burst and this burst is stored in the transmission
buffer (note that the transmission buffer can only store one burst simulta-
neously). The burst will be removed from the transmission buffer when an
ACK frame from the receiver arrives. Although UWB is a high-speed tech-
nology, the time spent in the transmission buffer cannot be ignored due to
the competition for the channel between the several output queues and the
synchronisation (process of synchronising the receivers clock with the trans-
mitters clock) time. The batch-service queueing model in this paper can be
used to model an output and transmission buffer corresponding to a partic-
ular destination and QoS: the output buffer is the queue of the batch-service
queueing model, the transmission buffer is the server and the time that a
burst resides in the transmission buffer is the service time. This application
example thus demonstrates that the analysis of the delay in a batch-service
queueing system with general service times and a general batch forming pol-
icy is important. This theoretical analysis is subject of this paper.
On account of the wide area of applications, batch-service queueing mod-
els have been studied extensively. The emphasis was laid on the amount of
packets in the system (e.g. [1], [5], [6], [8], [17], [18], [19], [21], [24], [28], [29],
[30], [32], [33]). The packet delay, however, has only attracted attention in
[7], [13], [14], [16], [22], [23], [26] and [27]. In none of these papers, models
are studied with the combination of l > 1 and batch arrivals.
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In [9], we have computed the probability generating function (PGF) of the
packet delay in a discrete-time batch-arrival, batch-service queueing model
with l = c and single-slot service times. In [10], we have extended this model
to geometrically distributed service times and in [12] we have considered
generally distributed service times and 1 ≤ l ≤ c. The established PGF’s,
though, suffer from the drawback that they are not suitable to extract tail
probabilities. However, in several cases, this is an important performance
measure. For instance, consider an output buffer that stores voice packets.
Voice packets are delay-sensitive, meaning that when they arrive too late at
the end user (for instance after more than 150 ms), they become useless. The
quality of the upperlayer conversations is expressed in terms of the (order of
magnitude of the) probability of this event (see e.g. [15]).
In view of this, we have established in [11] an approximation for the tail prob-
abilities of the delay that a random packet experiences in the batch-arrival,
batch-service queueing model with single-slot service times and l = c. In this
paper, we extend this previous research by considering the extended model
with l ∈ [1, c] and generally distributed service times. In addition, we also
obtain another approximation that allows us to more accurately assess the
delay performance in the batch-service queueing model under study. The
paper is organised as follows: the model is described in detail in section
2. The approximations are established in section 3, while in section 4, we
demonstrate through some examples that these are highly accurate. Hence,
the approximation formulas can be adopted to accurately assess the delay
performance in practical batch-service queueing systems.

2. Model

In this paper, we consider a discrete-time queueing model. Packets ar-
rive one by one and several packets can arrive in a slot. We call this batch
arrivals. The number of packet arrivals during consecutive slots is generated
by an independent and identically distributed (IID) process. The number of
packet arrivals during slot k is denoted by Ak; A represents the number of
packet arrivals during a random slot and its PGF is denoted by A(z).
The number of packets in a served batch is upper-bounded by the server
capacity c and lower-bounded by the threshold l (1 ≤ l ≤ c), implying that
when the server becomes available and finds less than l packets, he waits to
initiate service and leaves the already present packets in the queue until the
beginning of the first slot whereby at least l packets have accumulated in the
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system. When the system contains more than c packets at that time, the
server only processes the first c packets and leaves the others in the queue
(according to the first-come-first-served policy). Consecutive batch service
times do not depend on the number of packets in the served batches, nor
on the number of packet arrivals and they constitute an IID process. The
service time of any batch is designated by T and its associated PGF by T (z).

The results obtained in this paper are valid under the following assumptions:

Assumption 1. the load ρ , E [A] E [T ] /c < 1;

Assumption 2. R > 1, with R the radius of convergence of T (A(z));

Assumption 3. limz↑R T (A(z))/zc > 1;

Assumption 4. zc−T (A(z)) is aperiodic, meaning that the highest common

factor of the set of integers
{

{c} ∪
{

n ∈ N : dn

dzn
T (A(z))

∣

∣

∣

z=0
6= 0

}}

equals 1.

