1,220 research outputs found

    Minimization of Eddy-Current Loss in a Permanent-Magnet Tubular Linear Motor

    Get PDF
    This paper presents a minimization of eddy-current loss (ECL) in permanent-magnet (PM) of three tubular linear PM motors (TLPMMs). Three-dimensional Finite-Element Analysis has been used for the simulations. The ECL component is usually not taken into consideration in conventional PM motors. In present technologies, ECL is generated inside magnets of PM motors, due to both the high conductivity of the rare-earth magnets and the harmonics of the slot. This loss can increase the temperature inside the magnets and that may deteriorate their magnetic properties and potential risk of thermal demagnetization. Therefore, in the translator, segmented magnets has been used, because the cancelation of the ECL with this technique is possible as illustrated by the FEA results. Meanwhile, for the stator core of the three proposed motors, soft magnetic composite (SMC) material, Somaloy 700 has been used for its low cost and approximately zero ECL

    DESIGN AND MODELLING OF A LINEAR GENERATOR FOR WAVE ENERGY CONVERSIONS

    Get PDF
    The positive development in science and technology nowadays has allowed us to harness energy from renewable sources. Much attention is given to wave energy as it holds enormous amount of untapped energy and it has a great potential in electricity generation these days. There are several methods in harnessing energy from wave such as oscillating water column, overtopping device, hinged contour device and floating buoy technologies. Existing linear generators used in Wave Energy Converters (WEC) are in large scale. This phenomenon has been limiting some end- users like fishermen from benefiting from this. Therefore, an inexpensive, small-scaled, mobile and efficient power producing system is needed. In this report, the Wave Energy Converter (WEC) that is used is the floating buoy method where the buoy is attached to the rope and a linear generator installed at the sea bed. A linear generator with the permanent magnet, tubular orientation, and iron-cored stator is proposed to be installed to the floating buoy WEC. The magnets have been used as the moving part where two new shapes of magnet were introduced; i.e. triangular shape and trapezium shape. The models have been simulated and analyzed using finite element software Ansoft Maxwell. The open-flux, air gap flux and back EMF distributions were investigated for two different designs. The results obtained were further analyzed where the design is further optimized for continuous improvement to achieve the best configuration of the linear generato

    A Review of Transverse Flux Machines Topologies and Design

    Get PDF
    High torque and power density are unique merits of transverse flux machines (TFMs). TFMs are particularly suitable for use in direct-drive systems, that is, those power systems with no gearbox between the electric machine and the prime mover or load. Variable speed wind turbines and in-wheel traction seem to be great-potential applications for TFMs. Nevertheless, the cogging torque, efficiency, power factor and manufacturing of TFMs should still be improved. In this paper, a comprehensive review of TFMs topologies and design is made, dealing with TFM applications, topologies, operation, design and modeling

    Finite Element Analysis of the Direct Drive PMLOM

    Get PDF

    Linear Machines for Long Stroke Applications: a review

    Get PDF
    This document reviews the current state of the art in the linear machine technology. First,the recent advancements in linear induction, switched reluctance and permanent magnet machines arepresented. The ladder slit secondary configuration is identified as an interesting configuration for linearinduction machines. In the case of switched reluctance machines, the mutually-coupled configuration hasbeen found to equate the thrust capability of conventional permanent magnet machines. The capabilities ofthe so called linear primary permanent magnet, viz. switched-flux, flux-reversal, doubly-salient and verniermachines are presented afterwards. A guide of different options to enhance several characteristics of linearmachines is also listed. A qualitative comparison of the capabilities of linear primary permanent magnetmachines is given later, where linear vernier and switched-flux machines are identified as the most interestingconfigurations for long stroke applications. In order to demonstrate the validity of the presented comparison,three machines are selected from the literature, and their capabilities are compared under the same conditionsto a conventional linear permanent magnet machine. It is found that the flux-reversal machines suffer froma very poor power factor, whereas the thrust capability of both vernier and switched-flux machines isconfirmed. However, the overload capability of these machines is found to be substantially lower than theone from the conventional machine. Finally, some different research topics are identified and suggested foreach type of machine

