167,893 research outputs found

    Spatial variations in road collision propensities in London

    Get PDF
    Propensity to be involved in a road traffic collision in Greater London is likely to depend on many factors, including personal mobility, lifestyle, behaviour, neighbourhood characteristics and environment. This paper seeks to identify in terms of geodemographic type the propensity of individuals to be involved in collisions and to examine geographic variations in such propensities with distance from Central London. Results for Central London suggest only a small number of Mosaic types portray a higher than average index score (over 100), translating into a higher risk for a smaller proportion of London’s geodemographic types. This contrasts with results which show a larger number of Mosaic classifications having higher than average index scores further from Central London. The results highlight a need, through enhanced spatial analysis, for better understanding of the spatially incidence of collisions which are putting at risk the lives of London residents

    Geo-located Twitter as the proxy for global mobility patterns

    Full text link
    In the advent of a pervasive presence of location sharing services researchers gained an unprecedented access to the direct records of human activity in space and time. This paper analyses geo-located Twitter messages in order to uncover global patterns of human mobility. Based on a dataset of almost a billion tweets recorded in 2012 we estimate volumes of international travelers in respect to their country of residence. We examine mobility profiles of different nations looking at the characteristics such as mobility rate, radius of gyration, diversity of destinations and a balance of the inflows and outflows. The temporal patterns disclose the universal seasons of increased international mobility and the peculiar national nature of overseen travels. Our analysis of the community structure of the Twitter mobility network, obtained with the iterative network partitioning, reveals spatially cohesive regions that follow the regional division of the world. Finally, we validate our result with the global tourism statistics and mobility models provided by other authors, and argue that Twitter is a viable source to understand and quantify global mobility patterns.Comment: 17 pages, 13 figure

    Extracting user spatio-temporal profiles from location based social networks

    Get PDF
    Report de RecercaLocation Based Social Networks (LBSN) like Twitter or Instagram are a good source for user spatio-temporal behavior. These social network provide a low rate sampling of user's location information during large intervals of time that can be used to discover complex behaviors, including mobility profiles, points of interest or unusual events. This information is important for different domains like mobility route planning, touristic recommendation systems or city planning. Other approaches have used the data from LSBN to categorize areas of a city depending on the categories of the places that people visit or to discover user behavioral patterns from their visits. The aim of this paper is to analyze how the spatio-temporal behavior of a large number of users in a well limited geographical area can be segmented in different profiles. These behavioral profiles are obtained by means of clustering algorithms that show the different behaviors that people have when living and visiting a city. The data analyzed was obtained from the public data feeds of Twitter and Instagram inside the area of the city of Barcelona for a period of several months. The analysis of these data shows that these kind of algorithms can be successfully applied to data from any city (or any general area) to discover useful profiles that can be described on terms of the city singular places and areas and their temporal relationships. These profiles can be used as a basis for making decisions in different application domains, specially those related with mobility inside and outside a city.Preprin

    Towards new methods for mobility data gathering: content, sources, incentives

    Get PDF
    Over the past decade, huge amounts of work has been done in mobile and opportunistic networking research. Unfortunately, much of this has had little impact as the results have not been applicable to reality, due to incorrect assumptions and models used in the design and evaluation of the systems. In this paper, we outline some of the problems of the assumptions of early research in the field, and provide a survey of some initial work that has started to take place to alleviate this through more realistic modelling and measurements of real systems. We do note that there is still much work to be done in this area, and then go on to identify some important properties of the network that must be studied further. We identify the types of data that are important to measure, and also give some guidelines on finding existing and potentially new sources for such data and incentivizing the holders of the data to share it

    Analyzing the Impact of Covid-19 Control Policies on Campus Occupancy and Mobility via Passive WiFi Sensing

    Full text link
    Mobile sensing has played a key role in providing digital solutions to aid with COVID-19 containment policies. These solutions include, among other efforts, enforcing social distancing and monitoring crowd movements in indoor spaces. However, such solutions may not be effective without mass adoption. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. This paper conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect indoor occupancy spectrum when different COVID-19 policies were enacted. Our work analyzes staff and students' mobility data from three different university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be put to practical application for institutional crowd control and discuss the implications of our findings for policy-making.Comment: 25 pages, 18 figure
    • …
    corecore