Note that assumption 2 implies that RA > 1 and RT > 1 with RA and RT the
radii of convergence of A(z) and T (z) respectively. Further, assumption 3 is
always fulfilled if T (A(z)) has a finite pole R. Vice versa, if assumption 3 is
not fulfilled, then R necessarily is a branch point of T (A(z)), and a seperate
ad-hoc analysis of the packet delay tail distribution is required.

3. Deducing the approximation formulas

In order to compute the probability that the delay W (being the sojourn
time in the queue) of a randomly tagged packet exceeds some large value, we
split the delay into two parts. We illustrate this by means of the example
depicted in Fig. 1. The tagged packet’s arrival slot is denoted by J and QJ

represents the queue content (i.e. the number of packets in the queue, those in
service excluded) at the beginning of slot J . Further, B (X resp.) represents
the number of packet arrivals in slot J arriving before (after resp.) the tagged
packet. The first part of the delay, W1, is the time required to serve the
batches with previously arrived packets. It is equal to the remaining service
time of the batch being served in slot J (if any), plus the sum of ⌊QJ+B

c
⌋

service times, where ⌊.⌋ represents the floor function, i.e. ⌊x⌋ = max{n ∈
N | n ≤ x}. Hence, in the example, W1 = 3, because T (z) = z, c = 10 and
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QJ + B = 32. The second part, W2, is the time until enough packets are
present to fill the batch of the tagged packet with at least l packets. Mark
that exactly (QJ + B) mod c of the previously arrived packets are served
in the same batch as the tagged packet. As l = 5, ((QJ + B) mod c) = 2,
X = 1, AJ+1 = 0 and AJ+2 = 3, W2 takes two slots in the example. The
total delay of the tagged packet then equals

W = max(W1, W2) , (1)

since the service of the tagged packet’s batch can commence only if all preced-
ing batches have been served, and the packet’s batch itself contains at least
l packets. Calculation of joint probabilities of W1 and W2 is difficult. There-
fore, we propose some lower and upper bounds, that only require calculation
of marginal tail probabilities of W1 and W2.

Figure 1: Illustration of W , W1 and W2 and introduction of some notations

On account of (1), we obtain

Pr [W > w] = Pr [W1 > w ∨ W2 > w]

= Pr [W1 > w] + Pr [W2 > w] − Pr [W1 > w ∧ W2 > w] .

The following property paves the path towards establishment of a lower
bound:

Pr [W1 > w ∧ W2 > w] ≤ min (Pr [W1 > w] , Pr [W2 > w]) . (2)

A lower bound is obtained by assuming that the equality in (2) holds, leading
to

Pr [W > w] ≥ max (Pr [W1 > w] , Pr [W2 > w]) . (3)
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An upper bound is established by assuming that Pr [W1 > w ∧ W2 > w] = 0,
leading to:

Pr [W > w] ≤ Pr [W1 > w] + Pr [W2 > w] . (4)

These bounds require the calculations of Pr [W1 > w] and Pr [W2 > w], which
are discussed in the two following subsections respectively.

3.1. The calculation of Pr [W1 > w]

It was established in [12] p.27 that the PGF W1(z) of W1 reads

W1(z) =
T (z) − 1

cE [A] T (z)

c−1
∑

j=0

A
(

T (z)1/cεj

)

− 1

(T (z)1/cεj − 1)
2

T (z)1/cεj

z − A (T (z)1/cεj)
{

(z − 1)

l−1
∑

m=0

q0(m)
(

T (z)1/cεj

)m

+

c−1
∑

m=l

e(m)
[

T (z) −
(

T (z)1/cεj

)m
]