    Modeling PM Rotary-Linear Motors with Twin-Stator Using 3D FEMM

    Get PDF
    A rapid growth of automatization nowadays requires electric machines to be adjusted to any technological process. Therefore, a need in machines with two degrees of mechanical freedom (TDMF), which can operate rotationally and linearly, is relatively large. This thesis is directed on the design and study of performance of PM (permanent magnet) rotary-linear synchronous motors with twin-armature as a new type of electric machines which can perform linear, rotational and helical movements. Three stator versions are considered, namely: stator with rotary and linear armatures, two rotary armatures, and two linear armatures. The rotors have PMs skewed with respect to the axial direction. An analysis of motor performance and an influence of PMs skewing on torque and axial force as well as cogging torque are considered. Calculations are based on 2D and 3D FEM (Finite Element Method)

    Electromagnetic fields and interactions in 3D cylindrical structures : modeling and application

    Get PDF
    The demand for more efficient and compact actuation systems results in a search for new electromagnetic actuator configurations. To obtain actuators that meet these challenging specifications, accurate modeling of the electromagnetic fields is often a prerequisite. To date, analytical modeling techniques are widely used to predict electromagnetic fields in classical rotary and linear machines represented in two dimensional coordinate systems. This thesis presents the extension of an analytical modeling technique to predict the 3D field distribution in new cylindrical actuator configurations. One specific technique that is used to analyze and design electromagnetic devices is based on Fourier series to describe sources and the resultingmagnetic fields. In this research, the harmonic modeling technique is extended to describe electromagnetic fields due to presence of permanent magnets in regular and irregular shaped 3D cylindrical structures. The researched modeling technique can be applied to current-free cylindrical problems exhibiting periodicity or a soft-magnetic boundary in the axial direction. The cylindrical structure can posses either circumferential slots, axial slots or rectangular cavities. The assignment and a method to solve the various boundary conditions are discussed in a generic manner to enable model application to a wide range of 3D cylindrical structures. The magnetic field solutions are provided, and the model implementation is presented in matrix form. Model validation is presented by means of a comparison of the magnetic fields in a cylindrical structure with a rectangular cavity calculated using the analytical model and a finite element model. To calculate the magnetic interactions, e.g., attraction and cogging forces due to permanent magnets, the Maxwell stress tensor is analytically evaluated. The harmonic magnetic field solution is used in this evaluation resulting in compact force equations describing the 3D force components between concentric cylinders

    Generalized harmonic modeling technique for 2D electromagnetic problems : applied to the design of a direct-drive active suspension system

    Get PDF
    The introduction of permanent magnets has significantly improved the performance and efficiency of advanced actuation systems. The demand for these systems in the industry is increasing and the specifications are becoming more challenging. Accurate and fast modeling of the electromagnetic phenomena is therefore required during the design stage to allow for multi-objective optimization of various topologies. This thesis presents a generalized technique to design and analyze 2D electromagnetic problems based on harmonic modeling. Therefore, the prior art is extended and unified to create a methodology which can be applied to almost any problem in the Cartesian, polar and axisymmetric coordinate system. This generalization allows for the automatic solving of complicated boundary value problems within a very short computation time. This method can be applied to a broad class of classical machines, however, more advanced and complex electromagnetic actuation systems can be designed or analyzed as well. The newly developed framework, based on the generalized harmonic modeling technique, is extensively demonstrated on slotted tubular permanent magnet actuators. As such, numerous tubular topologies, magnetization and winding configurations are analyzed. Additionally, force profiles, emf waveforms and synchronous inductances are accurately predicted. The results are within approximately 5 % of the non-linear finite element analysis including the slotted stator effects. A unique passive damping solution is integrated within the tubular permanent magnet actuator using eddy current damping. This is achieved by inserting conductive rings in the stator slot openings to provide a passive damping force without compromising the tubular actuator’s performance. This novel idea of integrating conductive rings is secured in a patent. A method to calculate the damping ratio due to these conductive rings is presented where the position, velocity and temperature dependencies are shown. The developed framework is applied to the design and optimization of a directdrive electromagnetic active suspension system for passenger cars. This innovative solution is an alternative for currently applied active hydraulic or pneumatic suspension systems for improvement of the comfort and handling of a vehicle. The electromagnetic system provides an improved bandwidth which is typically 20 times higher together with a power consumption which is approximately five times lower. As such, the proposed system eliminates two of the major drawbacks that prevented the widespread commercial breakthrough of active suspension systems. The direct-drive electromagnetic suspension system is composed of a coil spring in parallel with a tubular permanent magnet actuator with integrated eddy current damping. The coil spring supports the sprung mass while the tubular actuator either consumes, by applying direct-drive vertical forces, or regenerates energy. The applied tubular actuator is designed using a non-linear constrained optimization algorithm in combination with the developed analytical framework. This ensured the design with the highest force density together with low power consumption. In case of a power breakdown, the integrated eddy current damping in the slot openings of this tubular actuator, together with the passive coil spring, creates a passive suspension system to guarantee fail-safe operation. To validate the performance of the novel proof-of-concept electromagnetic suspension system, a prototype is constructed and a full-scale quarter car test setup is developed which mimics the vehicle corner of a BMW 530i. Consequently, controllers are designed for the active suspension strut for improvement of either comfort or handling. Finally, the suspension system is installed as a front suspension in a BMW 530i test vehicle. Both the extensive experimental laboratory and on-road tests prove the capability of the novel direct-drive electromagnetic active suspension system. Furthermore, it demonstrates the applicability of the developed modeling technique for design and optimization of electromagnetic actuators and devices