}

, (5)

with z1/c , |z|1/ceıArg(z)/c, whereby ı characterises the imaginary unit, |z|
is the absolute value of z and Arg(z) represents the principal value of the
argument of z (i.e. it is a mapping in the interval ] − π, π]). In addition,
εj, 0 ≤ j ≤ c − 1, is the j-th complex c-th root of 1, i.e. εj , e(ı2πj)/c and
d(m), 0 ≤ m ≤ l − 1 and e(m), l ≤ m ≤ c − 1, are unknowns that have to
be calculated by solving a set of linear equations (see [12], p.6-7).
We now compute Pr [W1 > w] by means of the dominant-pole approximation
(see e.g. [3], [4]). This technique requires that the dominant singularities (i.e.
the singularities with the smallest modulus) of W1(z) are known. Unlike
for the queueing system with single-slot service times and l = c in [11],
the dominant singularities are difficult to locate in this case. Indeed, the
singularities of W1(z) might consist of zeroes of T (z)1/cεj − 1 outside the
closed complex unit disk {z ∈ C : |z| ≤ 1}, zeroes of z − A

(

T (z)1/cεj

)

outside the complex unit disk, (possible) singularities of T (z) and possible
singularities of A(T (z)1/cεj). The following theorems play a crucial role in
locating the dominant singularities.

Theorem 1. The factor (T (z)1/cεj−1)2 produces no poles ∀j, 0 ≤ j ≤ c−1.
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Proof Suppose zj is a zero of T (z)1/cεj − 1 with multiplicity n. Then

dm

dzm
(T (z)1/cεj − 1)

∣

∣

∣

∣

z=zj

= 0, ∀m, 0 ≤ m ≤ n − 1 ,

and consequently:

• dm

dzm
(T (z) − 1)

∣

∣

∣

z=zj

= 0, ∀m, 0 ≤ m ≤ n − 1, meaning that zj is also a

zero of T (z) − 1 with multiplicity n, which appears in the numerator;

• dm

dzm
(A(T (z)1/cεj) − 1)

∣

∣

∣

z=zj

= 0, ∀m, 0 ≤ m ≤ n − 1, meaning that zj

is also a zero of A(T (zj)
1/cεj)−1 with multiplicity n, which appears in

the numerator.

Summarized, although zj is a zero of (T (z)1/cεj−1)2 with multiplicity 2n, it is
not a pole of W1(z), since zj is also a zero of the numerator with multiplicity
2n. �

Lemma 1. IF: assumptions 1-4 are satisfied,
THEN: zc − T (A(z)) has exactly one zero in the interval ]1, R[. In addition,
the zero has multiplicity one and zc − T (A(z)) contains no other zeroes with
a modulus larger than one and smaller than or equal to this real zero.

Proof This lemma has been proved in [31]. �

Let us denote the only zero of zc −T (A(z)) in the interval ]1, R[ by z̃0. Since
z̃0 < R ≤ RA, the following definition makes sense:

z0 , A(z̃0) .

It holds that z0 ∈ R and z0 > 1, since A(1) = 1 and the PGF A(z) is a real-
valued and monotonically increasing function within [1, RA[. In addition,
z0 < RT , as z̃0 < R implies that z0 = A(z̃0) < RT .

Theorem 2. IF: assumptions 1-4 are satisfied,
THEN:

1. T (z0)
1/c < RA and z0 is a zero of z − A(T (z)1/c);

2. the equations z−A(T (z)1/cεj) , 0 ≤ j ≤ c− 1 contain no other zeroes
with a modulus larger than one and smaller than or equal to z0;

7



3. z0 is a zero multiplicity one.

Proof 1. On account of lemma 1, we have

z̃c
0 = T (A(z̃0)) . (6)

As z̃0 and T (A(z̃0)) are both real positive numbers, (6) can be transformed
into

z̃0 = T (A(z̃0))
1/c ,

which is, owing to the definition of z0, equivalent to

z̃0 = T (z0)
1/c .

Finally, taking into account that T (z0)
1/c = z̃0 < R ≤ RA and invoking the

definition of z0, we find

z0 = A(T (z0)
1/c) .

In other words, T (z0)
1/c < RA and z0 is a zero of z − A(T (z)1/c).

2. This part is a proof by contradiction. Assume that a j (0 ≤ j ≤ c − 1)
exists, for which z − A(T (z)1/cεj) has a zero, z∗, with z∗ 6= z0 and 1 <
|z∗| ≤ z0. Owing to |z∗| ≤ z0 < RT , the following definition makes sense:
z̃∗ , T (z∗)1/cεj.
Consequently, we have that

|z̃∗|c = |T (z∗)| ≤
∞

∑

n=1

Pr [T = n] |z∗|n ≤
∞

∑

n=1

Pr [T = n] zn
0 = T (z0) = z̃c

0 .

Hence, as both |z̃∗| and z̃0 are positive real numbers,

|z̃∗| ≤ z̃0 . (7)

This implies that |z̃∗| < RA and taking into account that z∗ = A(T (z∗)1/cεj),
we find that z∗ = A(z̃∗). As a consequence, |A(z̃∗)| < RT and T (A(z̃∗)) =
T (z∗) = (z̃∗)c, meaning that z̃∗ is a zero of zc − T (A(z)). On account of
lemma 1 however, we have that z̃0 is the zero with the smallest modulus
larger than one of this equation and z̃0 is the only zero with that modulus,
so that |z̃∗| > z̃0, which is a contradiction with (7).
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3. The property of z0 having multiplicity one is also a proof by contra-
diction. If z0 would have a multiplicity larger than one, then (we use primes
to indicate derivatives)

d

dz
[z − A(T (z)1/c)]

∣

∣

∣

∣

z=z0

= 0

⇔ 1 − A
′

(T (z0)
1/c)

1

c
T (z0)

1/c−1T
′

(z0) = 0

Writing this in terms of z̃0 instead of in z0, we further transform this to

c − A
′

(z̃0)z̃
1−c
0 T

′

(A(z̃0)) = 0

⇔ cz̃c−1
0 − T

′

(A(z̃0))A
′

(z̃0) = 0

⇔
∂

∂z
[zc − T (A(z))]

∣

∣

∣

∣

z=z̃0

= 0 ,

meaning that z̃0 is a zero of zc − T (A(z)) with multiplicity larger than one,
which is impossible according to lemma 1. �

Summarizing the theorems up to now, W1(z) has one dominant singularity,
being the pole z0. This dominant pole has multiplicity one and is equal to
A(z̃0), with z̃0 the only zero in ]1, R[ of zc − T (A(z)). As z̃0 ∈ R, it can be
easily determined numerically, for instance with the bisection or the Newton-
Raphson method [20].
Taking these findings into account, the first part of the packet delay (i.e.,
W1) exhibits a geometric tail behavior and we obtain, similarly as in [3] and
[4], the following dominant-pole approximation for the tail probabilities:

Pr [W1 > w]

≈
z−w−1
0

1 − z0

T (z0) − 1

E [A]

A
(

T (z0)
1/c

)

− 1

(T (z0)1/c − 1)
2 T (z0)

1

c
−1

×

(z0 − 1)
l−1
∑

m=0

q0(m)T (z0)
m/c +

c−1
∑

m=l

e(m)
(

T (z0) − T (z0)
m/c

)

c − A′ (T (z0)1/c) T (z0)
1

c
−1T ′(z0)

. (8)
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3.2. The calculation of Pr [W2 > w]

In order to calculate Pr [W2 > w], we start from the following relation:
(see also Fig. 1 for a brushup of the notations)

Pr [W2 > w] = Pr

[

(

[QJ + B] mod c

)

+ 1 + X +

w
∑

i=1

AJ+i < l

]