    Generalized harmonic modeling technique for 2D electromagnetic problems : applied to the design of a direct-drive active suspension system

    Get PDF
    The introduction of permanent magnets has significantly improved the performance and efficiency of advanced actuation systems. The demand for these systems in the industry is increasing and the specifications are becoming more challenging. Accurate and fast modeling of the electromagnetic phenomena is therefore required during the design stage to allow for multi-objective optimization of various topologies. This thesis presents a generalized technique to design and analyze 2D electromagnetic problems based on harmonic modeling. Therefore, the prior art is extended and unified to create a methodology which can be applied to almost any problem in the Cartesian, polar and axisymmetric coordinate system. This generalization allows for the automatic solving of complicated boundary value problems within a very short computation time. This method can be applied to a broad class of classical machines, however, more advanced and complex electromagnetic actuation systems can be designed or analyzed as well. The newly developed framework, based on the generalized harmonic modeling technique, is extensively demonstrated on slotted tubular permanent magnet actuators. As such, numerous tubular topologies, magnetization and winding configurations are analyzed. Additionally, force profiles, emf waveforms and synchronous inductances are accurately predicted. The results are within approximately 5 % of the non-linear finite element analysis including the slotted stator effects. A unique passive damping solution is integrated within the tubular permanent magnet actuator using eddy current damping. This is achieved by inserting conductive rings in the stator slot openings to provide a passive damping force without compromising the tubular actuator’s performance. This novel idea of integrating conductive rings is secured in a patent. A method to calculate the damping ratio due to these conductive rings is presented where the position, velocity and temperature dependencies are shown. The developed framework is applied to the design and optimization of a directdrive electromagnetic active suspension system for passenger cars. This innovative solution is an alternative for currently applied active hydraulic or pneumatic suspension systems for improvement of the comfort and handling of a vehicle. The electromagnetic system provides an improved bandwidth which is typically 20 times higher together with a power consumption which is approximately five times lower. As such, the proposed system eliminates two of the major drawbacks that prevented the widespread commercial breakthrough of active suspension systems. The direct-drive electromagnetic suspension system is composed of a coil spring in parallel with a tubular permanent magnet actuator with integrated eddy current damping. The coil spring supports the sprung mass while the tubular actuator either consumes, by applying direct-drive vertical forces, or regenerates energy. The applied tubular actuator is designed using a non-linear constrained optimization algorithm in combination with the developed analytical framework. This ensured the design with the highest force density together with low power consumption. In case of a power breakdown, the integrated eddy current damping in the slot openings of this tubular actuator, together with the passive coil spring, creates a passive suspension system to guarantee fail-safe operation. To validate the performance of the novel proof-of-concept electromagnetic suspension system, a prototype is constructed and a full-scale quarter car test setup is developed which mimics the vehicle corner of a BMW 530i. Consequently, controllers are designed for the active suspension strut for improvement of either comfort or handling. Finally, the suspension system is installed as a front suspension in a BMW 530i test vehicle. Both the extensive experimental laboratory and on-road tests prove the capability of the novel direct-drive electromagnetic active suspension system. Furthermore, it demonstrates the applicability of the developed modeling technique for design and optimization of electromagnetic actuators and devices
    • …
    corecore