, (9)

with “mod” the modulo operator. Indeed, the second part of the delay of
a randomly tagged packet is larger than w if the sum of (a) the number of
previously arrived packets that are served in the same batch as the tagged
packet ([QJ + B] mod c), (b) the tagged packet, (c) the number of packet
arrivals during slot J after the tagged packet (X) and (d) the number of
packet arrivals during the sequence of w slots following slot J (

∑w
i=1 AJ+i),

is smaller than the threshold l. We transform this expression by means of
the probability generating property of PGF’s.
Since X and B are correlated, but independent of the other discrete random

variables that appear in (9), we first compute E
[

x([QJ+B] mod c) xX
]

. We

find, along the same lines as in our paper [11] p.6-8, that

E
[

x([QJ+B] mod c) xX
]

=

∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

Pr [QJ + B = nc + m, X = k] xmxk

=

∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

c−1
∑

i=0

Pr [QJ + B = nc + m, X = k] xixkδ〈m = i〉 , (10)

with δ〈.〉 the Kronecker delta function, i.e.

δ〈m = i〉 =

{

1 if m = i ,
0 if m 6= i .

On account of the standard property

δ〈m = i〉 =
1

c

c−1
∑

j=0

εnc+m−i
j , ∀n ∈ N ,
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(10) can be transformed into:

E
[

x([QJ+B] mod c) xX
]

=
1

c

c−1
∑

j=0

c−1
∑

i=0

(

x

εj

)i ∞
∑

n=0

c−1
∑

m=0

∞
∑

k=0

Pr [QJ + B = nc + m, X = k] εnc+m
j xk .

Owing to the IID character of the arrival process and the standard renewal
argument (see e.g. [3]), we finally obtain

E
[

x([QJ+B] mod c) xX
]

=
xc − 1

c(x − 1)

c−1
∑

j=0

Q(εj)
A(εj) − A(x)

E [A] (εj − x)

εj(x − 1)

x − εj
,

with Q(z) the PGF of the queue content at a random slot mark. In [12] p.8,
formula (8), we have established the following expression for Q(z):

Q(z) =
1

zc − T (A(z))

×

{

(zc − 1)
l−1
∑

n=0

q0(n)zn +
T (A(z)) − 1

A(z) − 1

c−1
∑

n=l

e(n)(zc − zn)

}

,

implying that Q(ε0) = 1 (since ε0 = 1) and

Q(εj) =

∑c−1
n=l e(n)(εn

j − 1)

A(εj) − 1
, 1 ≤ j ≤ c − 1 .

Relying on this result, we find:

E
[

x([QJ+B] mod c) xX
]

=
xc − 1

c(x − 1)
f(x) , (11)

with

f(x) =
1 − A(x)

E [A] (1 − x)
+

c−1
∑

j=1

A(εj) − A(x)

E [A] (εj − x)

εj(x − 1)

x − εj

∑c−1
n=l e(n)(εn

j − 1)

A(εj) − 1
,

with the first term the one for j = 0. The combination of (9), (11) and the
probability generating property of PGF’s produces

Pr [W2 > w] =

l−1
∑

m=0

1

m!

∂m

∂xm
E

[

x([QJ+B] mod c)+1+X+
∑w

i=1
AJ+i

]

∣

∣

∣

∣

x=0

=
l−1
∑

m=1

1

m!

∂m

∂xm
xA(x)w xc − 1

c(x − 1)
f(x)

∣

∣

∣

∣

x=0

.

11



After some mathematical manipulations, this can be transformed into

Pr [W2 > w] =

l−2
∑

m=0

1

m!

∂m

∂xm
A(x)w xc − 1

c(x − 1)
f(x)

∣

∣

∣

∣

x=0

=
1

c

l−2
∑

m=0

m
∑

k=0

1

k!(m − k)!

∂k

∂xk

xc − 1

x − 1

∣

∣

∣

∣

x=0

∂m−k

∂xm−k
A(x)wf(x)

∣

∣

∣

∣

x=0

.

Invoking

xc − 1

x − 1
=

c−1
∑

n=0

xn ,

yields

∂k

∂xk

xc − 1

x − 1

∣

∣

∣

∣

x=0

= k! ,

for all k < c. Hence

Pr [W2 > w] =
1

c

l−2
∑

m=0

m
∑

k=0

1

(m − k)!

∂m−k

∂xm−k
A(x)wf(x)

∣

∣

∣

∣

x=0

=
1

c

l−2
∑

k=0

l − 1 − k

k!

∂k

∂xk
A(x)wf(x)

∣

∣

∣

∣

x=0

. (12)

Remark 1. When l = c, the sum over j in f(x) vanishes, so that we find
that Pr [W2 > w] is not influenced by the distribution of the service lengths
in that case, even not by the mean value.

Formula (12) can be implemented in a mathematical program such as mat-
lab. This procedure suffers from the drawback that high-order derivatives
may have to be computed, which causes a considerable reduction in speed
and even is infeasible if l and c are quite large. Therefore, we now deduce an
approximation for Pr [W2 > w], whereby no derivatives have to be taken.

The PGF associated with W2, W2(z), is extracted from (12) by multiplying
both sides of the equation by zw and taking the sum over all values of w:

W2(z) = 1 +
z − 1

c

l−2
∑

m=0

l − 1 − m

m!

∂m

∂xm

f(x)

1 − zA(x)

∣

∣

∣

∣

x=0

. (13)
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From this equation, it is clear that z = 1/A(0) is the dominant pole of
W2(z) and that it has multiplicity l − 1. We now determine the behavior
of W2(z) about the dominant singularity. The m-th (m ≥ 0) derivative of
f(x)/(1 − zA(x)) can be written as

∂m

∂xm

f(x)

1 − zA(x)
=

m
∑

j=0

Cm,j(z, x)

[1 − zA(x)]j+1
, (14)

whereby Cm,j(z, x) are functions of z and x that have no factor 1 − zA(x).
As opposed to Cm,j(z, x) for j 6= m, Cm,m(z, x) is relatively easy to calculate:

Cm,m(z, x) = m!f(x)zmA
′

(x)m .

The substitution of (14) in (13) yields

W2(z) = 1 +
z − 1

c

l−2
∑

m=0

l − 1 − m

m!

m
∑

j=0

Cm,j(z, 0)

[1 − zA(0)]j+1
. (15)

Consequently, if we retain the simple most dominant term from this expres-
sion, we find that W2(z) is proportional to

W2(z) ∼
z − 1

c
f(0)

(zA
′

(0))l−2

[1 − zA(0)]l−1
,

in a neighborhood of z = 1/A(0). The dominant-pole approximation thus
yields:

Pr [W2 > w] ≈ wl−2A(0)w f(0)

c(l − 2)!

(

A
′

(0)

A(0)

)l−2

.

However, we notice that this increases as w increases, for 0 ≤ w ≤ (2 −
l)/ ln(A(0)). When, for instance l = 10 and A(0) = e−0.5, (2 − l)/ ln(A(0))
equals 22, which indicates that the approximation is probably inaccurate
for w between 0 and 22 (and even for larger w-values) as Pr [W2 > w] is
obviously a monotonically decreasing function. We therefore propose a more
accurate approximation formula. Mark that we only retained the term with
j = m = l − 2 about z = 1/A(0) in (15), as it produces the largest power of
1 − zA(0) in the denominator. Instead of only retaining this term, we take
all the terms into account for which j = m. We thus retain for every m the
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term that produces the largest power of 1 − zA(0) in the denominator. We
thus take advantage of the fact that we can easily calculate Cm,m(z, x) for
all m. Hence, W2(z) transforms into

W2(z) ∼
z − 1

c

l−2
∑

m=0

(l − 1 − m)f(0)zmA
′

(0)m

[1 − zA(0)]m+1
. (16)

Next, 1/[1 − zA(0)]m+1 can be rewritten as follows:

1

[1 − zA(0)]m+1
=

1

m!A(0)m

dm

dzm

1

1 − A(0)z

=
1

m!A(0)m

dm

dzm

∞
∑

w=0

[A(0)z]w

=
1

m!A(0)m

∞
∑

w=m

A(0)wzw−m w!

(w − m)!
. (17)

The second step requires that |A(0)z| < 1, which is satisfied for z approaching
1/A(0) from the left. The substitution of (17) in (16) produces:

W2(z) − 1

z − 1
∼

f(0)

c

l−2
∑

m=0

A
′

(0)m(l − 1 − m)
∞

∑

w=m

zw w!

m!(w − m)!
A(0)w−m

=
f(0)

c

∞
∑

w=0

zw

min(l−2,w)
∑

m=0

A
′

(0)m(l − 1 − m)

(

w

m

)

A(0)w−m ,

so that the approximation formula reads:

Pr [W2 > w] ≈
f(0)

c

min(l−2,w)
∑

m=0

A
′

(0)m(l − 1 − m)

(

w

m

)

A(0)w−m . (18)

Note that for large w, formula (18) becomes a sum from 0 to l−2. We further
point out that the binomial coefficient causes no difficulties, since efficient
routines exist to calculate them, even for large w.

Remark 2. As z = 1/A(0) is a pole with multiplicity larger than 1 if l ≥ 3,
W2 does not exhibit a purely geometric tail behaviour.

Remark 3. Note that this approach is not suited for cases whereby A
′

(0) =
0, as only the term corresponding to m = 0 in (16) differs from 0. In these
cases, additional terms with j < m must be taken into account in (15).
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4. Accuracy of the formulas

In this section, we evaluate the accuracy of our approach. First, we
study formula (8) for Pr [W1 > w]. Then, we focus on approximation (18) for
Pr [W2 > w] and finally the accuracy of the bounds for Pr [W > w] is covered.

In Figures 2-4, approximation (8) as well as simulated values2 for Pr [W1 > w]
are depicted versus w for various combinations of server capacities c, service
thresholds l, loads ρ and several distributions for the number of packet ar-
rivals (Poisson A(z) = eE[A](z−1); Geometric A(z) = 1/(1 + E [A] − E [A] z);
C-center A(z) = 1−E [A] /c+E [A] /(2c)(zc−1+zc+1)) and service times (Ge-
ometric T (z) = z/[E [T ]+(1−E [T ])z]; 25 T (z) = 1−E [T ] /25+E [T ] /25z25

with E [T ] = 5 or 10). We observe that approximation formula (8) is accu-
rate, even for relatively small values of w.
The figures further exhibit that higher loads lead to larger tail probabilities of
the first part of the packet delay. In addition, the distributions of the service
times and the amount of per-slot arrivals have an undeniable impact. Next,
we perceive that although the load remains equal (and thus the mean arrival
rate E [A] increases) a larger server capacity c has a positive influence on the
tail probabilities. Finally, the service threshold has a negligible impact on
Pr [W1 > w].

Next, approximation (18) and exact formula (12) for Pr [W2 > w] are de-
picted versus w in Figures 5-7 for various settings of the system parameters.
The figures highlight that there might be a discernable error for small values
of w, whereas it becomes small for larger values of w. We also observe that
although the relative error might sometimes be quite large, the order of mag-
nitude of Pr [W2 > w] is well approximated, which is sufficient for e.g. the
purpose of assessing the QoS of a voice conversation, even for smaller values
of w. In a voice conversation, one typically experiences an acceptable quality
when the probability that the delay of a voice packet does not exceed 150
ms is smaller than 10−2 (see e.g. [15]). The approximation formula is also a
lot faster than exact formula (12). In order to give an idea: the computing
time to calculate Pr [W2 > 100] in Fig. 7 (e) when l = 10, equals 6.33s via

2We have depicted the confidence intervals resulting from 20 simulations whereby each
simulation generates the delay for 109 packets
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Figure 2: Evaluation of approximation formula (8) for Pr [W1 > w] (1)
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Figure 3: Evaluation of approximation formula (8) for Pr [W1 > w] (2)
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Figure 4: Evaluation of approximation formula (8) for Pr [W1 > w] (3)

formula (12), whereas it only takes 0.25s via approximation formula (18).
Ultimately, for increasing values of c and l, the calculation of (12) becomes
unfeasible, which highlights the necessity of the approximation formula.
Further, the figures highlight that A(z), T (z), E [A], l and c have a significant
impact on the second part of the packet delay, whereas the opposite is true
for E [T ]. However, E [T ] has a slight influence on Pr [W2 > w] through the
unknowns e(n). Only when l = c, E [T ] (and even T (z)) has no influence at
all (see remark 1).

Let us now investigate the accuracy of bounds (3) and (4) for Pr [W > w].
We have therefore plotted these bounds versus w in Figures 8-10 for a broad
range of system parameters. We perceive that the bounds nearly coin-
cide, except for some values of the load ρ. In order to investigate this
issue further, the bounds for Pr [W > w] are depicted versus the load for
several examples in Fig. 11. We observe that Pr [W > w] is the largest
when ρ → 0 and ρ → 1 and that the bounds nearly coincide in these
cases. Indeed, when ρ → 0, few packets arrive, leading to a very long
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Figure 5: Evaluation of approximation formula (18) for Pr [W2 > w] (1)
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Figure 6: Evaluation of approximation formula (18) for Pr [W2 > w] (2)
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Figure 7: Evaluation of approximation formula (18) for Pr [W2 > w] (3)

second part and a negligible short first part of the delay, whereas when
ρ → 1, the opposite holds. We also observe that Pr [W > w] decreases
until its minimum, whereafter it increases again. In addition, the largest
difference between the bounds appears in the neighbourhood of the mini-
mum of the curves. This can be explained as follows: when ρ increases,
Pr [W1 > w] increases, whereas Pr [W2 > w] decreases. Consequently, the
difference between the bounds, min(Pr [W1 > w] , Pr [W2 > w]), is the largest
when Pr [W1 > w] = Pr [W2 > w]. In that case, we learn from (3) and (4)
that the upper bound is (roughly) twice as large as the lower bound.

Although we have demonstrated that the bounds nearly overlap, we have
to bear in mind that these bounds rely on expressions for Pr [W1 > w] and
Pr [W2 > w], for which we also use approximations. As these are very accu-
rate for large w, we expect that this accumulation of errors remains small. In
order to verify this, we have also depicted simulated values3 of Pr [W > w]

3We have depicted the confidence intervals resulting from 20 simulations whereby each
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in figures 8-11. We observe that the curves are very close to the simulated
values as anticipated. We can thus conclude that bounds (3) and (4) together
with approximations formulas (8) and (18) for Pr [W1 > w] and Pr [W2 > w]
are very accurate. These are for instance useful to assess the probability that
a delay-sensitive packet (for instance a voice packet) experiences an excessive
delay in an output buffer of a node in a UWB WPAN.

simulation generates the delay for 109 packets
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Figure 8: Evaluation of bounds (3) and (4) for Pr [W > w] versus w (1); approximation
formula (18) for Pr [W2 > w] is used except in (b) for C-centered arrivals, where we have
adopted formula (12) because A

′

(0) = 0
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Figure 9: Evaluation of bounds (3) and (4) for Pr [W > w] versus w (2); approximation
formula (18) for Pr [W2 > w] is used
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Figure 10: Evaluation of bounds (3) and (4) for Pr [W > w] versus w (3); approximation
formula (18) for Pr [W2 > w] is used
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Figure 11: Evaluation of bounds (3) and (4) for Pr [W > w] versus the load; approximation
formula (18) for Pr [W2 > w] is used, except in (d) for C-centered arrivals, where we have
adopted formula (12) because A
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